132,449 research outputs found

    Scaffolding layered control architectures through constraint closure : insights into brain evolution and development

    Get PDF
    The functional organization of the mammalian brain can be considered to form a layered control architecture, but how this complex system has emerged through evolution and is constructed during development remains a puzzle. Here we consider brain organization through the framework of constraint closure, viewed as a general characteristic of living systems, that they are composed of multiple sub-systems that constrain each other at different timescales. We do so by developing a new formalism for constraint closure, inspired by a previous model showing how within-lifetime dynamics can constrain between-lifetime dynamics, and we demonstrate how this interaction can be generalized to multi-layered systems. Through this model, we consider brain organization in the context of two major examples of constraint closure—physiological regulation and visual orienting. Our analysis draws attention to the capacity of layered brain architectures to scaffold themselves across multiple timescales, including the ability of cortical processes to constrain the evolution of sub-cortical processes, and of the latter to constrain the space in which cortical systems self-organize and refine themselves

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    An Improved Tight Closure Algorithm for Integer Octagonal Constraints

    Full text link
    Integer octagonal constraints (a.k.a. ``Unit Two Variables Per Inequality'' or ``UTVPI integer constraints'') constitute an interesting class of constraints for the representation and solution of integer problems in the fields of constraint programming and formal analysis and verification of software and hardware systems, since they couple algorithms having polynomial complexity with a relatively good expressive power. The main algorithms required for the manipulation of such constraints are the satisfiability check and the computation of the inferential closure of a set of constraints. The latter is called `tight' closure to mark the difference with the (incomplete) closure algorithm that does not exploit the integrality of the variables. In this paper we present and fully justify an O(n^3) algorithm to compute the tight closure of a set of UTVPI integer constraints.Comment: 15 pages, 2 figure

    Classical general relativity as BF-Plebanski theory with linear constraints

    Get PDF
    We investigate a formulation of continuum 4d gravity in terms of a constrained BF theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints.Comment: 16 pages, revtex, changed one cross-reference in sect. IIIC to match journal versio

    Commuting Simplicity and Closure Constraints for 4D Spin Foam Models

    Full text link
    Spin Foam Models are supposed to be discretised path integrals for quantum gravity constructed from the Plebanski-Holst action. The reason for there being several models currently under consideration is that no consensus has been reached for how to implement the simplicity constraints. Indeed, none of these models strictly follows from the original path integral with commuting B fields, rather, by some non standard manipulations one always ends up with non commuting B fields and the simplicity constraints become in fact anomalous which is the source for there being several inequivalent strategies to circumvent the associated problems. In this article, we construct a new Euclidian Spin Foam Model which is constructed by standard methods from the Plebanski-Holst path integral with commuting B fields discretised on a 4D simplicial complex. The resulting model differs from the current ones in several aspects, one of them being that the closure constraint needs special care. Only when dropping the closure constraint by hand and only in the large spin limit can the vertex amplitudes of this model be related to those of the FK Model but even then the face and edge amplitude differ. Curiously, an ad hoc non-commutative deformation of the BIJB^{IJ} variables leads from our new model to the Barrett-Crane Model in the case of Barbero-Immirzi parameter goes to infinity.Comment: 41 pages, 4 figure
    • …
    corecore