88,859 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    CPL: A Core Language for Cloud Computing -- Technical Report

    Full text link
    Running distributed applications in the cloud involves deployment. That is, distribution and configuration of application services and middleware infrastructure. The considerable complexity of these tasks resulted in the emergence of declarative JSON-based domain-specific deployment languages to develop deployment programs. However, existing deployment programs unsafely compose artifacts written in different languages, leading to bugs that are hard to detect before run time. Furthermore, deployment languages do not provide extension points for custom implementations of existing cloud services such as application-specific load balancing policies. To address these shortcomings, we propose CPL (Cloud Platform Language), a statically-typed core language for programming both distributed applications as well as their deployment on a cloud platform. In CPL, application services and deployment programs interact through statically typed, extensible interfaces, and an application can trigger further deployment at run time. We provide a formal semantics of CPL and demonstrate that it enables type-safe, composable and extensible libraries of service combinators, such as load balancing and fault tolerance.Comment: Technical report accompanying the MODULARITY '16 submissio

    Ontology-based composition and matching for dynamic cloud service coordination

    Get PDF
    Recent cross-organisational software service offerings, such as cloud computing, create higher integration needs. In particular, services are combined through brokers and mediators, solutions to allow individual services to collaborate and their interaction to be coordinated are required. The need to address dynamic management - caused by cloud and on-demand environments - can be addressed through service coordination based on ontology-based composition and matching techniques. Our solution to composition and matching utilises a service coordination space that acts as a passive infrastructure for collaboration where users submit requests that are then selected and taken on by providers. We discuss the information models and the coordination principles of such a collaboration environment in terms of an ontology and its underlying description logics. We provide ontology-based solutions for structural composition of descriptions and matching between requested and provided services

    Cloud service localisation

    Get PDF
    The essence of cloud computing is the provision of software and hardware services to a range of users in dierent locations. The aim of cloud service localisation is to facilitate the internationalisation and localisation of cloud services by allowing their adaption to dierent locales. We address the lingual localisation by providing service-level language translation techniques to adopt services to dierent languages and regulatory localisation by providing standards-based mappings to achieve regulatory compliance with regionally varying laws, standards and regulations. The aim is to support and enforce the explicit modelling of aspects particularly relevant to localisation and runtime support consisting of tools and middleware services to automating the deployment based on models of locales, driven by the two localisation dimensions. We focus here on an ontology-based conceptual information model that integrates locale specication in a coherent way

    Workflow Partitioning and Deployment on the Cloud using Orchestra

    Get PDF
    Orchestrating service-oriented workflows is typically based on a design model that routes both data and control through a single point - the centralised workflow engine. This causes scalability problems that include the unnecessary consumption of the network bandwidth, high latency in transmitting data between the services, and performance bottlenecks. These problems are highly prominent when orchestrating workflows that are composed from services dispersed across distant geographical locations. This paper presents a novel workflow partitioning approach, which attempts to improve the scalability of orchestrating large-scale workflows. It permits the workflow computation to be moved towards the services providing the data in order to garner optimal performance results. This is achieved by decomposing the workflow into smaller sub workflows for parallel execution, and determining the most appropriate network locations to which these sub workflows are transmitted and subsequently executed. This paper demonstrates the efficiency of our approach using a set of experimental workflows that are orchestrated over Amazon EC2 and across several geographic network regions.Comment: To appear in Proceedings of the IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC 2014

    User-customisable policy monitoring for multi-tenant cloud architectures

    Get PDF
    Cloud computing needs end-user customisation and person- alisation of multi-tenant cloud service oerings. Particularly, QoS and governance policy management and monitoring is needed. We propose a user-customisable policy denition solution that can be enforced in multitenant cloud oerings through automated instrumentation and monitoring. Service processes run by cloud and SaaS providers can be made policy-aware in a transparent way
    corecore