10 research outputs found

    An energy-efficient communication system for ad hoc wireless and sensor networks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 76-78).Existing ad hoc wireless and sensor network systems often trade off energy against performance. As such, it is hard to find a single deployable system that supports high data rates while maintaining energy-efficient operation. This research addresses the problem by designing a communication system that achieves high performance and reduces the energy needed for delivering data in multi-hop networks by a factor of 100 or more over IEEE 802.11. The system is composed of a duty cycling and pseudo-random Medium Access Control (MAC) that provides deterministic access to the shared medium. Furthermore, the MAC provides link level QOS to support high data rates required for real-time traffic as well as delay-bounded services such as voice and multi-media streaming.by William Nii Adjetey Tetteh.M.Eng

    Towards an Efficient, Scalable Stream Query Operator Framework for Representing and Analyzing Continuous Fields

    Get PDF
    Advancements in sensor technology have made it less expensive to deploy massive numbers of sensors to observe continuous geographic phenomena at high sample rates and stream live sensor observations. This fact has raised new challenges since sensor streams have pushed the limits of traditional geo-sensor data management technology. Data Stream Engines (DSEs) provide facilities for near real-time processing of streams, however, algorithms supporting representing and analyzing Spatio-Temporal (ST) phenomena are limited. This dissertation investigates near real-time representation and analysis of continuous ST phenomena, observed by large numbers of mobile, asynchronously sampling sensors, using a DSE and proposes two novel stream query operator frameworks. First, the ST Interpolation Stream Query Operator Framework (STI-SQO framework) continuously transforms sensor streams into rasters using a novel set of stream query operators that perform ST-IDW interpolation. A key component of the STI-SQO framework is the 3D, main memory-based, ST Grid Index that enables high performance ST insertion and deletion of massive numbers of sensor observations through Isotropic Time Cell and Time Block-based partitioning. The ST Grid Index facilitates fast ST search for samples using ST shell-based neighborhood search templates, namely the Cylindrical Shell Template and Nested Shell Template. Furthermore, the framework contains the stream-based ST-IDW algorithms ST Shell and ST ak-Shell for high performance, parallel grid cell interpolation. Secondly, the proposed ST Predicate Stream Query Operator Framework (STP-SQO framework) efficiently evaluates value predicates over ST streams of ST continuous phenomena. The framework contains several stream-based predicate evaluation algorithms, including Region-Growing, Tile-based, and Phenomenon-Aware algorithms, that target predicate evaluation to regions with seed points and minimize the number of raster cells that are interpolated when evaluating value predicates. The performance of the proposed frameworks was assessed with regard to prediction accuracy of output results and runtime. The STI-SQO framework achieved a processing throughput of 250,000 observations in 2.5 s with a Normalized Root Mean Square Error under 0.19 using a 500×500 grid. The STP-SQO framework processed over 250,000 observations in under 0.25 s for predicate results covering less than 40% of the observation area, and the Scan Line Region Growing algorithm was consistently the fastest algorithm tested

    Consensus and collision detectors in wireless ad hoc networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 76-80).In this study, we consider the fault-tolerant consensus problem in wireless ad hoc networks with crashprone nodes. Specifically, we develop lower bounds and matching upper bounds for this problem in single-hop wireless networks, where all nodes are located within broadcast range of each other. In a novel break from existing work, we introduce a highly unpredictable communication model in which each node may lose an arbitrary subset of the messages sent by its neighbors during each round. We argue that this model better matches behavior observed in empirical studies of these networks. To cope with this communication unreliability we augment nodes with receiver-side collision detectors and present a new classification of these detectors in terms of accuracy and completeness. This classification is motivated by practical realities and allows us to determine, roughly speaking, how much collision detection capability is enough to solve the consensus problem efficiently in this setting. We consider ten different combinations of completeness and accuracy properties in total, determining for each whether consensus is solvable, and, if it is, a lower bound on the number of rounds required.(cont.) Furthermore, we distinguish anonymous and non-anonymous protocols-where "anonymous" implies that devices do not have unique identifiers-determining what effect (if any) this extra information has on the complexity of the problem. In all relevant cases, we provide matching upper bounds. Our contention is that the introduction of (possibly weak) receiver-side collision detection is an important approach to reliably solving problems in unreliable networks. Our results, derived in a realistic network model, provide important feedback to ad hoc network practitioners regarding what hardware (and low-layer software) collision detection capability is sufficient to facilitate the construction of reliable and fault-tolerant agreement protocols for use in real-world deployments.by Calvin Newport.S.M

    An efficient byzantine fault tolerant agreement protocol for distributed realtime systems

    Get PDF
    Der Einsatz von verteilten (Echtzeit-) Systemen ist in vielen Bereichen der Industrie nicht mehr wegzudenken, wie etwa in der Medizintechnik, der Kraftfahrzeugtechnik, der Flug-technik oder Automatisierungstechnik. Weiterhin kann man davon ausgehen, dass sich im Zuge der fortschreitenden Technologieentwicklung der Einsatzbereich von verteilten (Echtzeit-) Systemen auch in anderen Bereichen der Industrie weiter ausdehnen wird. Da in solchen Systemen jederzeit Fehler auftreten können, welche die Zuverlässigkeit und Sicherheit beeinträchtigen, müssen geeignete Fehlertoleranz-Verfahren entwickelt und eingesetzt werden. Ferner unterliegen viele sicherheitskritische Anwendungen harten Echtzeitanforderungen und zugleich deutlichen Kostenrestriktionen. In solchen Anwendungen spielt für die praktische Umsetzbarkeit nicht einzig die Fehlertoleranzfähigkeit eine entscheidende Rolle, sondern ebenfalls der von Fehlertoleranzverfahren verursachte Kommunikationsaufwand in Form von Nachrichten-, Knoten- und Speicheroverhead. Das Byzantinische Übereinstimmungsproblem stellt eines der wichtigsten zu lösenden Probleme in fehlertoleranten verteilten Systemen dar. Obwohl das Byzantinische Übereinstimmungsproblem gut erforscht ist und viele Lösungen unter verschiedenen Systemmodellannahmen existieren, stellt die Entwicklung effizienter Lösungen bis heute eine anspruchsvolle Aufgabe dar, die abhängig vom Fehler- und Timing-Modell sowie von den Aufwands- und Kostengrenzen alles andere als trivial zu lösen ist. Die vorliegende Arbeit untersucht Techniken und Strategien zur Entwicklung effizienter Übereinstimmungsprotokolle für verteilte (vorwiegend drahtlose) Echtzeitsysteme, und stellt hierzu zwei Lösungen vor. Im ersten Lösungsansatz wird ein neuartiges rundenbasiertes Übereinstimmungsprotokoll – ESSEN genannt – vorgestellt, das für synchrone verteilte Systeme effizient erbeitet. ESSEN löst das Byzantinische Übereinstimmungsproblem in Anwesenheit von bis zu f willkürlichen Fehlern (kooperierende Byzantinische Fehler inbegriffen). Hierzu benötigt ESSEN mindesten n >= 3f + max(0,f-2) Knoten. Außerdem stellt das Übereinstimmungsprotokoll ESSEN den ersten Lösungsansatz dar, welcher das Byzantinische Übereinstimmungsproblem unab-hängig von der Anzahl der zu tolerierenden Fehler in einer Runde löst. Obwohl ESSEN eine effiziente Lösung darstellt, lag die Vermutung nahe, dass durch den Einsatz eines geeigneten Signaturverfahrens eine weitere Verbesserung bzgl. der Kommuni-kationskomplexität erzielt werden kann. Folglich wurde im zweiten Teil der Arbeit ein weiterer Lösungsansatz entwickelt, mit dessen Hilfe sich die Kommunikationskomplexität von Übereinstimmungsprotokollen weiter reduzieren lässt (von ESSEN abweichende Übereinstimmungsprotokolle eingeschlossen). Im zweiten Lösungsansatz wurde zur Verbesserung der Kommunikationskomplexität von ESSEN ein neuartiges Verfahren zur Erzeugung und Prüfung von Signaturen (kurz: Signatur-verfahren) – SigSeam genannt – vorgestellt, welches mehrere Signaturen zu einer einzigen Signatur zusammenfasst, ohne die Nachrichtengröße hierdurch zu verändern. Im Rahmen der Arbeit konnte gezeigt werden, dass das Signaturverfahren SigSeam in der Lage ist, die Kommunikationskomplexität von Übereinstimmungsprotokollen signifikant zu reduzieren. Dies betrifft sowohl die Nachrichtenlänge wie auch die Nachrichtenanzahl, die beide reduziert werden können. Allerdings benötigt SigSeam im Vergleich zu herkömmlichen Signatur-verfahren für eine einzelne Signatur eine um ca. 25 Prozent höhere Informationsredundanz, wenn eine gleich gute Fehlerfassung wie bei diesen erzielt werden soll. Insgesamt konnte mit den beiden Lösungen ESSEN und SigSeam das Ziel der Effizienz-steigerung von Übereinstimmungsprotokollen für verteilte (Echtzeit-) Systeme erreicht werden. Weiterhin konnte gezeigt werden, dass das Prinzip der Signaturverschmelzung zur Reduzierung der Kommunikationskomplexität prinzipiell auf einen Großteil der existierenden Übereinstimmungsprotokolle angewendet werden kann.Using distributed (real-time) systems has become an integral part of industrial applications such as medical technology, automotive engineering, aeronautics and automation engineering. Along with the progress of technological development, it can be expected that the field of distributed (real-time) systems extends to other areas of industrial applications. This is a result of continuous technological advances. Given the fact that malfunctions in a distributed system (which can compromise the reliability and safety of systems) cannot be completely avoided, fault-tolerant mechanisms have to be developed and applied. Furthermore, many safety-critical applications are hard real-time applications and subject to cost restrictions. Therefore, for the practical usability of a distributed system with real-time requirements all of the following properties can become crucial: the fault tolerance capability, the communication complexity in terms of the number of required nodes, overall communication overhead as well as the overhead caused by the message storage. The Byzantine agreement problem has been exposed as one of the most fundamental issues to be solved. However, solving the Byzantine agreement problem in an efficient way in terms of communication complexity is still a challenging task. The following thesis deals with techniques and strategies for designing efficient fault-tolerant Byzantine agreement protocols primarily for wireless distributed real-time applications. In this paper two new solutions are presented, evaluated, and proven as correct. In the first approach, a novel synchronous single-round-based agreement protocol – called ESSEN – is presented, which copes with f arbitrary faults (including cooperative Byzantine faults) using at least n >= 3 f + max(0, f-2) nodes. Moreover, this is the first approach which solves the Byzantine agreement problem in a single broadcast round independent of the number of tolerated faults. Following this, we present a novel signature generation technique, called SigSeam, to merge several signatures into a single one, which is the topic of the second part of this thesis. This advantage opens a design space for agreement protocols with significantly reduced message overhead. Moreover, the new signature technique can also be applied to existing agreement and/or consensus protocols without affecting the fault tolerance properties of the protocol.Within the framework of this thesis it could be shown that the proposed signature technique with merging functionality significantly improves the efficiency of agreement protocols. However, to achieve a fault coverage comparable to conventional signature techniques, SigSeam requires approximately 25 percent more information redundancy. Altogether, the goal of improving the efficiency of agreement protocols has been achieved

    Lower bounds in distributed computing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 167-170).Distributed computing is the study of achieving cooperative behavior between independent computing processes with possibly conflicting goals. Distributed computing is ubiquitous in the Internet, wireless networks, multi-core and multi-processor computers, teams of mobile robots, etc. In this thesis, we study two fundamental distributed computing problems, clock synchronization and mutual exclusion. Our contributions are as follows. 1. We introduce the gradient clock synchronization (GCS) problem. As in traditional clock synchronization, a group of nodes in a bounded delay communication network try to synchronize their logical clocks, by reading their hardware clocks and exchanging messages. We say the distance between two nodes is the uncertainty in message delay between the nodes, and we say the clock skew between the nodes is their difference in logical clock values. GCS studies clock skew as a function of distance. We show that surprisingly, every clock synchronization algorithm exhibits some execution in which two nodes at distance one apart have Q( lo~gD clock skew, where D is the maximum distance between any pair of nodes. 2. We present an energy efficient and fault tolerant clock synchronization algorithm suitable for wireless networks. The algorithm synchronizes nodes to each other, as well as to real time. It satisfies a relaxed gradient property. That is, it guarantees that, using certain reasonable operating parameters, nearby nodes are well synchronized most of the time. 3. We study the mutual exclusion (mutex) problem, in which a set of processes in a shared memory system compete for exclusive access to a shared resource. We prove a tight Q(n log n) lower bound on the time for n processes to each access the resource once. .(cont.) Our novel proof technique is based on separately lower bounding the amount of information needed for solving mutex, and upper bounding the amount of information any mutex algorithm can acquire in each step. We hope that our results offer fresh ways of looking at classical problems, and point to interesting new open problemsby Rui Fan.Ph.D

    Clock Synchronization for Wireless Networks

    No full text
    Abstract. Time synchronization is a fundamental service in many wireless applications. While the synchronization problem is well-studied in traditional wired networks, physical constraints of the wireless medium impose a unique set of challenges. We present a novel time synchronization algorithm which is highly energy efficient and failure/recoverytolerant. Our algorithm allows nodes to synchronize to sources of real time such as GPS when such signals are available, but continues to synchronize nodes to each other, even in the absence of GPS. In addition, the algorithm satisfies a relaxed gradient property, in which the degree of synchronization between nodes varies as a linear function of their distance. Thus, nearby nodes are highly synchronized, which is desirable in many wireless applications.

    Clock Synchronization for Wireless Networks

    No full text

    Clock Synchronization for Wireless Networks

    No full text
    Time synchronization is a fundamental service in many wireless applications. While the synchronization problem is well-studied in traditional wired networks, physical constraints of the wireless medium impose a unique set of challenges. We present a novel time synchronization algorithm which is highly energy e#cient and failure/recovery-tolerant. Our algorithm allows nodes to synchronize to sources of real time such as GPS when such signals are available, but continues to synchronize nodes to each other, even in the absence of GPS. In addition, the algorithm satisfies a relaxed gradient property, in which the degree of synchronization between nodes varies as a linear function of their distance. Thus, nearby nodes are highly synchronized, which is desirable in many wireless applications
    corecore