48 research outputs found

    Analysis of Root Displacement Interpolation Method for Tunable Allpass Fractional-Delay Filters

    Full text link

    Optimal design of all-pass variable fractional-delay digital filters

    Get PDF
    This paper presents a computational method for the optimal design of all-pass variable fractional-delay (VFD) filters aiming to minimize the squared error of the fractional group delay subject to a low level of squared error in the phase response. The constrained optimization problem thus formulated is converted to an unconstrained least-squares (LS) optimization problem which is highly nonlinear. However, it can be approximated by a linear LS optimization problem which in turn simply requires the solution of a linear system. The proposed method can efficiently minimize the total error energy of the fractional group delay while maintaining constraints on the level of the error energy of the phase response. To make the error distribution as flat as possible, a weighted LS (WLS) design method is also developed. An error weighting function is obtained according to the solution of the previous constrained LS design. The maximum peak error is then further reduced by an iterative updating of the error weighting function. Numerical examples are included in order to compare the performance of the filters designed using the proposed methods with those designed by several existing methods

    Re-Sonification of Objects, Events, and Environments

    Get PDF
    abstract: Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating objects. In this work, methods of sound synthesis by re-sonification are considered. Re-sonification, herein, refers to the general process of analyzing, possibly transforming, and resynthesizing or reusing recorded sounds in meaningful ways, to convey information. Applied to soundscapes, re-sonification is presented as a means of conveying activity within an environment. Applied to the sounds of objects, this work examines modeling the perception of objects as well as their physical properties and the ability to simulate interactive events with such objects. To create soundscapes to re-sonify geographic environments, a method of automated soundscape design is presented. Using recorded sounds that are classified based on acoustic, social, semantic, and geographic information, this method produces stochastically generated soundscapes to re-sonify selected geographic areas. Drawing on prior knowledge, local sounds and those deemed similar comprise a locale's soundscape. In the context of re-sonifying events, this work examines processes for modeling and estimating the excitations of sounding objects. These include plucking, striking, rubbing, and any interaction that imparts energy into a system, affecting the resultant sound. A method of estimating a linear system's input, constrained to a signal-subspace, is presented and applied toward improving the estimation of percussive excitations for re-sonification. To work toward robust recording-based modeling and re-sonification of objects, new implementations of banded waveguide (BWG) models are proposed for object modeling and sound synthesis. Previous implementations of BWGs use arbitrary model parameters and may produce a range of simulations that do not match digital waveguide or modal models of the same design. Subject to linear excitations, some models proposed here behave identically to other equivalently designed physical models. Under nonlinear interactions, such as bowing, many of the proposed implementations exhibit improvements in the attack characteristics of synthesized sounds.Dissertation/ThesisPh.D. Electrical Engineering 201

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Pascal-Interpolation-Based Noninteger Delay Filter and Low-Complexity Realization

    Get PDF
    This paper proposes a new method for designing the polynomial-interpolation-type noninteger-delay filter with a new structure formulation. Since the design formulation and the new realization structure are based on the discrete Pascal transform (DPT) and Pascal interpolation, we call the resulting filter Pascal noninteger-delay filter. The kth-order Pascal polynomial is used to pass through the given (k+1) data points in achieving the kth-order Pascal filter. The Pascal noninteger-delay filter is a real-time filter that consists of two sections, which can be realized into the front-section and the back-section. The front-section contains multiplication-free digital filters, and the number of multiplications in the back-section just linearly increases as order becomes high. Since the new Pascal filter has low complexity and structure can adjust non-integer delay online, it is more suited for fast delay tuning. Consequently, the polynomial-interpolation-type delay filter can be achieved by using the Pascal approach with high efficiency and low-complexity structure

    A new method for designing FIR filters with variable characteristics

    Get PDF
    This letter proposes a new method for designing finite-impulse response (FIR) filters with variable characteristics. The impulse response of the variable digital filter (VDF) is parameterized as a linear combination of functions in the spectral or tuning parameters. Using the least square objective function, the optimal solution is obtained by solving a system of linear equations. Design results show that this method is simple and effective in designing FIR VDF with good frequency characteristics. Furthermore, by using piecewise polynomial, instead of ordinary polynomial, more complicated frequency characteristics, or larger tuning range can be approximated.published_or_final_versio

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Recent Advances in Variable Digital Filters

    Get PDF
    Variable digital filters are widely used in a number of applications of signal processing because of their capability of self-tuning frequency characteristics such as the cutoff frequency and the bandwidth. This chapter introduces recent advances on variable digital filters, focusing on the problems of design and realization, and application to adaptive filtering. In the topic on design and realization, we address two major approaches: one is the frequency transformation and the other is the multi-dimensional polynomial approximation of filter coefficients. In the topic on adaptive filtering, we introduce the details of adaptive band-pass/band-stop filtering that include the well-known adaptive notch filtering
    corecore