2,575 research outputs found

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe

    Supporting UAVs with Edge Computing: A Review of Opportunities and Challenges

    Full text link
    Over the last years, Unmanned Aerial Vehicles (UAVs) have seen significant advancements in sensor capabilities and computational abilities, allowing for efficient autonomous navigation and visual tracking applications. However, the demand for computationally complex tasks has increased faster than advances in battery technology. This opens up possibilities for improvements using edge computing. In edge computing, edge servers can achieve lower latency responses compared to traditional cloud servers through strategic geographic deployments. Furthermore, these servers can maintain superior computational performance compared to UAVs, as they are not limited by battery constraints. Combining these technologies by aiding UAVs with edge servers, research finds measurable improvements in task completion speed, energy efficiency, and reliability across multiple applications and industries. This systematic literature review aims to analyze the current state of research and collect, select, and extract the key areas where UAV activities can be supported and improved through edge computing

    In-Network View Synthesis for Interactive Multiview Video Systems

    Get PDF
    To enable Interactive multiview video systems with a minimum view-switching delay, multiple camera views are sent to the users, which are used as reference images to synthesize additional virtual views via depth-image-based rendering. In practice, bandwidth constraints may however restrict the number of reference views sent to clients per time unit, which may in turn limit the quality of the synthesized viewpoints. We argue that the reference view selection should ideally be performed close to the users, and we study the problem of in-network reference view synthesis such that the navigation quality is maximized at the clients. We consider a distributed cloud network architecture where data stored in a main cloud is delivered to end users with the help of cloudlets, i.e., resource-rich proxies close to the users. In order to satisfy last-hop bandwidth constraints from the cloudlet to the users, a cloudlet re-samples viewpoints of the 3D scene into a discrete set of views (combination of received camera views and virtual views synthesized) to be used as reference for the synthesis of additional virtual views at the client. This in-network synthesis leads to better viewpoint sampling given a bandwidth constraint compared to simple selection of camera views, but it may however carry a distortion penalty in the cloudlet-synthesized reference views. We therefore cast a new reference view selection problem where the best subset of views is defined as the one minimizing the distortion over a view navigation window defined by the user under some transmission bandwidth constraints. We show that the view selection problem is NP-hard, and propose an effective polynomial time algorithm using dynamic programming to solve the optimization problem. Simulation results finally confirm the performance gain offered by virtual view synthesis in the network

    Deep Learning for Edge Computing Applications: A State-of-the-Art Survey

    Get PDF
    With the booming development of Internet-of-Things (IoT) and communication technologies such as 5G, our future world is envisioned as an interconnected entity where billions of devices will provide uninterrupted service to our daily lives and the industry. Meanwhile, these devices will generate massive amounts of valuable data at the network edge, calling for not only instant data processing but also intelligent data analysis in order to fully unleash the potential of the edge big data. Both the traditional cloud computing and on-device computing cannot sufficiently address this problem due to the high latency and the limited computation capacity, respectively. Fortunately, the emerging edge computing sheds a light on the issue by pushing the data processing from the remote network core to the local network edge, remarkably reducing the latency and improving the efficiency. Besides, the recent breakthroughs in deep learning have greatly facilitated the data processing capacity, enabling a thrilling development of novel applications, such as video surveillance and autonomous driving. The convergence of edge computing and deep learning is believed to bring new possibilities to both interdisciplinary researches and industrial applications. In this article, we provide a comprehensive survey of the latest efforts on the deep-learning-enabled edge computing applications and particularly offer insights on how to leverage the deep learning advances to facilitate edge applications from four domains, i.e., smart multimedia, smart transportation, smart city, and smart industry. We also highlight the key research challenges and promising research directions therein. We believe this survey will inspire more researches and contributions in this promising field

    Edge Video Analytics: A Survey on Applications, Systems and Enabling Techniques

    Full text link
    Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. The basic concepts of EVA (e.g., definition, architectures) were not fully elucidated due to the rapid development of this domain. To fill these gaps, we provide a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.Comment: 31 pages, 13 figure

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Performance and efficiency optimization of multi-layer IoT edge architecture

    Get PDF
    Abstract. Internet of Things (IoT) has become a backbone technology that connects together various devices with diverse capabilities. It is a technology, which enables ubiquitously available digital services for end-users. IoT applications for mission-critical scenarios need strict performance indicators such as of latency, scalability, security and privacy. To fulfil these requirements, IoT also requires support from relevant enabling technologies, such as cloud, edge, virtualization and fifth generation mobile communication (5G) technologies. For Latency-critical applications and services, long routes between the traditional cloud server and end-devices (sensors /actuators) is not a feasible approach for computing at these data centres, although these traditional clouds provide very high computational and storage for current IoT system. MEC model can be used to overcome this challenge, which brings the CC computational capacity within or next on the access network base stations. However, the capacity to perform the most critical processes at the local network layer is often necessary to cope with the access network issues. Therefore, this thesis compares the two existing IoT models such as traditional cloud-IoT model, a MEC-based edge-cloud-IoT model, with proposed local edge-cloud-IoT model with respect to their performance and efficiency, using iFogSim simulator. The results consolidate our research team’s previous findings that utilizing the three-tier edge-IoT architecture, capable of optimally utilizing the computational capacity of each of the three tiers, is an effective measure to reduce energy consumption, improve end-to-end latency and minimize operational costs in latency-critical It applications
    • …
    corecore