2 research outputs found

    Classifying Compliant Manipulation Tasks for Automated Planning in Robotics

    Get PDF
    Many household chores and industrial manufacturing tasks require a certain compliant behavior to make deliberate physical contact with the environment. This compliant behavior can be implemented by modern robotic manipulators. However, in order to plan the task execution, a robot requires generic process models of these tasks which can be adapted to different domains and varying environmental conditions. In this work we propose a classification of compliant manipulation tasks meeting these requirements, to derive related actions for automated planning. We also present a classification for the sub-category of wiping tasks, which are most common and of great importance in service robotics. We categorize actions from an object-centric perspective to make them independent of any specific robot kinematics. The aim of the proposed taxonomy is to guide robotic programmers to develop generic actions for any kind of robotic systems in arbitrary domains

    Homeostatic action selection for simultaneous multi-tasking

    Get PDF
    Mobile robots are rapidly developing and gaining in competence, but the potential of available hardware still far outstrips our ability to harness. Domain-specific applications are most successful due to customised programming tailored to a narrow area of application. Resulting systems lack extensibility and autonomy, leading to increased cost of development. This thesis investigates the possibility of designing and implementing a general framework capable of simultaneously coordinating multiple tasks that can be added or removed in a plug and play manner. A homeostatic mechanism is proposed for resolving the contentions inevitably arising between tasks competing for the use of the same robot actuators. In order to evaluate the developed system, demonstrator tasks are constructed to reach a goal location, prevent collision, follow a contour around obstacles and balance a ball within a spherical bowl atop the robot. Experiments show preliminary success with the homeostatic coordination mechanism but a restriction to local search causes issues that preclude conclusive evaluation. Future work identifies avenues for further research and suggests switching to a planner with the sufficient foresight to continue evaluation."This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/K503162/1]." -- Acknowledgement
    corecore