145 research outputs found

    Distributed Cooperative Regulation for Multiagent Systems and Its Applications to Power Systems: A Survey

    Get PDF
    Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leadersā€™ information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper

    Seeking the Important Nodes of Complex Networks in Product R&D Team Based on Fuzzy AHP and TOPSIS

    Get PDF
    How to seek the important nodes of complex networks in product research and development (R&D) team is particularly important for companies engaged in creativity and innovation. The previous literature mainly uses several single indicators to assess the node importance; this paper proposes a multiple attribute decision making model to tentatively solve these problems. Firstly, choose eight indicators as the evaluation criteria, four from centralization of complex networks: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality and four from structural holes of complex networks: effective size, efficiency, constraint, and hierarchy. Then, use fuzzy analytic hierarchy process (AHP) to obtain the weights of these indicators and use technique for order preference by similarity to an ideal solution (TOPSIS) to assess the importance degree of each node of complex networks. Finally, taking a product R&D team of a game software company as a research example, test the effectiveness, operability, and efficiency of the method we established

    Seeking the Important Nodes of Complex Networks in Product R&D Team Based on Fuzzy AHP and TOPSIS

    Get PDF
    How to seek the important nodes of complex networks in product research and development (R&D) team is particularly important for companies engaged in creativity and innovation. The previous literature mainly uses several single indicators to assess the node importance; this paper proposes a multiple attribute decision making model to tentatively solve these problems. Firstly, choose eight indicators as the evaluation criteria, four from centralization of complex networks: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality and four from structural holes of complex networks: effective size, efficiency, constraint, and hierarchy. Then, use fuzzy analytic hierarchy process (AHP) to obtain the weights of these indicators and use technique for order preference by similarity to an ideal solution (TOPSIS) to assess the importance degree of each node of complex networks. Finally, taking a product R&D team of a game software company as a research example, test the effectiveness, operability, and efficiency of the method we established

    Network-based brain computer interfaces: principles and applications

    Full text link
    Brain-computer interfaces (BCIs) make possible to interact with the external environment by decoding the mental intention of individuals. BCIs can therefore be used to address basic neuroscience questions but also to unlock a variety of applications from exoskeleton control to neurofeedback (NFB) rehabilitation. In general, BCI usability critically depends on the ability to comprehensively characterize brain functioning and correctly identify the user s mental state. To this end, much of the efforts have focused on improving the classification algorithms taking into account localized brain activities as input features. Despite considerable improvement BCI performance is still unstable and, as a matter of fact, current features represent oversimplified descriptors of brain functioning. In the last decade, growing evidence has shown that the brain works as a networked system composed of multiple specialized and spatially distributed areas that dynamically integrate information. While more complex, looking at how remote brain regions functionally interact represents a grounded alternative to better describe brain functioning. Thanks to recent advances in network science, i.e. a modern field that draws on graph theory, statistical mechanics, data mining and inferential modelling, scientists have now powerful means to characterize complex brain networks derived from neuroimaging data. Notably, summary features can be extracted from these networks to quantitatively measure specific organizational properties across a variety of topological scales. In this topical review, we aim to provide the state-of-the-art supporting the development of a network theoretic approach as a promising tool for understanding BCIs and improve usability

    Recurrence network analysis of EEG signals: A Geometric Approach

    Get PDF
    Understanding the neuronal dynamics of dynamical diseases like epilepsy is of fundamental importance. For instance, establishing the presence of deterministic chaos can open up possibilities that can lead to potential medical applications, including timely prevention of seizures. Additionally, understanding the dynamics of interictal activity can greatly aid the localization of epileptic foci without the need for recording seizures. Recurrences, a fundamental property of dynamical systems, are useful for characterizing nonlinear systems. Recurrence networks, which are obtained by reinterpreting the recurrence matrix as an adjacency matrix of a complex network, are useful in characterizing the structural or geometric properties of the underlying system. Recurrence network analysis has established itself as a versatile tool in the field of nonlinear time series analysis and its applicability in investigating neural dynamics remains unexplored. Certain recurrence network measures are particularly sensitive to the presence of unstable periodic orbits (UPOs), which are important for detecting determinism and are the backbone of chaotic attractors.In this thesis, we introduce recurrence network analysis as a tool for nonlinear time series analysis of epileptic electroencephalographic (EEG) signals. We present novel results based on the application of recurrence network analysis combined with surrogate testing to intracranial and extracranial epileptic EEG signals. In addition, using paradigmatic examples of dynamical systems, we present theoretical results exploring the effect of increasing noise levels on recurrence network measures.Using paradigmatic model systems, we first demonstrate that recurrence network measures can distinguish between deterministic (chaos) and stochastic processes, even at short data lengths (ā‰ˆ 200 samples). In particular, our results from theoretical simulations show that recurrence network measures, particularly transitivity, local clustering coefficient, assortativity, and betweenness centrality can successfully distinguish between deterministic chaotic and stochastic processes (after additional embedding) due to their sensitivity to the presence of UPOs. Our results also show that recurrence network measures like transitivity and average path length are robust against noise and perform better than the Complexity-Entropy plane method at short data lengths. Furthermore, our results show that the effect of noise on the recurrence network measures can be minimized by increasing the recurrence rate.For the analysis of real-world data such as EEG signals, we combined the recurrence network approach with surrogate data to test for the structural complexity in healthy and epileptic EEG signals. Here our results point to an increasing complexity of EEG recordings when moving from healthy to epileptic conditions. Furthermore, we used both univariate network measure and bivariate cross-network measure to distinguish between the structural properties of interictal EEG signals recorded from epileptic and nonepileptic brain areas. Here, our results clearly demonstrated that interictal EEG signals recorded from epileptic areas are more deterministic and interdependent compared to interictal activity recorded from nonepileptic areas. Finally, we show that recurrence network analysis can be applied to uncover the dynamical transitions in neural signals using short segments of data (ā‰ˆ 150 to 500 samples). To demonstrate this, we used two kinds of neural data - epileptic EEG data and local field potential (LFP) signals recorded during a visuomotor task. We observed that the temporal fluctuations observed in the recurrence network measures are consistent with the dynamical transitions underlying the epileptic and task-based LFP signals.To conclude, recurrence network analysis analysis can capture the complexity in the organization of EEG data in different dynamical states in a more elaborated fashion compared to other approaches such as nonlinear prediction error or correlation dimension. By means of the recurrence network measures, this difference can be assessed not only qualitatively (as when using as tests for nonlinearity), but also quantitatively. Thus, coupled with its ability to operate on short-window sizes and robustness to noise, recurrence network analysis can be a powerful tool to analyze the dynamics of multi-scale neural signals

    Multi-Scale Mathematical Modelling of Brain Networks in Alzheimer's Disease

    Get PDF
    Perturbations to brain network dynamics on a range of spatial and temporal scales are believed to underpin neurological disorders such as Alzheimerā€™s disease (AD). This thesis combines quantitative data analysis with tools such as dynamical systems and graph theory to understand how the network dynamics of the brain are altered in AD and experimental models of related pathologies. Firstly, we use a biophysical neuron model to elucidate ionic mechanisms underpinning alterations to the dynamics of principal neurons in the brainā€™s spatial navigation systems in an animal model of tauopathy. To uncover how synaptic deficits result in alterations to brain dynamics, we subsequently study an animal model featuring local and long-range synaptic degeneration. Synchronous activity (functional connectivity; FC) between neurons within a region of the cortex is analysed using two-photon calcium imaging data. Long-range FC between regions of the brain is analysed using EEG data. Furthermore, a computational model is used to study relationships between networks on these different spatial scales. The latter half of this thesis studies EEG to characterize alterations to macro-scale brain dynamics in clinical AD. Spectral and FC measures are correlated with cognitive test scores to study the hypothesis that impaired integration of the brainā€™s processing systems underpin cognitive impairment in AD. Whole brain computational modelling is used to gain insight into the role of spectral slowing on FC, and elucidate potential synaptic mechanisms of FC differences in AD. On a finer temporal scale, microstate analyses are used to identify changes to the rapid transitioning behaviour of the brainā€™s resting state in AD. Finally, the electrophysiological signatures of AD identified throughout the thesis are combined into a predictive model which can accurately separate people with AD and healthy controls based on their EEG, results which are validated on an independent patient cohort. Furthermore, we demonstrate in a small preliminary cohort that this model is a promising tool for predicting future conversion to AD in patients with mild cognitive impairment

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio

    Physics-based Machine Learning Approaches to Complex Systems and Climate Analysis

    Get PDF
    Komplexe Systeme wie das Klima der Erde bestehen aus vielen Komponenten, die durch eine komplizierte Kopplungsstruktur miteinander verbunden sind. FĆ¼r die Analyse solcher Systeme erscheint es daher naheliegend, Methoden aus der Netzwerktheorie, der Theorie dynamischer Systeme und dem maschinellen Lernen zusammenzubringen. Durch die Kombination verschiedener Konzepte aus diesen Bereichen werden in dieser Arbeit drei neuartige AnsƤtze zur Untersuchung komplexer Systeme betrachtet. Im ersten Teil wird eine Methode zur Konstruktion komplexer Netzwerke vorgestellt, die in der Lage ist, Windpfade des sĆ¼damerikanischen Monsunsystems zu identifizieren. Diese Analyse weist u.a. auf den Einfluss der Rossby-WellenzĆ¼ge auf das Monsunsystem hin. Dies wird weiter untersucht, indem gezeigt wird, dass der Niederschlag mit den Rossby-Wellen phasenkohƤrent ist. So zeigt der erste Teil dieser Arbeit, wie komplexe Netzwerke verwendet werden kƶnnen, um rƤumlich-zeitliche VariabilitƤtsmuster zu identifizieren, die dann mit Methoden der nichtlinearen Dynamik weiter analysiert werden kƶnnen. Die meisten komplexen Systeme weisen eine groƟe Anzahl von mƶglichen asymptotischen ZustƤnden auf. Um solche ZustƤnde zu beschreiben, wird im zweiten Teil die Monte Carlo Basin Bifurcation Analyse (MCBB), eine neuartige numerische Methode, vorgestellt. Angesiedelt zwischen der klassischen Analyse mit Ordnungsparametern und einer grĆ¼ndlicheren, detaillierteren Bifurkationsanalyse, kombiniert MCBB Zufallsstichproben mit Clustering, um die verschiedenen ZustƤnde und ihre Einzugsgebiete zu identifizieren. Bei von Vorhersagen von komplexen Systemen ist es nicht immer einfach, wie Vorwissen in datengetriebenen Methoden integriert werden kann. Eine Mƶglichkeit hierzu ist die Verwendung von Neuronalen Partiellen Differentialgleichungen. Hier wird im letzten Teil der Arbeit gezeigt, wie hochdimensionale rƤumlich-zeitlich chaotische Systeme mit einem solchen Ansatz modelliert und vorhergesagt werden kƶnnen.Complex systems such as the Earth's climate are comprised of many constituents that are interlinked through an intricate coupling structure. For the analysis of such systems it therefore seems natural to bring together methods from network theory, dynamical systems theory and machine learning. By combining different concepts from these fields three novel approaches for the study of complex systems are considered throughout this thesis. In the first part, a novel complex network construction method is introduced that is able to identify the most important wind paths of the South American Monsoon system. Aside from the importance of cross-equatorial flows, this analysis points to the impact Rossby Wave trains have both on the precipitation and low-level circulation. This connection is then further explored by showing that the precipitation is phase coherent to the Rossby Wave. As such, the first part of this thesis demonstrates how complex networks can be used to identify spatiotemporal variability patterns within large amounts of data, that are then further analysed with methods from nonlinear dynamics. Most complex systems exhibit a large number of possible asymptotic states. To investigate and track such states, Monte Carlo Basin Bifurcation analysis (MCBB), a novel numerical method is introduced in the second part. Situated between the classical analysis with macroscopic order parameters and a more thorough, detailed bifurcation analysis, MCBB combines random sampling with clustering methods to identify and characterise the different asymptotic states and their basins of attraction. Forecasts of complex system are the next logical step. When doing so, it is not always straightforward how prior knowledge in data-driven methods. One possibility to do is by using Neural Partial Differential Equations. Here, it is demonstrated how high-dimensional spatiotemporally chaotic systems can be modelled and predicted with such an approach in the last part of the thesis

    Module hierarchy and centralisation in the anatomy and dynamics of human cortex

    Get PDF
    Systems neuroscience has recently unveiled numerous fundamental features of the macroscopic architecture of the human brain, the connectome, and we are beginning to understand how characteristics of brain dynamics emerge from the underlying anatomical connectivity. The current work utilises complex network analysis on a high-resolution structural connectivity of the human cortex to identify generic organisation principles, such as centralised, modular and hierarchical properties, as well as specific areas that are pivotal in shaping cortical dynamics and function. After confirming its small-world and modular architecture, we characterise the cortexā€™ multilevel modular hierarchy, which appears to be reasonably centralised towards the brainā€™s strong global structural core. The potential functional importance of the core and hub regions is assessed by various complex network metrics, such as integration measures, network vulnerability and motif spectrum analysis. Dynamics facilitated by the large-scale cortical topology is explored by simulating coupled oscillators on the anatomical connectivity. The results indicate that cortical connectivity appears to favour high dynamical complexity over high synchronizability. Taking the ability to entrain other brain regions as a proxy for the threat posed by a potential epileptic focus in a given region, we also show that epileptic foci in topologically more central areas should pose a higher epileptic threat than foci in more peripheral areas. To assess the influence of macroscopic brain anatomy in shaping global resting state dynamics on slower time scales, we compare empirically obtained functional connectivity data with data from simulating dynamics on the structural connectivity. Despite considerable micro-scale variability between the two functional connectivities, our simulations are able to approximate the profile of the empirical functional connectivity. Our results outline the combined characteristics a hierarchically modular and reasonably centralised macroscopic architecture of the human cerebral cortex, which, through these topological attributes, appears to facilitate highly complex dynamics and fundamentally shape brain function
    • ā€¦
    corecore