7 research outputs found

    A Revised Forensic Process for Aligning the Investigation Process with the Design of Forensic-Enabled Cloud Services

    Get PDF
    © Springer Nature Switzerland AG 2020. The design and implementation of cloud services, without taking under consideration the forensic requirements and the investigation process, makes the acquisition and examination of data, complex and demanding. The evidence gathered from the cloud may not become acceptable and admissible in the court. A literature gap in supporting software engineers so as to elicit and model forensic-related requirements exists. In order to fill the gap, software engineers should develop cloud services in a forensically sound manner. In this paper, a brief description of the cloud forensic-enabled framework is presented (adding some new elements) so as to understand the role of the design of forensic-enabled cloud services in a cloud forensic investigation. A validation of the forensic requirements is also produced by aligning the stages of cloud forensic investigation process with the framework’s forensic requirements. In this way, on one hand, a strong relationship is built between these two elements and emphasis is given to the role of the forensic requirements and their necessity in supporting the investigation process. On the other hand, the alignment assists towards the identification of the degree of the forensic readiness of a cloud service against a forensic investigation

    Digital forensic investigation challenges based on cloud computing characteristics

    Get PDF
    One of the most popular computing technologies is cloud computing. There are many benefits in adopting cloud computing such as high-performance, flexibility and availability ondemand, more focused on the business objective and low-cost. However, the characteristics of the cloud computing environment have created many difficulties and challenges for digital forensic investigation processes. Therefore, this paper focuses on the digital forensic investigation challenges based on cloud computing characteristics

    A framework for designing cloud forensic‑enabled services (CFeS)

    Get PDF
    Cloud computing is used by consumers to access cloud services. Malicious actors exploit vulnerabilities of cloud services to attack consumers. The link between these two assumptions is the cloud service. Although cloud forensics assists in the direction of investigating and solving cloud-based cyber-crimes, in many cases the design and implementation of cloud services falls back. Software designers and engineers should focus their attention on the design and implementation of cloud services that can be investigated in a forensic sound manner. This paper presents a methodology that aims on assisting designers to design cloud forensic-enabled services. The methodology supports the design of cloud services by implementing a number of steps to make the services cloud forensic-enabled. It consists of a set of cloud forensic constraints, a modelling language expressed through a conceptual model and a process based on the concepts identified and presented in the model. The main advantage of the proposed methodology is the correlation of cloud services’ characteristics with the cloud investigation while providing software engineers the ability to design and implement cloud forensic-enabled services via the use of a set of predefined forensic related task

    A forensic acquisition and analysis system for IaaS

    Get PDF
    Cloud computing is a promising next-generation computing paradigm that offers significant economic benefits to both commercial and public entities. Furthermore, cloud computing provides accessibility, simplicity, and portability for its customers. Due to the unique combination of characteristics that cloud computing introduces (including on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service), digital investigations face various technical, legal, and organizational challenges to keep up with current developments in the field of cloud computing. There are a wide variety of issues that need to be resolved in order to perform a proper digital investigation in the cloud environment. This paper examines the challenges in cloud forensics that are identified in the current research literature, alongside exploring the existing proposals and technical solutions addressed in the respective research. The open problems that need further effort are highlighted. As a result of the analysis of literature, it is found that it would be difficult, if not impossible, to perform an investigation and discovery in the cloud environment without relying on cloud service providers (CSPs). Therefore, dependence on the CSPs is ranked as the greatest challenge when investigators need to acquire evidence in a timely yet forensically sound manner from cloud systems. Thus, a fully independent model requires no intervention or cooperation from the cloud provider is proposed. This model provides a different approach to a forensic acquisition and analysis system (FAAS) in an Infrastructure as a Service model. FAAS seeks to provide a richer and more complete set of admissible evidences than what current CSPs provide, with no requirement for CSP involvement or modification to the CSP’s underlying architecture

    Enhanced forensic process model in cloud environment

    Get PDF
    Digital forensics practitioners have used conventional digital forensics process models to investigate cloud security incidents. Presently, there is a lack of an agreed upon or a standard process model in cloud forensics. Besides, literature has shown that there is an explicit need for consumers to collect evidence for due-diligence or legal reasons. Furthermore, a consumer oriented cloud forensics process model is yet to be found in the literature. This has created a lack of consumer preparedness for cloud incident investigations and dependency on providers for evidence collection. This research addressed these limitations by developing a cloud forensic process model. A design science research methodology was employed to develop the model. A set of requirements believed to be solutions for the challenges reported in three survey papers were applied in this research. These requirements were mapped to existing cloud forensic process models to further explicate the weaknesses. A set of process models suitable for the extraction of necessary processes was selected based on the requirements, and these selected models constituted the cloud forensic process model. The processes were consolidated and the model was proposed to alleviate dependency on the provider problem. In this model, three digital forensic types including forensic readiness, live forensics and postmortem forensic investigations were considered. Besides, a Cloud-Forensic-as-a-Service model that produces evidence trusted by both consumers and providers through a conflict resolution protocol was also designed. To evaluate the utility and usability of the model, a plausible case scenario was investigated. For validation purposes, the cloud forensic process model together with its implementation in the case scenario and set of requirements were presented to a group of experts for evaluation. Effectiveness of the requirements was rated positive by the experts. The findings of the research indicated that the model can be used for cloud investigation and is rated easy to be used and adopted by consumers

    Integrated examination and analysis model for improving mobile cloud forensic investigation

    Get PDF
    Advanced forensic techniques become inevitable to investigate the malicious activities in Cloud-based Mobile Applications (CMA). It is challenging to analyse the casespecific evidential artifact from the Mobile Cloud Computing (MCC) environment under forensically sound conditions. The Mobile Cloud Investigation (MCI) encounters many research issues in tracing and fine-tuning the relevant evidential artifacts from the MCC environment. This research proposes an integrated Examination and Analysis (EA) model for a generalised application architecture of CMA deployable on the public cloud to trace the case-specific evidential artifacts. The proposed model effectively validates MCI and enhances the accuracy and speed of the investigation. In this context, proposing Forensic Examination and Analysis Methodology using Data mining (FED) and Forensic Examination and analysis methodology using Data mining and Optimization (FEDO) models address these issues. The FED incorporates key sub-phases such as timeline analysis, hash filtering, data carving, and data transformation to filter out case-specific artifacts. The Long Short-Term Memory (LSTM) assisted forensic methodology decides the amount of potential information to be retained for further investigation and categorizes the forensic evidential artifacts for the relevancy of the crime event. Finally, the FED model constructs the forensic evidence taxonomy and maintains the precision and recall above 85% for effective decision-making. FEDO facilitates cloud evidence by examining the key features and indexing the evidence. The FEDO incorporates several sub-phases to precisely handle the evidence, such as evidence indexing, crossreferencing, and keyword searching. It analyses the temporal and geographic information and performs cross-referencing to fine-tune the evidence towards the casespecific evidence. FEDO models the Linearly Decreasing Weight (LDW) strategy based Particle Swarm Optimization (PSO) algorithm on the case-specific evidence to improve the searching capability of the investigation across the massive MCC environment. FEDO delivers the evidence tracing rate at 90%, and thus the integrated EA ensures improved MCI performance

    Digital Forensics Investigation Frameworks for Cloud Computing and Internet of Things

    Get PDF
    Rapid growth in Cloud computing and Internet of Things (IoT) introduces new vulnerabilities that can be exploited to mount cyber-attacks. Digital forensics investigation is commonly used to find the culprit and help expose the vulnerabilities. Traditional digital forensics tools and methods are unsuitable for use in these technologies. Therefore, new digital forensics investigation frameworks and methodologies are required. This research develops frameworks and methods for digital forensics investigations in cloud and IoT platforms
    corecore