
Workflow Partitioning and Deployment on the Cloud using Orchestra

Ward Jaradat, Alan Dearle, and Adam Barker
School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SX, United Kingdom

{ward.jaradat, alan.dearle, adam.barker}@st-andrews.ac.uk

Abstract—Orchestrating service-oriented workflows is typi-
cally based on a design model that routes both data and control
through a single point – the centralised workflow engine. This
causes scalability problems that include the unnecessary con-
sumption of the network bandwidth, high latency in transmit-
ting data between the services, and performance bottlenecks.
These problems are highly prominent when orchestrating
workflows that are composed from services dispersed across
distant geographical locations. This paper presents a novel
workflow partitioning approach, which attempts to improve
the scalability of orchestrating large-scale workflows. It permits
the workflow computation to be moved towards the services
providing the data in order to garner optimal performance
results. This is achieved by decomposing the workflow into
smaller sub workflows for parallel execution, and determining
the most appropriate network locations to which these sub
workflows are transmitted and subsequently executed. This
paper demonstrates the efficiency of our approach using a set
of experimental workflows that are orchestrated over Amazon
EC2 and across several geographic network regions.

Keywords-Service-oriented workflows, orchestration, parti-
tioning, computation placement analysis, deployment

I. INTRODUCTION

Service workflows represent the automation of services
during which data is passed between the services for
processing. Typically, workflows are orchestrated based on
a centralised design model that provides control over the
workflow, supports process automation, and encapsulates
the workflow logic in a central location at which its
execution takes place. There are several languages used to
describe service workflows such as the Business Process
Execution Language (BPEL) [1], which has been accepted
as a standard service orchestration language. The Simple
Conceptual Unified Flow Language (SCUFL) is an example
of a language for specifying large-scale workflows such
as those seen in scientific applications [2]. It is supported
by the Taverna workbench and is typically executed using
a workflow engine known as Freefluo [3]. However,
workflow management systems of this kind route both
data and control through a single point, which causes
scaling problems including the unnecessary consumption
of network bandwidth, high latency in transmitting data
between the services, and performance bottlenecks.

Scientific workflows can be composed from services that
may be dispersed across distant geographical locations.
Determining the most appropriate location at which to

execute the workflow logic becomes difficult as the
number of geographically distributed services increases.
Most workflow management approaches rely on data
placement strategies that attempt to move the data closer
to locations at which the computation takes place [4], [5],
[6], [7], [8]. This involves a set of activities related to data
transfer, staging, replication, management and allocation
of resources. However, the distribution of large portions
of data between the services and across long distances
through the centralised engine can affect the data transfer
rate, increase the execution time, risk overwhelming the
storage resources at execution sites, and degrade the
overall workflow performance. Recent research efforts show
interest in using Infrastructure as a Service (IaaS) clouds
that provide on-demand computational services to support
cost-efficient workflow management [9], [10], but do not
examine how the geographical location of services can
affect the workflow performance.

The principal contribution of this paper is a partitioning
approach that permits a workflow to be decomposed into
smaller sub workflows for parallel execution on the cloud.
It determines the most appropriate locations to which these
sub workflows are transmitted and subsequently executed.
Unlike existing approaches that depend on data placement,
our approach permits the workflow computation to be
moved closer to the services providing the data. Through
adopting this approach, distributed workflow engines can
collaborate together to execute the overall workflow. Each
engine is carefully selected to execute a smaller part of the
workflow within short network distance to the services. For
instance, an engine may be selected if it is hosted in the
same network region where the services are resident in a
cloud-based environment. Our approach relies on collecting
Quality of Service (QoS) information that represents the
network delay (e.g. network latency and bandwidth) with
a combination of heuristics to select the nearest engines
to the services. It is hypothesised that this improves the
workflow performance by reducing the overall data transfer
among the services.

Previously we created a distributed architecture for
executing service workflows [11], which relies on a high-
level language [12] for specifying workflows. However,
the published articles relating to these works do not



discuss our workflow partitioning approach. This paper
presents a refined design of our architecture, evaluates our
approach accordingly, and compares it to existing works.
In order to investigate the benefits of our approach, we
use a set of experimental workflows that are executed
over Amazon EC2 and across several geographic network
regions. These workflows are based on dataflow patterns
that are commonly used to compose large-scale scientific
workflows [13], which include the pipeline, distribution and
aggregation patterns.

The rest of this paper is organised as follows: Section II
presents a simple workflow example that is used throughout
the paper to explain our approach. Section III presents
our workflow partitioning approach. Section IV discusses
a workflow partitioning example. Section V discusses and
evaluates our approach implementation. Section VI reviews
related works. Finally, section VII summarises our work
achievements and states future research directions.

II. WORKFLOW EXAMPLE

Our approach relies on a new high-level functional data
coordination language for the specification of workflows
known as Orchestra. It separates the workflow logic from its
execution, and permits a workflow architect (e.g. scientist,
engineer) to design a workflow without knowledge of how
it is executed. Orchestra allows a workflow to be composed
as a Directed Acyclic Graph (DAG) that supports common
dataflow patterns, and provides succinct abstractions for
defining the services and coordinating the dataflow between
them. This section provides a simple workflow example that
is used throughout this paper to explain our approach. Figure
1 shows its structure, where the input a is used to invoke
service S1, which produces an output that is used to invoke
S2 whose output is then passed to S3. The output of S3 is
used to invoke both S4 and S5, whose outputs are used as
inputs for S6, which produces the final workflow output x.

a

S1 S2 S3

S4

S5

S6

x

Data Service

Figure 1: A Directed Acyclic Graph (DAG) workflow.

Listing 1 presents the specification of this workflow
using our language where the workflow name example

is defined in line 1 using the workflow keyword. The
description keyword is used to declare identifiers for a
service description documents, each of which can be located

using a URL through lines 2-7. This permits the compiler
to retrieve information about the services, their operations
and associated types for syntax analysis. The service
keyword is used to declare the service identifiers s1, s2,
s3, s4, s5 and s6 through lines 8-13. Similarly, the service
ports p1, p2, p3, p4, p5 and p6 are declared using the
port keyword through lines 14-19. The input and output
keywords define the workflow interface, which provides an
input a and an output x of the same type through lines 20-23.

01 workflow example
02 description d1 is http://ward.host.cs.st-

andrews.ac.uk/documents/service1.wsdl
..
07 description d6 is http://ward.host.cs.st-

andrews.ac.uk/documents/service6.wsdl
08 service s1 is d1.Service1
..
13 service s6 is d6.Service6
14 port p1 is s1.Port1
..
19 port p6 is s6.Port6
20 input:
21 int a
22 output:
23 int x
24 a -> p1.Op1
25 p1.Op1 -> p2.Op2
26 p2.Op2 -> p3.Op3
27 p3.Op3 -> p4.Op4, p5.Op5
28 p4.Op4 -> p6.Op6.par1
29 p5.Op5 -> p6.Op6.par2
30 p6.Op6 -> x

Listing 1: Specification of the workflow in figure 1.

Our language supports common dataflow patterns by
specifying service invocations and the data passed to them.
Each service invocation consists of a port identifier and an
associated operation separated by a dot symbol. The output
of a particular service invocation can be associated with an
identifier, or passed directly to another service invocation to
create a service composition. The arrow symbol indicates the
direction of the data to or retrieved from service invocations.
The following dataflow patterns are specified in listing 1:

• Pipeline pattern: This pattern is used for chaining
several services together, where the output of a par-
ticular service is used as an input to invoke another.
For instance, a is used to invoke p1.Op1 whose result
is passed directly to p2.Op2, which in turn produces a
result that is passed to p3.Op3 through lines 24-26.

• Data distribution pattern: This pattern is used to
transmit several identical copies of a particular service
output to multiple services. For instance, the invocation
result of p3.Op3 is used to invoke both p4.Op4 and
p5.Op5 in line 27. This finite sequence of invocations
is the simplest parallel data structure in our language
where each invocation is executed concurrently.



• Data aggregation pattern: The results of several ser-
vice invocations may be passed as individual input pa-
rameters to one particular service using this pattern. For
instance, the results of both p4.Op4 and p5.Op5 are
used as input parameters par1 and par2 respectively to
invoke operation p6.Op6 through lines 28-29. Finally,
x represents the result of p6.Op6 in line 30.

III. OVERVIEW OF APPROACH

In order to realise our approach we created a fully dis-
tributed orchestration architecture. Unlike existing orches-
tration technology where the locus of control is represented
by a centralised engine that holds the decision logic of the
workflow, the notion of a single locus of control does not
exist in our architecture. During the workflow execution,
the decision logic can be found at one or several engines.
Figure 2 shows an overview of our architecture that consists
of distributed workflow engines. These engines collaborate
together to complete the workflow execution. For instance,
a workflow engine may be responsible for analysing and
partitioning a workflow specification into smaller sub work-
flows. These sub workflows may be deployed onto remote
engines for execution. Each engine then exploits connectiv-
ity to a group of services by invoking them or composing
them together, retrieving invocation results, and forwarding
relevant information to remote engines as necessary. The
following sections discuss the compilation and partitioning
of a workflow specification, deployment of sub workflows
and monitoring their execution.

A. Compilation
Our approach uses a recursive descent compiler that

analyses a workflow specification to ensure its correctness.
It does not generate machine code representation from the
workflow specification, but constructs an executable graph-
based data structure instead, which consists of vertices that
represent service invocations with edges between them as
data dependencies. The components of this data structure
can be distributed to remote workflow engines at arbitrary
network locations. This permits a workflow to be maintained
upon its distribution such that it can be refactored for
optimisation purposes during run-time.

B. Partitioning
Our workflow partitioning approach consists of several

phases that include workflow decomposition, placement
analysis, and composition of sub workflows.

1) Decomposition of a workflow: This phase decomposes
a workflow graph into smaller data structures that represent
sub workflows. Hence, we created a traverser that explores
the workflow graph to gain insight about its complexity
and detect its intricate parallel parts. It obtains information
about the workflow inputs, outputs, services, invocations,
and associated types. This information is used to detect
the maximum number of smallest sub workflows, each of
which consists of a single invocation, or multiple sequential
invocations to the same service if a data dependency exists
between them.

Deployment

E1

C
lo

u
d

 R
eg

io
n

 (
R

1
)

Services
Services

Se
rv

ic
es E2

Workflow Specification and Initial Inputs

S1 S3

S4

S5

S2

E3 S6

C
lo

u
d

 R
egio

n
 (R

2
)

C
lo

u
d

 R
egio

n
 (R

3
)

Information Flow

In
fo

rm
atio

n
 Flo

w

Information Flow

Deployment

Final Outputs

Engine Service

Figure 2: Overview of our distributed service orchestration architecture, and the interactions between distributed workflow
engines. This diagram shows an arbitrary placement of services within cloud regions based on the example in figure 1.



2) Placement analysis: Once a workflow has been de-
composed by the traverser, placement analysis are performed
to determine the most appropriate engines that may execute
the sub workflows. This phase involves the following activ-
ities, which are illustrated in figure 3.

• Discovery and clustering of engines: This activity
identifies a set of available engines that may execute the
sub workflows1. For each sub workflow, these engines
are organised into groups using the k-means clustering
algorithm, and according to QoS metrics that represent
the network delay, which include the network latency
and bandwidth between each engine and the single
service endpoint in the sub workflow.

• Elimination of inappropriate engines: Upon clus-
tering, groups containing inappropriate engines are
eliminated from further analysis. This is achieved by
identifying the engines with metrics that are worse than
those of engines in other groups.

• Ranking and selection of engines: Each remaining
candidate engine is ranked by predicting the transmis-
sion time between the engine and the service endpoint
using:

T = Le−s + Sinput/Be−s (1)

where T is the transmission time, Le−s and Be−s are
the latency and bandwidth between the engine and the
service respectively, and Sinput is the size of the input
that is used to invoke the service. Consequently, an
engine with the shortest transmission time is selected.

Latency

B
an
d
w
id
th

Engine

(a) Discovery

Latency

B
an

d
w

id
th

Group A

Group B

Engine

(b) Clustering

Latency

B
an

d
w

id
th

Candidate Engines

Engine

(c) Elimination

Latency

B
an

d
w

id
th

High Ranking Engine 

Engine Selected Engine

(d) Ranking and Selection

Figure 3: Placement analysis.

1This paper does not focus on mechanisms to discover the engines.

3) Composition of sub workflows: The sub workflows
may be combined together if the same engine is selected
to execute them. This involves introducing directed edges
between them wherever a data dependency exists. Conse-
quently, the composite workflows are encoded using the
same language as used to specify the entire workflow. During
the recoding, relevant information such as the workflow
inputs, outputs, service invocations, data dependencies and
type representations are all captured, and associated with the
composite workflows to make each a self contained stand-
alone workflow specification.

C. Deployment and Monitoring

Our approach uses the knowledge about the network
condition with a combination of heuristics for initially
deploying the workflow. Each composite workflow specifi-
cation is dispatched to a designated engine, which compiles
and executes it immediately. This deployment process is
transparent and does not require any user intervention. Upon
deployment, real-time distributed monitoring may be used
to guide the workflow toward optimal performance. This
is achieved by detecting the network condition periodically
and performing further placement analysis. Our approach
uses the application layer capabilities to deliver useful in-
formation about the network condition in terms of network
latency and bandwidth. For instance, an engine measures the
latency by computing the average round-trip time of a series
of HTTP HEAD requests issued to a service. Similarly, the
bandwidth is measured using the request completion time
and the response message size.

IV. WORKFLOW PARTITIONING EXAMPLE

This section presents an arbitrary workflow partitioning
scenario based on the workflow example in figure 1, where
the workflow is decomposed into smaller sub workflows
as shown in figure 4. Each sub workflow consists of a
single service invocation, which requires one or more
inputs and produces a single output. Upon selecting
appropriate engines to execute the sub workflows, they
may be combined together to form composite workflows.
During their composition, they are analysed to detect any
external dependency between them where an output of a sub
workflow is required as an input for another. Upon detecting
an external dependency, it is replaced by a direct service
composition between the service endpoint that produces
the data and the one that requires it in the composite
workflow. The intermediate data between the services may
be represented in the composite workflow as output data
when it is required for executing other composite workflows.

Listing 2 shows a computer generated specification of the
composite workflow shown in figure 5. This specification is
executed by an engine that is deployed closer to services S1
and S2 as shown in figure 2. It shows a universally unique



a b

S1

Data Service

(a)

b c

S2

Data Service

(b)

c d

S3

Data Service

(c)

d e

S4

Data Service

(d)

d f

S5

Data Service

(e)

Data Service

e

x

S6

f

(f)

Figure 4: Sub workflows obtained from decomposing the workflow shown in figure 1.

identifier that is specified using the uid keyword in line 2.
This identifier is generated to distinguish the workflow from
others with the same name. The engine keyword declares a
remote engine identifier in line 3. The identifiers relating to
the services are all declared through lines 4-9. The workflow
interface is defined through lines 10-13. The input a is used
to invoke p1.Op1, whose output is passed to p2.Op2 that
produces c. Finally, the workflow output is forwarded to e2

to perform further computation using the forward keyword.

a

S1

c

S2

Data Service

Figure 5: The first composite workflow formed by compos-
ing the sub workflows shown in figures 4a and 4b.

01 workflow example
02 uid 618e65607dc47807a51a4aa3211c3298fd8.1
03 engine e2 is http://ec2-54-83-2-120.

compute-1.amazonaws.com/services/Engine
04 description d1 is http://ward.host.cs.st-

andrews.ac.uk/documents/service1.wsdl
05 description d2 is http://ward.host.cs.st-

andrews.ac.uk/documents/service2.wsdl
06 service s1 is d1.Service1
07 service s2 is d2.Service2
08 port p1 is s1.Port1
09 port p2 is s2.Port2
10 input:
11 int a
12 output:
13 int c
14 a -> p1.Op1
15 p1.Op1 -> p2.Op2
16 p2.Op2 -> c
17 forward c to e2

Listing 2: Specification of the first composite workflow
shown in figure 5.

Listing 3 shows the specification of the second workflow
which is shown in figure 6. This specification is executed
closer to s3 and s4 by engine e2 as shown in figure 2, and
upon the availability of the workflow input c.

c

dS3

e

S4

Data Service

Figure 6: The second composite workflow formed by com-
posing the sub workflows shown in figures 4c and 4d.

01 workflow example
02 uid 618e65607dc47807a51a4aa3211c3298fd8.2
03 engine e3 is http://ec2-54-80-6-125.

compute-1.amazonaws.com/services/Engine
04 description d3 is http://ward.host.cs.st-

andrews.ac.uk/documents/service3.wsdl
05 description d4 is http://ward.host.cs.st-

andrews.ac.uk/documents/service4.wsdl
06 service s3 is d3.Service3
07 service s4 is d4.Service4
08 port p3 is s3.Port3
09 port p4 is s4.Port4
10 input:
11 int c
12 output:
13 int d, e
14 c -> p3.Op3
15 p3.Op3 -> d
16 d -> p4.Op4
17 p4.Op4 -> e
18 forward d to e3
19 forward e to e3

Listing 3: Specification of the second composite workflow
shown in figure 6.

Listing 4 shows the specification of the workflow in figure
7, where p5.Op5 and p6.Op6 are invoked consecutively.



Finally, the workflow output x is forwarded to engine e1,
which acts as a data sink for the workflow outputs. Typically,
this engine is the initial engine that partitioned the workflow
and deployed it.

d

S5

S6

x

e

Data Service

Figure 7: The third composite workflow formed by compos-
ing the sub workflows shown in figures 4e and 4f.

01 workflow example
02 uid 618e65607dc47807a51a4aa3211c3298fd8.3
03 engine e1 is http://ec2-54-80-3-122.

compute-1.amazonaws.com/services/Engine
04 description d5 is http://ward.host.cs.st-

andrews.ac.uk/documents/service5.wsdl
05 description d6 is http://ward.host.cs.st-

andrews.ac.uk/documents/service6.wsdl
06 service s5 is d5.Service5
07 service s6 is d6.Service6
08 port p5 is s5.Port5
09 port p6 is s6.Port6
10 input:
11 int d, e
12 output:
13 int x
14 d -> p5.Op5
15 p5.Op5 -> p6.Op6.par2
16 e -> p6.Op6.par1
17 p6.Op6 -> x
18 forward x to e1

Listing 4: Specification of the third composite workflow
shown in figure 7.

V. IMPLEMENTATION AND EVALUATION

The overall implementation is based on Java and wrapped
as a web service package that can be deployed on any
physical or virtual machine. It relies upon the Java Runtime
Environment (JRE) and Apache Tomcat server. We have
designed a set of experimental workflows to evaluate our
approach, each of which is specified based on a particular
dataflow pattern. These workflows consist of a different
number of services that are deployed on Amazon EC2, and
across several network locations in geographical regions to
explore the scalability of our approach. They are categorised
into continental and inter-continental workflows.

A. Configuration
1) Continental workflows: These workflows consist of

services hosted in the same network region such as N. Vir-
ginia (us-east-1) over Amazon EC2. They are orchestrated
in the following configurations:

• Centralised orchestration (local): The workflow is
executed by a workflow engine that is deployed in the
same network region where the services are resident as
shown in figure 8.

Engine

Services

Cloud Region

Figure 8: Centralised orchestration (local).

• Centralised orchestration (remote): The workflow is
executed by a workflow engine that is deployed in a
different network region than the one where the services
are resident such as N. California (us-west-1). This
configuration is shown in figure 9.

Engine

Services

Cloud Region (R1)

Cloud Region (R2)

Figure 9: Centralised orchestration (remote).

• Distributed orchestration: The workflow is executed
using our approach by distributed workflow engines,
which are deployed in the same network region where
the services are resident as shown in figure 10.

En
gi

n
es

Services

Cloud Region

Figure 10: Distributed orchestration of continental services.

2) Configuration of inter-continental workflows: These
workflows consist of services that are distributed across N.
Virginia (us-east-1), N. California (us-west-1), Oregon (us-
west-2) and Ireland (eu-west-1). They are orchestrated in the
following configurations:

• Centralised orchestration: The workflow is executed
by a centralised engine that is deployed at an arbitrary
network location as shown in figure 11.



Engine

Services

Cloud Region (R1) Cloud Region (R2)

Service

Figure 11: Centralised orchestration.

• Distributed orchestration: The workflow is executed
using our approach by distributed engines that are
dispersed over several network regions as shown in
figure 12.

Engine

Services

Cloud Region (R1) Cloud Region (R2)

Service

Figure 12: Distributed orchestration.

B. Analysis

The completion time for each workflow is recorded in
seconds, and the size of total communicated data in MB.
Each workflow is executed using 21 inputs to emulate the
data increase in each run, and for 20 times (420 runs in
total). The mean speedup rate is computed using:

S = Tc/Td (2)

where Tc and Td are the average workflow completion times
using centralised and distributed orchestration respectively.

1) Analysis of continental workflows: There are a number
of observations that can be derived from our experimental
results. Firstly, executing a continental workflow by a
centralised engine within the same region provides better
performance compared to executing the same workflow by
a centralised engine that resides in a remote region. This is
evident in all continental workflows as shown in figure 13.
Secondly, executing a continental workflow that consists of
a small number of services using distributed orchestration
may not provide significant performance improvement over
local centralised orchestration as shown in figures 13a, 13b,
and 13c. This is because introducing more engines involves
the communication of additional intermediate copies of data
between them, which may increase the workflow execution
time. Finally, distributed orchestration becomes more useful
as the number of services increases according to figures

13d, 13e, and 13f. Tables I, and II summarise the results
where N is the number of services, Sα and Sβ are the
mean speedup rates for distributed orchestration compared
to local and remote centralised orchestration respectively.

Table I: Mean speedup rates for continental workflows
consisting of 8 services

Pattern N Sα Sβ
Pipeline 8 1.13 2.60
Distribution 8 1.18 2.69
Aggregation 8 1.25 3.23

Table II: Mean speedup rates for continental workflows
consisting of 16 services

Pattern N Sα Sβ
Pipeline 16 1.59 3.19
Distribution 16 1.43 3.45
Aggregation 16 1.93 3.28

2) Analysis of inter-continental workflows: Our dis-
tributed orchestration approach provides significant perfor-
mance improvement for all inter-continental workflows as
shown in figure 14. Firstly, a centralised engine may take
considerable amount of time to execute a workflow due
to high latency and low bandwidth between itself and the
services. Secondly, executing a workflow using distributed
engines reduces the overall execution time as the data size
increases. This is because several parts of the workflow
logic are executed in parallel at the nearest locations to the
services, which improves the response times between the
engines and the services. Finally, the time for transferring
the intermediate data between the engines may be affected
because of the change in the network condition, but it does
not degrade the overall workflow performance. Table III
provides the workflow results.

Table III: Mean speedup rates for inter-continental work-
flows consisting of 16 services

Pattern N S
Pipeline 16 2.69
Distribution 16 2.54
Aggregation 16 1.97

3) Analysis of an inter-continental end-to-end workflow:
Although this paper has focused primarily on evaluating our
approach based on common dataflow patterns, it is essential
to demonstrate its efficacy based on an end-to-end workflow



æ æ
æ

æ
æ

æ
æ

æ
æ

æ
æ æ

æ æ

æ æ
æ

æ

æ
æ

æ

à

à

à

à à
à à

à
à

à

à
à

à
à

à

à

à

à

à
à

à

ì
ì ì ì

ì
ì ì ì ì ì ì ì

ì
ì

ì ì ì ì ì
ì ì

æ Centralised Orchestration HLocalL
à Centralised Orchestration HRemoteL
ì Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(a) Pipeline Dataflow Pattern (8 Services)

æ æ æ æ
æ æ æ

æ æ æ
æ æ

æ æ
æ æ

æ
æ æ

æ æ

à
à

à
à

à
à

à
à

à à
à à

à
à

à
à

à
à

à
à

à

ìì
ì ì ì ì

ì ì
ì ì ì

ì
ì

ì
ì ì

ì ì ì
ì ì

æ Centralised Orchestration HLocalL
à Centralised Orchestration HRemoteL
ì Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(b) Data Distribution Pattern (8 Services)

æ æ æ æ
æ

æ
æ æ æ

æ æ æ
æ

æ
æ

æ
æ æ

æ æ
æ

à
à

à

à à

à à
à

à

à à
à

à

à

à

à à

à
à

à

à

ìì
ì ì ì ì ì ì

ì ì ì ì ì ì
ì ì

ì ì ì ì ì

æ Centralised Orchestration HLocalL
à Centralised Orchestration HRemoteL
ì Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(c) Data Aggregation Pattern (8 Services)

æ
æ

æ æ æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ

æ
æ

æ
æ

æ
æ

à

à

à

à

à
à

à

à

à à
à

à
à

à
à

à

à

à
à

à
à

ìì ì ì ì ì ì ì ì ì ì ì ì ì
ì ì ì ì

ì ì ì

æ Centralised Orchestration HLocalL
à Centralised Orchestration HRemoteL
ì Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(d) Pipeline Dataflow Pattern (16 Services)

æ æ æ æ æ æ æ
æ

æ
æ

æ
æ æ æ

æ
æ æ

æ

æ
æ

æ

à

à
à à

à
à

à à
à à

à
à

à

à

à

à

à

à
à

à

à

ìì ì ì ì ì
ì ì ì ì ì ì ì ì

ì
ì

ì ì
ì ì ì

æ Centralised Orchestration HLocalL
à Centralised Orchestration HRemoteL
ì Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(e) Data Distribution Pattern (16 Services)

æ æ æ æ
æ æ æ

æ
æ

æ
æ

æ æ

æ

æ

æ
æ

æ
æ æ

æ

à
à

à

à

à
à à

à

à

à

à à

à à
à

à

à
à

à

à

à

ìì ì ì ì ì ì ì ì ì ì ì ì ì ì
ì ì

ì
ì

ì
ì

æ Centralised Orchestration HLocalL
à Centralised Orchestration HRemoteL
ì Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(f) Data Aggregation Pattern (16 Services)

Figure 13: Continental workflow results.

æ
æ

æ

æ æ
æ

æ
æ æ

æ

æ æ

æ æ

æ æ

æ

æ

æ
æ

æ

à à à
à à

à à à à à
à

à

à à à à
à

à

à à

à

æ Centralised Orchestration

à Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

300

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(a) Pipeline Dataflow Pattern (16 Services)

æ

æ
æ

æ æ

æ
æ

æ

æ

æ

æ æ

æ
æ

æ
æ

æ æ æ

æ
æ

à à
à à à à

à
à

à
à à

à à

à à

à à
à à à à

æ Centralised Orchestration

à Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

300

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(b) Data Distribution Pattern (16 Services)

æ æ

æ æ

æ

æ
æ æ

æ
æ

æ

æ

æ æ

æ

æ æ

æ
æ

æ

æ

à à
à à à à

à
à

à
à

à à à

à à

à à

à
à

à à

æ Centralised Orchestration

à Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

300

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

(c) Data Aggregation Pattern (16 Services)

Figure 14: Inter-continental workflow results.

application that combines all these patterns together. Hence,
we created a workflow that consists of 16 services which
are distributed across multiple regions. Figure 15 shows the

æ

æ
æ

æ

æ
æ

æ

æ æ

æ
æ

æ

æ
æ

æ

æ

æ æ

æ
æ

æ

à à à
à à

à
à à à à

à à

à
à

à à
à à

à
à

à

æ Centralised Orchestration

à Distributed Orchestration

0 50 100 150 200
0

50

100

150

200

250

300

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
HS

ec
L

Figure 15: End-to-end inter-continental workflow.

overall results where the mean speedup is 2.68. The final
outputs of all inter-continental workflows are obtained from
the services, and stored on machines that host the engines
which obtained the outputs.

VI. RELATED WORKS

A. Workflow Management Systems

Pegasus [14] is a notable workflow management system
that relies on a centralised engine for scheduling distributed
workflow tasks. Our approach is based on a distributed
design model that permits the workflow partitions to be
executed without prior scheduling. Each sub workflow is
executed automatically as soon as the data that is required
for its execution is available from other sources. Condor [15]
leverages resource machines for executing distributed tasks
using batch processing. These tasks are specified manually
by the user, and pre-knowledge about the machines and



the condition of the network is required. Our architecture
handles the partitioning and mapping of workflows onto ma-
chines automatically by collecting information about the net-
work condition, and performing placement analysis. Triana
[16] permits a workflow to be distributed across machines,
and supports control flows by associating coordination logic
with workflow scripts. Control flows are unnecessary in
our approach as it is relies on a dataflow language that
avoids loops and control structures in the workflow. Kepler
[17] is based on actor-oriented modelling that permits a
workflow to be composed using actors which communicate
through well-defined interfaces. However, it does not support
decentralised execution of workflows.

B. Dataflow Optimisation Architectures

The Circulate approach [18], [19] supports data distribu-
tion in the workflow using proxy components, which may be
deployed closer to the services. These proxies exploit con-
nectivity to the services, and route the data in the workflow
to locations where they are required. However, this architec-
ture relies on a centralised flow mechanism to facilitate the
collaboration between proxies, and there seems to be no au-
tomated mechanism for partitioning the workflow. The Flow-
based Infrastructure for Composing Autonomous Services
(FICAS) [20] supports service composition by altering the
service interfaces to enable peer-to-peer collaboration. Our
approach does not require modifying the implementation of
services. Data processing techniques built on MapReduce
[21] may be suitable for a wide range of problems, but
are inadequate for executing workflows. For instance, a
workflow can be composed using a series of MapReduce
jobs [22], but this requires passing the entire state and
data from one job to the next which degrades performance.
Dryad [23] supports executing distributed processing tasks,
but it does not provide any mechanism to rearrange the
workflow structure for optimisation purposes. Furthermore,
the distributed workflow parts must be specified manually.
Our approach automatically generates the distributed sub
workflow specifications.

C. Workflow Scheduling Approaches

There are many scheduling heuristics that attempt to
solve the workflow mapping problem such as HEFT [24],
Min-Min [25], MaxMin and MCT [26], but these works
are directed at grid-based workflow applications. Several
other heuristic methods were proposed and compared in
[27]. Partitioning is proposed for provisioning resources into
execution sites in [28] and [29], but not for decomposing
the actual dataflow graph. In [30] and [31], a strategy is
discussed where the workflow tasks are mapped onto grid
sites. This is achieved by assigning weights to the vertices
and edges in the workflow graph by predicting the execution
time for each task, and the time for transferring data between
the resources. Each task is then mapped onto a resource that

provides the earliest expected time to complete its execution.
However, the time for executing a service operation cannot
be predicted efficiently in a service-oriented environment
as it depends on the application logic, and the underlying
protocols and infrastructure.

VII. CONCLUSION

Centralised service orchestration presents significant scal-
ability problems as the number of services and the size
of data involved in the workflow increases. These prob-
lems include the unnecessary consumption of the network
bandwidth, high latency in transmitting data between the
services, and performance bottlenecks. This paper has pre-
sented and evaluated a novel workflow partitioning approach
that decomposes a workflow into smaller sub workflows,
which may then be transmitted to appropriate locations
at which their execution takes place. These locations are
carefully determined using a heuristic technique that relies
on the knowledge of the network condition. This permits the
workflow logic to be executed within short geographical dis-
tance to the services, which improves the overall workflow
performance. Future work will focus on real-time distributed
monitoring, and re-deployment of executing sub workflows
to adapt to dynamic changes in the execution environment.

REFERENCES

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, et al.,
“Business process execution language for web services,”
2003.

[2] G. Juve, A. L. Chervenak, E. Deelman, S. Bharathi, G. Mehta,
and K. Vahi, “Characterizing and profiling scientific work-
flows,” Future Generation Computer Systems, vol. 29, no. 3,
pp. 682–692, 2013.

[3] T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M.
Greenwood, T. Carver, K. Glover, M. R. Pocock, A. Wipat,
and P. Li, “Taverna: a tool for the composition and enactment
of bioinformatics workflows,” Bioinformatics, vol. 20, no. 17,
pp. 3045–3054, 2004.

[4] S. Bharathi and A. Chervenak, “Data staging strategies and
their impact on the execution of scientific workflows,” in
Proceedings of the Second International Workshop on Data-
aware Distributed Computing, DADC ’09, (New York, NY,
USA), ACM, 2009.

[5] A. L. Chervenak, E. Deelman, M. Livny, M. Su, R. Schuler,
S. Bharathi, G. Mehta, and K. Vahi, “Data placement for
scientific applications in distributed environments,” in 8th
IEEE/ACM International Conference on Grid Computing
(GRID 2007), September 19-21, 2007, Austin, Texas, USA,
Proceedings, pp. 267–274, 2007.

[6] K. Ranganathan and I. T. Foster, “Simulation studies of
computation and data scheduling algorithms for data grids,”
Journal of Grid Computing, vol. 1, no. 1, pp. 53–62, 2003.



[7] T. Kosar and M. Livny, “A framework for reliable and efficient
data placement in distributed computing systems,” Journal
of Parallel and Distributed Computing, vol. 65, no. 10,
pp. 1146–1157, 2005.

[8] D. Thain, J. Basney, S. Son, and M. Livny, “The kangaroo
approach to data movement on the grid,” in 10th IEEE
International Symposium on High Performance Distributed
Computing (HPDC-10 2001), 7-9 August 2001, San Fran-
cisco, CA, USA, pp. 325–333, 2001.

[9] E. Deelman, G. Singh, M. Livny, G. B. Berriman, and
J. Good, “The cost of doing science on the cloud: the montage
example,” in Proceedings of the ACM/IEEE Conference on
High Performance Computing, SC 2008, November 15-21,
2008, Austin, Texas, USA, p. 50, 2008.

[10] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
G. B. Berriman, and J. Good, “On the use of cloud computing
for scientific workflows,” in Fourth International Conference
on e-Science, e-Science 2008, 7-12 December 2008, Indi-
anapolis, IN, USA, pp. 640–645, 2008.

[11] W. Jaradat, A. Dearle, and A. Barker, “An architecture for
decentralised orchestration of web service workflows,” in Web
Services (ICWS), 2013 IEEE 20th International Conference
on, pp. 603–604, IEEE, 2013.

[12] W. Jaradat, A. Dearle, and A. Barker, “A dataflow language
for decentralised orchestration of web service workflows,” in
Services (SERVICES), 2013 IEEE Ninth World Congress on,
pp. 13–20, IEEE, 2013.

[13] A. Barker and J. Van Hemert, “Scientific workflow: a sur-
vey and research directions,” in Proceedings of the 7th
international conference on Parallel processing and applied
mathematics, pp. 746–753, Springer-Verlag, 2007.

[14] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. C. Laity, J. C.
Jacob, and D. S. Katz, “Pegasus: A framework for mapping
complex scientific workflows onto distributed systems,” Sci-
entific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[15] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor -
A hunter of idle workstations,” in Proceedings of the 8th
International Conference on Distributed Computing Systems,
San Jose, California, USA, June 13-17, 1988, pp. 104–111,
1988.

[16] I. J. Taylor, M. S. Shields, I. Wang, and R. Philp, “Distributed
P2P computing within triana: A galaxy visualization test
case,” in 17th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2003), 22-26 April 2003, Nice,
France, CD-ROM/Abstracts Proceedings, p. 16, 2003.

[17] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. B. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific
workflow management and the kepler system,” Concurrency
and Computation: Practice and Experience, vol. 18, no. 10,
pp. 1039–1065, 2006.

[18] A. Barker, J. B. Weissman, and J. I. van Hemert, “Reducing
data transfer in service-oriented architectures: The circulate
approach,” IEEE Transactions on Services Computing, vol. 5,
no. 3, pp. 437–449, 2012.

[19] A. Barker, J. B. Weissman, and J. I. van Hemert, “The
Circulate architecture: avoiding workflow bottlenecks caused
by centralised orchestration,” Cluster Computing, vol. 12,
no. 2, pp. 221–235, 2009.

[20] W. D. Liu, A distributed data flow model for composing
software services. PhD thesis, Stanford University, 2003.

[21] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[22] J. Cohen, “Graph twiddling in a mapreduce world,” Comput-
ing in Science and Engineering, vol. 11, no. 4, pp. 29–41,
2009.

[23] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proceedings of the 2007 EuroSys Conference,
Lisbon, Portugal, March 21-23, 2007, pp. 59–72, 2007.

[24] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting,” IEEE Transactions on Parallel Distributed Systems,
vol. 13, no. 3, pp. 260–274, 2002.

[25] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,
and K. Kennedy, “Task scheduling strategies for workflow-
based applications in grids,” in 5th International Symposium
on Cluster Computing and the Grid (CCGrid 2005), 9-12
May, 2005, Cardiff, UK, pp. 759–767, 2005.

[26] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Mah-
eswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao,
D. A. Hensgen, and R. F. Freund, “A comparison of eleven
static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems,” Journal of
Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–
837, 2001.

[27] R. Sakellariou and H. Zhao, “A hybrid heuristic for DAG
scheduling on heterogeneous systems,” in 18th International
Parallel and Distributed Processing Symposium (IPDPS
2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004,
Santa Fe, New Mexico, USA, 2004.

[28] S. Kumar, S. K. Das, and R. Biswas, “Graph partitioning for
parallel applications in heterogeneous grid environments,” in
16th International Parallel and Distributed Processing Sym-
posium (IPDPS 2002), 15-19 April 2002, Fort Lauderdale,
FL, USA, CD-ROM/Abstracts Proceedings, 2002.

[29] C. Lin, C. Shih, and C. Hsu, “Adaptive dynamic scheduling
algorithms for mapping ongoing m-tasks to pr2 grid,” Journal
of Information Science and Engineering, vol. 26, no. 6,
pp. 2107–2125, 2010.

[30] R. Duan, R. Prodan, and T. Fahringer, “Run-time optimisation
of grid workflow applications,” in 7th IEEE/ACM Interna-
tional Conference on Grid Computing (GRID 2006), Septem-
ber 28-29, 2006, Barcelona, Spain, Proceedings, pp. 33–40,
2006.

[31] M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling of
scientific workflows in the ASKALON grid environment,”
SIGMOD Record, vol. 34, no. 3, pp. 56–62, 2005.


	Introduction
	Workflow Example
	Overview of Approach
	Compilation
	Partitioning
	Decomposition of a workflow
	Placement analysis
	Composition of sub workflows

	Deployment and Monitoring

	Workflow Partitioning Example
	Implementation and Evaluation
	Configuration
	Continental workflows
	Configuration of inter-continental workflows

	Analysis
	Analysis of continental workflows
	Analysis of inter-continental workflows
	Analysis of an inter-continental end-to-end workflow


	Related Works
	Workflow Management Systems
	Dataflow Optimisation Architectures
	Workflow Scheduling Approaches

	Conclusion
	References

