740 research outputs found

    Joint transceiver design and power optimization for wireless sensor networks in underground mines

    Get PDF
    Avec les grands développements des technologies de communication sans fil, les réseaux de capteurs sans fil (WSN) ont attiré beaucoup d’attention dans le monde entier au cours de la dernière décennie. Les réseaux de capteurs sans fil sont maintenant utilisés pour a surveillance sanitaire, la gestion des catastrophes, la défense, les télécommunications, etc. De tels réseaux sont utilisés dans de nombreuses applications industrielles et commerciales comme la surveillance des processus industriels et de l’environnement, etc. Un réseau WSN est une collection de transducteurs spécialisés connus sous le nom de noeuds de capteurs avec une liaison de communication distribuée de manière aléatoire dans tous les emplacements pour surveiller les paramètres. Chaque noeud de capteur est équipé d’un transducteur, d’un processeur de signal, d’une unité d’alimentation et d’un émetteur-récepteur. Les WSN sont maintenant largement utilisés dans l’industrie minière souterraine pour surveiller certains paramètres environnementaux, comme la quantité de gaz, d’eau, la température, l’humidité, le niveau d’oxygène, de poussière, etc. Dans le cas de la surveillance de l’environnement, un WSN peut être remplacé de manière équivalente par un réseau à relais à entrées et sorties multiples (MIMO). Les réseaux de relais multisauts ont attiré un intérêt de recherche important ces derniers temps grâce à leur capacité à augmenter la portée de la couverture. La liaison de communication réseau d’une source vers une destination est mise en oeuvre en utilisant un schéma d’amplification/transmission (AF) ou de décodage/transfert (DF). Le relais AF reçoit des informations du relais précédent et amplifie simplement le signal reçu, puis il le transmet au relais suivant. D’autre part, le relais DF décode d’abord le signal reçu, puis il le transmet au relais suivant au deuxième étage s’il peut parfaitement décoder le signal entrant. En raison de la simplicité analytique, dans cette thèse, nous considérons le schéma de relais AF et les résultats de ce travail peuvent également être développés pour le relais DF. La conception d’un émetteur/récepteur pour le relais MIMO multisauts est très difficile. Car à l’étape de relais L, il y a 2L canaux possibles. Donc, pour un réseau à grande échelle, il n’est pas économique d’envoyer un signal par tous les liens possibles. Au lieu de cela, nous pouvons trouver le meilleur chemin de la source à la destination qui donne le rapport signal sur bruit (SNR) de bout en bout le plus élevé. Nous pouvons minimiser la fonction objectif d’erreur quadratique moyenne (MSE) ou de taux d’erreur binaire (BER) en envoyant le signal utilisant le chemin sélectionné. L’ensemble de relais dans le chemin reste actif et le reste des relais s’éteint, ce qui permet d’économiser de l’énergie afin d’améliorer la durée de vie du réseau. Le meilleur chemin de transmission de signal a été étudié dans la littérature pour un relais MIMO à deux bonds mais est plus complexe pour un ...With the great developments in wireless communication technologies, Wireless Sensor Networks (WSNs) have gained attention worldwide in the past decade and are now being used in health monitoring, disaster management, defense, telecommunications, etc. Such networks are used in many industrial and consumer applications such as industrial process and environment monitoring, among others. A WSN network is a collection of specialized transducers known as sensor nodes with a communication link distributed randomly in any locations to monitor environmental parameters such as water level, and temperature. Each sensor node is equipped with a transducer, a signal processor, a power unit, and a transceiver. WSNs are now being widely used in the underground mining industry to monitor environmental parameters, including the amount of gas, water, temperature, humidity, oxygen level, dust, etc. The WSN for environment monitoring can be equivalently replaced by a multiple-input multiple-output (MIMO) relay network. Multi-hop relay networks have attracted significant research interest in recent years for their capability in increasing the coverage range. The network communication link from a source to a destination is implemented using the amplify-and-forward (AF) or decode-and-forward (DF) schemes. The AF relay receives information from the previous relay and simply amplifies the received signal and then forwards it to the next relay. On the other hand, the DF relay first decodes the received signal and then forwards it to the next relay in the second stage if it can perfectly decode the incoming signal. For analytical simplicity, in this thesis, we consider the AF relaying scheme and the results of this work can also be developed for the DF relay. The transceiver design for multi-hop MIMO relay is very challenging. This is because at the L-th relay stage, there are 2L possible channels. So, for a large scale network, it is not economical to send the signal through all possible links. Instead, we can find the best path from source-to-destination that gives the highest end-to-end signal-to-noise ratio (SNR). We can minimize the mean square error (MSE) or bit error rate (BER) objective function by sending the signal using the selected path. The set of relay in the path remains active and the rest of the relays are turned off which can save power to enhance network life-time. The best path signal transmission has been carried out in the literature for 2-hop MIMO relay and for multiple relaying it becomes very complex. In the first part of this thesis, we propose an optimal best path finding algorithm at perfect channel state information (CSI). We consider a parallel multi-hop multiple-input multiple-output (MIMO) AF relay system where a linear minimum mean-squared error (MMSE) receiver is used at the destination. We simplify the parallel network into equivalent series multi-hop MIMO relay link using best relaying, where the best relay ..

    Distributed Space-Time Coding Based on Adjustable Code Matrices for Cooperative MIMO Relaying Systems

    Full text link
    An adaptive distributed space-time coding (DSTC) scheme is proposed for two-hop cooperative MIMO networks. Linear minimum mean square error (MMSE) receive filters and adjustable code matrices are considered subject to a power constraint with an amplify-and-forward (AF) cooperation strategy. In the proposed adaptive DSTC scheme, an adjustable code matrix obtained by a feedback channel is employed to transform the space-time coded matrix at the relay node. The effects of the limited feedback and the feedback errors are assessed. Linear MMSE expressions are devised to compute the parameters of the adjustable code matrix and the linear receive filters. Stochastic gradient (SG) and least-squares (LS) algorithms are also developed with reduced computational complexity. An upper bound on the pairwise error probability analysis is derived and indicates the advantage of employing the adjustable code matrices at the relay nodes. An alternative optimization algorithm for the adaptive DSTC scheme is also derived in order to eliminate the need for the feedback. The algorithm provides a fully distributed scheme for the adaptive DSTC at the relay node based on the minimization of the error probability. Simulation results show that the proposed algorithms obtain significant performance gains as compared to existing DSTC schemes.Comment: 6 figure

    Towards the Optimal Amplify-and-Forward Cooperative Diversity Scheme

    Full text link
    In a slow fading channel, how to find a cooperative diversity scheme that achieves the transmit diversity bound is still an open problem. In fact, all previously proposed amplify-and-forward (AF) and decode-and-forward (DF) schemes do not improve with the number of relays in terms of the diversity multiplexing tradeoff (DMT) for multiplexing gains r higher than 0.5. In this work, we study the class of slotted amplify-and-forward (SAF) schemes. We first establish an upper bound on the DMT for any SAF scheme with an arbitrary number of relays N and number of slots M. Then, we propose a sequential SAF scheme that can exploit the potential diversity gain in the high multiplexing gain regime. More precisely, in certain conditions, the sequential SAF scheme achieves the proposed DMT upper bound which tends to the transmit diversity bound when M goes to infinity. In particular, for the two-relay case, the three-slot sequential SAF scheme achieves the proposed upper bound and outperforms the two-relay non-orthorgonal amplify-and-forward (NAF) scheme of Azarian et al. for multiplexing gains r < 2/3. Numerical results reveal a significant gain of our scheme over the previously proposed AF schemes, especially in high spectral efficiency and large network size regime.Comment: 30 pages, 11 figures, submitted to IEEE trans. IT, revised versio

    A Tutorial on the Optimization of Amplify-and-Forward MIMO Relay Systems

    Get PDF
    The remarkable promise of multiple-input multiple-output (MIMO) wireless channels has motivated an intense research activity to characterize the theoretical and practical issues associated with the design of transmit (source) and receive (destination) processing matrices under different operating conditions. This activity was primarily focused on point-to-point (single-hop) communications but more recently there has been an extensive work on two-hop or multi-hop settings in which single or multiple relays are used to deliver the information from the source to the destination. The aim of this tutorial is to provide an up-to-date overview of the fundamental results and practical implementation issues of designing amplify-and-forward MIMO relay systems

    Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

    Full text link
    The adoption of a Reconfigurable Intelligent Surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements, subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to 300%300\% higher energy efficiency, in comparison with the use of regular multi-antenna amplify-and-forward relaying.Comment: Accepted by IEEE TWC; additional materials on the topic are included in the 2018 conference publications at ICASSP (https://ieeexplore.ieee.org/abstract/document/8461496) and GLOBECOM 2018 (arXiv:1809.05397
    • …
    corecore