2,426 research outputs found

    Synchronization of multihop wireless sensor networks at the application layer

    Get PDF
    Time synchronization is a key issue in wireless sensor networks; timestamping collected data, tasks scheduling, and efficient communications are just some applications. From all the existing techniques to achieve synchronization, those based on precisely time-stamping sync messages are the most accurate. However, working with standard protocols such as Bluetooth or ZigBee usually prevents the user from accessing lower layers and consequently reduces accuracy. A receiver-to-receiver schema improves timestamping performance because it eliminates the largest non-deterministic error at the sender’s side: the medium access time. Nevertheless, utilization of existing methods in multihop networks is not feasible since the amount of extra traffic required is excessive. In this article, we present a method that allows accurate synchronization of large multihop networks, working at the application layer while keeping the message exchange to a minimum. Through an extensive experimental study, we evaluate the protocol’s performance and discuss the factors that influence synchronization accuracy the most.Ministerio de Ciencia y Tecnología TIN2006-15617-C0

    Synchronization of Heterogeneous Kuramoto Oscillators with Arbitrary Topology

    Full text link
    We study synchronization of coupled Kuramoto oscillators with heterogeneous inherent frequencies and general underlying connectivity. We provide conditions on the coupling strength and the initial phases which guarantee the existence of a Positively Invariant Set (PIS) and lead to synchronization. Unlike previous works that focus only on analytical bounds, here we introduce an optimization approach to provide a computational-analytical bound that can further exploit the particular features of each individual system such as topology and frequency distribution. Examples are provided to illustrate our results as well as the improvement over previous existing bounds

    A Gossip Algorithm based Clock Synchronization Scheme for Smart Grid Applications

    Full text link
    The uprising interest in multi-agent based networked system, and the numerous number of applications in the distributed control of the smart grid leads us to address the problem of time synchronization in the smart grid. Utility companies look for new packet based time synchronization solutions with Global Positioning System (GPS) level accuracies beyond traditional packet methods such as Network Time Proto- col (NTP). However GPS based solutions have poor reception in indoor environments and dense urban canyons as well as GPS antenna installation might be costly. Some smart grid nodes such as Phasor Measurement Units (PMUs), fault detection, Wide Area Measurement Systems (WAMS) etc., requires synchronous accuracy as low as 1 ms. On the other hand, 1 sec accuracy is acceptable in management information domain. Acknowledging this, in this study, we introduce gossip algorithm based clock synchronization method among network entities from the decision control and communication point of view. Our method synchronizes clock within dense network with a bandwidth limited environment. Our technique has been tested in different kinds of network topologies- complete, star and random geometric network and demonstrated satisfactory performance

    Nonlinear transient waves in coupled phase oscillators with inertia

    Full text link
    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.Comment: 12 pages, 4 figure

    Distributed synchronization algorithms for wireless sensor networks

    Get PDF
    The ability to distribute time and frequency among a large population of interacting agents is of interest for diverse disciplines, inasmuch as it enables to carry out complex cooperative tasks. In a wireless sensor network (WSN), time/frequency synchronization allows the implementation of distributed signal processing and coding techniques, and the realization of coordinated access to the shared wireless medium. Large multi-hop WSN\u27s constitute a new regime for network synchronization, as they call for the development of scalable, fully distributed synchronization algorithms. While most of previous research focused on synchronization at the application layer, this thesis considers synchronization at the lowest layers of the communication protocol stack of a WSN, namely the physical and the medium access control (MAC) layer. At the physical layer, the focus is on the compensation of carrier frequency offsets (CFO), while time synchronization is studied for application at the MAC layer. In both cases, the problem of realizing network-wide synchronization is approached by employing distributed clock control algorithms based on the classical concept of coupled phase and frequency locked loops (PLL and FLL). The analysis takes into account communication, signaling and energy consumption constraints arising in the novel context of multi-hop WSN\u27s. In particular, the robustness of the algorithms is checked against packet collision events, infrequent sync updates, and errors introduced by different noise sources, such as transmission delays and clock frequency instabilities. By observing that WSN\u27s allow for greater flexibility in the design of the synchronization network architecture, this work examines also the relative merits of both peer-to-peer (mutually coupled - MC) and hierarchical (master-slave - MS) architectures. With both MC and MS architectures, synchronization accuracy degrades smoothly with the network size, provided that loop parameters are conveniently chosen. In particular, MS topologies guarantee faster synchronization, but they are hindered by higher noise accumulation, while MC topologies allow for an almost uniform error distribution at the price of much slower convergence. For all the considered cases, synchronization algorithms based on adaptive PLL and FLL designs are shown to provide robust and scalable network-wide time and frequency distribution in a WSN
    corecore