5 research outputs found

    Classifying motor imagery in presence of speech

    Get PDF
    In the near future, brain-computer interface (BCI) applications for non-disabled users will require multimodal interaction and tolerance to dynamic environment. However, this conflicts with the highly sensitive recording techniques used for BCIs, such as electroencephalography (EEG). Advanced machine learning and signal processing techniques are required to decorrelate desired brain signals from the rest. This paper proposes a signal processing pipeline and two classification methods suitable for multiclass EEG analysis. The methods were tested in an experiment on separating left/right hand imagery in presence/absence of speech. The analyses showed that the presence of speech during motor imagery did not affect the classification accuracy significantly and regardless of the presence of speech, the proposed methods were able to separate left and right hand imagery with an accuracy of 60%. The best overall accuracy achieved for the 5-class separation of all the tasks was 47% and both proposed methods performed equally well. In addition, the analysis of event-related spectral power changes revealed characteristics related to motor imagery and speech

    Energy extraction method for EEG channel selection

    Get PDF
    Channel selection is an improvement technique to optimize EEG-based BCI performance. In previous studies, many channel selection methods—mostly based on spatial information of signals—have been introduced. One of these channel selection techniques is the energy calculation method. In this paper, we introduce an energy optimization calculation method, called the energy extraction method. Energy extraction is an extension of the energy calculation method, and is divided into two steps. The first step is energy calculation and the second is energy selection. In the energy calculation step, l2-norm is used to calculate channel energy, while in the energy selection method we propose three techniques: “high value” (HV), “close to mean” (CM), and “automatic”. All proposed framework schemes for energy extraction are applied in two types of datasets. Two classes of datasets i.e. motor movement (hand and foot movement) and motor imagery (imagination of left and right hand movement) were used. The system used a Common Spatial Pattern (CSP) method to extract EEG signal features and k-NN as a classification method to classify the signal features with k = 3. Based on the test results, all schemes for the proposed energy extraction method yielded improved BCI performance of up to 58%. In summary, the energy extraction approach using the CM energy selection method was found to be the best channel selection technique

    Brain–computer interfacing under distraction: an evaluation study

    Get PDF
    Objective. While motor-imagery based brain–computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this 'simulated' out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.BMBF, 01GQ1115, Adaptive Gehirn-Computer-Schnittstellen (BCI) in nichtstationären Umgebunge

    A novel EEG based linguistic BCI

    Get PDF
    While a human being can think coherently, physical limitations no matter how severe, should never become disabling. Thinking and cognition are performed and expressed through language, which is the most natural form of human communication. The use of covert speech tasks for BCIs has been successfully achieved for invasive and non-invasive systems. In this work, by incorporating the most recent discoveries on the spatial, temporal, and spectral signatures of word production, a novel system is designed, which is custom-build for linguistic tasks. Other than paying attention and waiting for the onset cue, this BCI requires absolutely no cognitive effort from the user and operates using automatic linguistic functions of the brain in the first 312ms post onset, which is also completely out of the control of the user and immune from inconsistencies. With four classes, this online BCI achieves classification accuracy of 82.5%. Each word produces a signature as unique as its phonetic structure, and the number of covert speech tasks used in this work is limited by computational power. We demonstrated that this BCI can successfully use wireless dry electrode EEG systems, which are becoming as capable as traditional laboratory grade systems. This frees the potential user from the confounds of the lab, facilitating real-world application. Considering that the number of words used in daily life does not exceed 2000, the number of words used by this type of novel BCI may indeed reach this number in the future, with no need to change the current system design or experimental protocol. As a promising step towards noninvasive synthetic telepathy, this system has the potential to not only help those in desperate need, but to completely change the way we communicate with our computers in the future as covert speech is much easier than any form of manual communication and control

    Decomposition and classification of electroencephalography data

    Get PDF
    corecore