15,861 research outputs found

    Analyzing collaborative learning processes automatically

    Get PDF
    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    What the Success of Brain Imaging Implies about the Neural Code

    Get PDF
    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite limitations in what fMRI measures, implies that certain neural coding schemes are more likely than others. For fMRI to be successful given its low temporal and spatial resolution, the neural code must be smooth at the sub-voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we evaluate a number of reasonable coding schemes and demonstrate that only a subset are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of neural code and ventral stream, as well as what can be successfully investigated with fMRI

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Special issue on green radio

    Get PDF

    Spiking Self-organizing Maps for Classification Problem

    Get PDF
    AbstractIn Self-Organizing Maps (SOM) learning, preserving the map topology to simulate the real input features is one of the most important processes. This is done by training the weight values within the Best Matching Unit (BMU) neighborhood. Improper input feeding will cause failure in identifying the potential BMU which will lead to poor map topology. Many studies have been done to optimize the structure of SOM's topology using Artificial Neural Networks (ANN).Spiking Neural Network (SNN) is the third generation of ANN, where information are transferred from one neuron to other using spikes, and processed to trigger response as an output. Current researches have proven that SNN would be an alternative solution for enhancing ANN learning due to its superiority in capturing the internal relationship of neurons. This paper proposes embedded spiking neurons for Kohonen's Self-organizing Maps (SOM) learning to improve its learning process. The proposed Spiking SOM is divided into four main phases. Phase 1 involves the development of the training sample for SOM learning through neural coding schemes. In Phase 2, the spike values are fed into the training process and potential weights are generated. Phase 3 identifies and labels the outputs from the Spiking SOM classification based on the features and characteristics. Finally, in Phase 4, proposed Spiking SOM model is validated using classification accuracy, error quantization and statistical tests using Pearson correlation. Early experiment is conducted using the 1D coding schemes for transforming dataset into spike times with hexagonal lattice structure of SOM network. Result on cancer dataset shows that the tested model has produced feasible classification accuracy with low quantization error. It shows that the 1D coding is capable in preserving the features in the input neurons
    • 

    corecore