12,655 research outputs found

    Bayesian orthogonal component analysis for sparse representation

    Get PDF
    This paper addresses the problem of identifying a lower dimensional space where observed data can be sparsely represented. This under-complete dictionary learning task can be formulated as a blind separation problem of sparse sources linearly mixed with an unknown orthogonal mixing matrix. This issue is formulated in a Bayesian framework. First, the unknown sparse sources are modeled as Bernoulli-Gaussian processes. To promote sparsity, a weighted mixture of an atom at zero and a Gaussian distribution is proposed as prior distribution for the unobserved sources. A non-informative prior distribution defined on an appropriate Stiefel manifold is elected for the mixing matrix. The Bayesian inference on the unknown parameters is conducted using a Markov chain Monte Carlo (MCMC) method. A partially collapsed Gibbs sampler is designed to generate samples asymptotically distributed according to the joint posterior distribution of the unknown model parameters and hyperparameters. These samples are then used to approximate the joint maximum a posteriori estimator of the sources and mixing matrix. Simulations conducted on synthetic data are reported to illustrate the performance of the method for recovering sparse representations. An application to sparse coding on under-complete dictionary is finally investigated.Comment: Revised version. Accepted to IEEE Trans. Signal Processin

    A Unified Framework for Sparse Non-Negative Least Squares using Multiplicative Updates and the Non-Negative Matrix Factorization Problem

    Full text link
    We study the sparse non-negative least squares (S-NNLS) problem. S-NNLS occurs naturally in a wide variety of applications where an unknown, non-negative quantity must be recovered from linear measurements. We present a unified framework for S-NNLS based on a rectified power exponential scale mixture prior on the sparse codes. We show that the proposed framework encompasses a large class of S-NNLS algorithms and provide a computationally efficient inference procedure based on multiplicative update rules. Such update rules are convenient for solving large sets of S-NNLS problems simultaneously, which is required in contexts like sparse non-negative matrix factorization (S-NMF). We provide theoretical justification for the proposed approach by showing that the local minima of the objective function being optimized are sparse and the S-NNLS algorithms presented are guaranteed to converge to a set of stationary points of the objective function. We then extend our framework to S-NMF, showing that our framework leads to many well known S-NMF algorithms under specific choices of prior and providing a guarantee that a popular subclass of the proposed algorithms converges to a set of stationary points of the objective function. Finally, we study the performance of the proposed approaches on synthetic and real-world data.Comment: To appear in Signal Processin

    Distributed Detection and Estimation in Wireless Sensor Networks

    Full text link
    In this article we consider the problems of distributed detection and estimation in wireless sensor networks. In the first part, we provide a general framework aimed to show how an efficient design of a sensor network requires a joint organization of in-network processing and communication. Then, we recall the basic features of consensus algorithm, which is a basic tool to reach globally optimal decisions through a distributed approach. The main part of the paper starts addressing the distributed estimation problem. We show first an entirely decentralized approach, where observations and estimations are performed without the intervention of a fusion center. Then, we consider the case where the estimation is performed at a fusion center, showing how to allocate quantization bits and transmit powers in the links between the nodes and the fusion center, in order to accommodate the requirement on the maximum estimation variance, under a constraint on the global transmit power. We extend the approach to the detection problem. Also in this case, we consider the distributed approach, where every node can achieve a globally optimal decision, and the case where the decision is taken at a central node. In the latter case, we show how to allocate coding bits and transmit power in order to maximize the detection probability, under constraints on the false alarm rate and the global transmit power. Then, we generalize consensus algorithms illustrating a distributed procedure that converges to the projection of the observation vector onto a signal subspace. We then address the issue of energy consumption in sensor networks, thus showing how to optimize the network topology in order to minimize the energy necessary to achieve a global consensus. Finally, we address the problem of matching the topology of the network to the graph describing the statistical dependencies among the observed variables.Comment: 92 pages, 24 figures. To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201

    A stochastic algorithm for probabilistic independent component analysis

    Full text link
    The decomposition of a sample of images on a relevant subspace is a recurrent problem in many different fields from Computer Vision to medical image analysis. We propose in this paper a new learning principle and implementation of the generative decomposition model generally known as noisy ICA (for independent component analysis) based on the SAEM algorithm, which is a versatile stochastic approximation of the standard EM algorithm. We demonstrate the applicability of the method on a large range of decomposition models and illustrate the developments with experimental results on various data sets.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS499 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • 

    corecore