37 research outputs found

    Using Quantum Confinement to Uniquely Identify Devices

    Get PDF
    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give unique outputs in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with few resources in simple electronic structures above room temperature.Comment: 13 pages, 3 figure

    Reliable Delay Based Algorithm to Boost PUF Security Against Modeling Attacks

    Get PDF
    Silicon Physical Unclonable Functions (sPUFs) are one of the security primitives and state-of-the-art topics in hardware-oriented security and trust research. This paper presents an efficient and dynamic ring oscillator PUFs (d-ROPUFs) technique to improve sPUFs security against modeling attacks. In addition to enhancing the Entropy of weak ROPUF design, experimental results show that the proposed d-ROPUF technique allows the generation of larger and updated challenge-response pairs (CRP space) compared with simple ROPUF. Additionally, an innovative hardware-oriented security algorithm, namely, the Optimal Time Delay Algorithm (OTDA), is proposed. It is demonstrated that the OTDA algorithm significantly improves PUF reliability under varying operating conditions. Further, it is shown that the OTDA further efficiently enhances the d-ROPUF capability to generate a considerably large set of reliable secret keys to protect the PUF structure from new cyber-attacks, including machine learning and modeling attacks

    Resonant-Tunnelling Diodes as PUF building blocks

    Get PDF
    Resonant-Tunnelling Diodes (RTDs) have been proposed as building blocks for Physical Unclonable Functions (PUFs). In this paper we show how the unique RTD current-voltage (I-V) spectrum can be translated into a robust digital representation. We analyse 130 devices and show that RTDs are a viable PUF building block

    Lightweight hardware fingerprinting solution using inherent memory in off-the-shelf commodity devices

    Get PDF
    An emerging technology known as Physical unclonable function (PUF) can provide a hardware root-of-trust in building the trusted computing system. PUF exploits the intrinsic process variations during the integrated circuit (IC) fabrication to generate a unique response. This unique response differs from one PUF to the other similar type of PUFs. Static random-access memory PUF (SRAM-PUF) is one of the memorybased PUFs in which the response is generated during the memory power-up process. Non-volatile memory (NVM) architecture like SRAM is available in off-the-shelf microcontroller devices. Exploiting the inherent SRAM as PUF could wide-spread the adoption of PUF. Therefore, in this study, we evaluate the suitability of inherent SRAM available in ATMega2560 microcontroller on Arduino platform as PUF that can provide a unique fingerprint. First, we analyze the start-up values (SUVs) of memory cells and select only the cells that show random values after the power-up process. Subsequently, we statistically analyze the characteristic of fifteen SRAM-PUFs which include uniqueness, reliability, and uniformity. Based on our findings, the SUVs of fifteen on-chip SRAMs achieve 42.64% uniqueness, 97.28% reliability, and 69.16% uniformity. Therefore, we concluded that the available SRAM in off-the-shelf commodity hardware has good quality to be used as PUF

    Atomic-scale authentication using resonant tunnelling diodes

    Get PDF
    The rapid development of technology has provided a wealth of resources enabling the trust of everyday interactions to be undermined. Authentication schemes aim to address this challenge by providing proof of identity. This can be achieved by using devices that, when challenged, give unique but reproducible responses. At present, these distinct signatures are commonly generated by physically unclonable functions, or PUFs. These devices provide a straightforward measurement of a physical characteristic of their structure that has inherent randomness, due to imperfections in the manufacturing process. These hard-to-predict physical responses can generate a unique identity that can be used for authentication without relying on the secrecy of stored data. However, the classical design of these devices limits both their size and security. Here we show that the extensively studied problematic fluctuations in the current-voltage measurements of resonant tunnelling diodes (RTDs) provide an uncomplicated, robust measurement that can function as a PUF without conventional resource limitations. This is possible due to quantum tunnelling within the RTD, and on account of these room temperature quantum effects, we term such devices QUFs - quantum unclonable functions. As a result of the current-voltage spectra being dependent on the atomic structure and composition of the nanostructure within the RTD, each device provides a high degree of uniqueness, whilst being impossible to clone or simulate, even with state-of-the-art technology. We have thus created PUF-like devices requiring the fewest resources which make use of quantum phenomena in a highly manufacturable electronic device operating at room temperature. Conventional spectral analysis techniques, when applied to our QUFs, will enable reliable generation of unpredictable unique identities which can be employed in advanced authentication systems

    Security of Field Devices in Future Water Management

    Get PDF
    Water management as a part of critical infrastructure is undergoing transformation alongside the advancement of digitalization. Future water management systems will incorporate both edge and cloud services. Increased connectivity of systems and the use of remote management together with growing heterogeneity and complexity of systems will bring new demands and challenges for security systems. In order to address these future security challenges, we study the zero trust approach and its possible realization with a physical unclonable function facility. Especially in our focus are resource-constrained devices like sensors in the field and their safety

    Resonant-Tunnelling Diodes as PUF Building Blocks

    Get PDF
    Resonant-Tunnelling Diodes (RTDs) have been proposed as building blocks for Physical Unclonable Functions (PUFs). In this paper we show how the unique RTD current-voltage (I-V) spectrum can be translated into a robust digital representation. We analyse 130 devices and show that RTDs are a viable PUF building block

    PUF Modeling Attacks on Simulated and Silicon Data

    Get PDF
    We discuss numerical modeling attacks on several proposed strong physical unclonable functions (PUFs). Given a set of challenge-response pairs (CRPs) of a Strong PUF, the goal of our attacks is to construct a computer algorithm which behaves indistinguishably from the original PUF on almost all CRPs. If successful, this algorithm can subsequently impersonate the Strong PUF, and can be cloned and distributed arbitrarily. It breaks the security of any applications that rest on the Strong PUF's unpredictability and physical unclonability. Our method is less relevant for other PUF types such as Weak PUFs. The Strong PUFs that we could attack successfully include standard Arbiter PUFs of essentially arbitrary sizes, and XOR Arbiter PUFs, Lightweight Secure PUFs, and Feed-Forward Arbiter PUFs up to certain sizes and complexities. We also investigate the hardness of certain Ring Oscillator PUF architectures in typical Strong PUF applications. Our attacks are based upon various machine learning techniques, including a specially tailored variant of logistic regression and evolution strategies. Our results are mostly obtained on CRPs from numerical simulations that use established digital models of the respective PUFs. For a subset of the considered PUFs-namely standard Arbiter PUFs and XOR Arbiter PUFs-we also lead proofs of concept on silicon data from both FPGAs and ASICs. Over four million silicon CRPs are used in this process. The performance on silicon CRPs is very close to simulated CRPs, confirming a conjecture from earlier versions of this work. Our findings lead to new design requirements for secure electrical Strong PUFs, and will be useful to PUF designers and attackers alike.National Science Foundation (U.S.) (Grant CNS 0923313)National Science Foundation (U.S.) (Grant CNS 0964641
    corecore