
HOMEOSTATIC ACTION SELECTION FOR
SIMULTANEOUS MULTI-TASKING

David Andrew Symons

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

 2020

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Identifiers to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/sta/199

 http://hdl.handle.net/10023/26007

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/199
http://hdl.handle.net/10023/26007

Homeostatic Action Selection for

Simultaneous Multi-tasking

David Andrew Symons

This thesis is submitted in partial fulfilment for the degree of

Doctor of Philosophy (PhD)

at the University of St Andrews

August 2019

Abstract

Mobile robots are rapidly developing and gaining in competence, but the potential
of available hardware still far outstrips our ability to harness. Domain-specific
applications are most successful due to customised programming tailored to a
narrow area of application. Resulting systems lack extensibility and autonomy,
leading to increased cost of development.

This thesis investigates the possibility of designing and implementing a general
framework capable of simultaneously coordinating multiple tasks that can be added
or removed in a plug and play manner. A homeostatic mechanism is proposed for
resolving the contentions inevitably arising between tasks competing for the use of
the same robot actuators.

In order to evaluate the developed system, demonstrator tasks are constructed to
reach a goal location, prevent collision, follow a contour around obstacles and
balance a ball within a spherical bowl atop the robot.

Experiments show preliminary success with the homeostatic coordination mecha-
nism but a restriction to local search causes issues that preclude conclusive evaluation.
Future work identifies avenues for further research and suggests switching to a
planner with the sufficient foresight to continue evaluation.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council
[grant number EP/K503162/1].

Declaration

Candidate’s Declarations
I, David Andrew Symons, do hereby certify that this thesis, submitted for the degree
of PhD, which is approximately 52,000 words in length, has been written by me,
and that it is the record of work carried out by me, or principally by myself in
collaboration with others as acknowledged, and that it has not been submitted in any
previous application for any degree.

I was admitted as a research student at the University of St Andrews in September
2012.

I received funding from an organisation or institution and have acknowledged the
funder(s) in the full text of my thesis.

Date: 10.06.2020

Signature of candidate:

Supervisor’s Declaration
I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of PhD in the University of St Andrews and
that the candidate is qualified to submit this thesis in application for that degree.

Date:

Signature of supervisor:

Permission for Publication

In submitting this thesis to the University of St Andrews we understand that we
are giving permission for it to be made available for use in accordance with the
regulations of the University Library for the time being in force, subject to any
copyright vested in the work not being affected thereby. We also understand, unless
exempt by an award of an embargo as requested below, that the title and the abstract
will be published, and that a copy of the work may be made and supplied to any
bona fide library or research worker, that this thesis will be electronically accessible
for personal or research use and that the library has the right to migrate this thesis
into new electronic forms as required to ensure continued access to the thesis.

I, David Andrew Symons, confirm that my thesis does not contain any third-party
material that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the
publication of this thesis:

Printed copy
No embargo on print copy.

Electronic copy
No embargo on electronic copy.

Date: 10.06.2020

Signature of candidate:

Date:

Signature of supervisor:

Underpinning Research Data
or Digital Outputs

Candidate’s Declaration
I, David Andrew Symons, hereby certify that no requirements to deposit original
research data or digital outputs apply to this thesis and that, where appropriate,
secondary data used have been referenced in the full text of my thesis.

Date: 10.06.2020

Signature of candidate:

CONTENTS

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1
1.1 Problem Statement . 1

1.1.1 Unrealised Hardware Potential . 1
1.1.2 The Scripting Illusion . 2
1.1.3 The State of the Art . 3
1.1.4 Remaining Challenges . 4
1.1.5 Research Gap . 5

1.2 Motivation . 6
1.3 Research Question . 6
1.4 Scope . 7

1.4.1 What is Simultaneous Multi-tasking? 7
1.4.2 What is a Task? . 8
1.4.3 Demonstrator Tasks . 10
1.4.4 Proof of Concept . 11

1.5 Hypotheses . 11
1.6 Outcomes and Contributions . 12
1.7 Thesis Structure . 13

2 Background and Action Selection Taxonomy 15
2.1 Placement . 15
2.2 Action Selection Taxonomy . 16

2.2.1 Interleaved Multi-tasking . 17
2.2.2 Parallel Multi-tasking . 21
2.2.3 Simultaneous Multi-tasking . 24

2.3 Homeostasis . 29
2.3.1 The Attention to Threat Principle . 29
2.3.2 Homeostasis in Feedback Loops . 31
2.3.3 Homeostasis in Neural Networks . 32

i

II CONTENTS

2.3.4 Homeostasis in Artificial Life . 32
2.3.5 Homeostasis in Task Coordination . 33

3 Homeostatic Task Coordination 37
3.1 Taxonomy of Tasks . 37

3.1.1 Multi-phase Tasks . 38
3.1.2 Single-phase Tasks . 40
3.1.3 Category 1: Configuration Transition Tasks 40
3.1.4 Category 2: Environment Manipulation Tasks 41
3.1.5 Category 3: Configuration Avoidance Tasks 42
3.1.6 Category 4: Situation Avoidance Tasks 42
3.1.7 Solution properties . 43

3.2 Requirements . 44
3.2.1 Generic Architecture . 44
3.2.2 Hardware Abstraction . 44
3.2.3 Realisable Controls . 44
3.2.4 Real-time Computation . 45
3.2.5 Autonomous Adaptation . 45
3.2.6 Unknown Environments . 45

3.3 A General Framework for SMT . 46
3.3.1 State Change . 48
3.3.2 Robot Sensor Update . 48
3.3.3 Abstract State Representation . 48
3.3.4 Robot Controller . 49
3.3.5 Task State Prediction Mechanism . 52
3.3.6 Task Potential Assessment . 53
3.3.7 Potential Combination Mechanism . 54
3.3.8 Vehicle Hardware Interface . 54
3.3.9 Computational Complexity . 55

3.4 Homeostatic Mortality Reduction . 56
3.4.1 Task Urgency Assessment . 57
3.4.2 Homeostatic Mortality Computation 61
3.4.3 Example of Homeostatic Task Coordination 64

4 Goal Location Task 67
4.1 Task Specification . 68

4.1.1 Task Description . 68
4.1.2 Objectives . 68
4.1.3 Task Model . 69
4.1.4 Task Classification . 70

4.2 Background . 70
4.3 Task State Prediction . 72
4.4 Urgency Heuristics . 72

4.4.1 Biarc Strain Minimisation . 73
4.4.2 Biarc Clothoid Approximation . 77

CONTENTS III

4.4.3 Mapping Controls to Strain . 78
4.4.4 From Strain to Urgency . 79
4.4.5 Motivation to Accelerate . 81

4.5 Experiments and Results . 82
4.6 Summary and Evaluation . 88

5 Obstacle Navigation Task 89
5.1 Task Specification . 90

5.1.1 Task Description . 90
5.1.2 Objectives . 90
5.1.3 Task Model . 91
5.1.4 Task Classification . 93

5.2 Background . 94
5.3 Task State Prediction . 96

5.3.1 Obstacle Detection . 96
5.3.2 Gap Occlusion . 97
5.3.3 Distance Measurement . 98

5.4 Urgency Heuristics . 99
5.4.1 Collision Prevention . 99
5.4.2 Contour Joining . 100
5.4.3 The Need for Two Tasks . 106

5.5 Experiments and Results . 107
5.5.1 Collision Prevention . 107
5.5.2 Individual Obstacles . 109
5.5.3 Gaps Between Obstacles . 111

5.6 Summary and Evaluation . 113

6 Ball Balancing Task 115
6.1 Task Specification . 116

6.1.1 Task Description . 116
6.1.2 Objectives . 116
6.1.3 Task Model . 117
6.1.4 Task Classification . 118

6.2 Background . 118
6.3 Task State Prediction . 121

6.3.1 Known Information About the Robot’s Position 121
6.3.2 Known Information About the Ball’s Position 121
6.3.3 Acceleration due to Robot Translation 123
6.3.4 Acceleration Due to Gravity . 123
6.3.5 Centrifugal Acceleration . 124
6.3.6 Effective Acceleration Component . 124
6.3.7 Linear Velocity to Angular Velocity 125
6.3.8 Damping and Friction . 126
6.3.9 Predicted Theta Position . 126
6.3.10 Conservation of Angular Momentum 127

IV CONTENTS

6.3.11 Predicted Phi Position . 127
6.3.12 Additional Factors . 127

6.4 Urgency Heuristics . 128
6.5 Experiments and Results . 130

6.5.1 Physics Simulator . 130
6.5.2 Stationary Robot . 131
6.5.3 Straight Line Acceleration . 132
6.5.4 Acceleration Along a Curve . 134

6.6 Summary and Evaluation . 137

7 Simulations and Results 139
7.1 Robot Simulator . 139

7.1.1 Available Simulators . 139
7.1.2 Design of a Custom Simulator . 140
7.1.3 Graphical User Interface . 141
7.1.4 Main Control Loop . 143
7.1.5 Robot Model . 143
7.1.6 AI Controller . 144
7.1.7 State Evolution . 144
7.1.8 Environment Model . 144

7.2 Controller Implementation . 145
7.3 Experiments and Results . 147

7.3.1 Goal location with ball balancing . 147
7.3.2 Obstacle navigation with ball balancing 150
7.3.3 Goal location with obstacle navigation 154
7.3.4 Coordinating all tasks simultaneously 156

7.4 Interpretation of Results . 160

8 Conclusion and Future Work 163
8.1 Summary . 163
8.2 Answering the Research Question . 165
8.3 Future Work . 166

8.3.1 Improving Existing Tasks . 166
8.3.2 Adding New Tasks . 166
8.3.3 Improving the Coordination System 167
8.3.4 Further Testing . 168

References 169

LIST OF FIGURES

1.1 Factory robots caged for safety reasons . 2
1.2 Humanoid and quadruped robots developed by Boston Dynamics 3

2.1 Taxonomy of action selection mechanisms . 17
2.2 Components in Rosenblatt’s “Distributed Architecture for Mobile Navigation” . . . 27

3.1 Excerpt of a schedule for the multi-phase task of box stacking 39
3.2 Framework for task-agnostic simultaneous multi-tasking 46
3.3 Homeostatic implementation of the task coordination framework 57
3.4 Comparison of candidate functions for homeostatic mortality 63

4.1 A single arc path for use as a frame of reference in biarc construction 74
4.2 Construction of the merge point along the single arc 75
4.3 Fitting a biarc from the start configuration to the goal via the chosen merge point . 76
4.4 Ratio of turn between two halves of a clothoid . 77
4.5 Goal connecting paths generated for chord angles of ±45° 83
4.6 Goal connecting paths generated for chord angles of ±90° 84
4.7 Goal connecting paths generated for chord angles of ±135° 84
4.8 Goal connecting paths generated for chord angles of 0° and 180° 85
4.9 Collection of test cases with an initial robot heading of 90° 86
4.10 Collection of test cases with an initial robot heading of −135° 87

5.1 Comparison of late turning versus early turning 92
5.2 Interpretation of distance sensors as the robot approaches a gap between two obstacles 97
5.3 Illustration of the need for using two merge targets 101
5.4 Geometric construction of merge targets . 102
5.5 Visualisation of proximity and merging urgencies as areas in workspace 104
5.6 Supposedly equivalent alternative trajectories . 107
5.7 Re-establishing a safe obstacle distance . 108
5.8 Smooth contour joining and following for polygonal obstacles 109
5.9 Smooth contour joining and following for smooth and jagged circular obstacles . . 109
5.10 Smooth contour joining and following for a concave obstacle 110
5.11 Smooth contour joining and following for an acute triangle 110
5.12 Smooth contour joining and following for a V-shaped obstacle 111
5.13 Successful occlusion of a narrow gap . 112
5.14 Navigation of an open gap . 113

v

VI List of Figures

6.1 Ballbot “Rezero” . 119
6.2 The “Stewart Platform” . 119
6.3 Representation of a spherical bowl . 122
6.4 Screenshot of the ball-physics simulator . 130
6.5 Top-down view of a ball with an initial displacement from the bottom of the bowl . 131
6.6 Energy graph of a ball with initial displacement on a stationary robot 132
6.7 Graph showing ball energy depletion achieved by straight line acceleration 132
6.8 Top-down view of the ball having reached the opposite side of the bowl 133
6.9 Initial ball displacement to the left of the robot’s heading (θ = 115°,ϕ = 45°) . . . 134
6.10 Left-curving path generated to becalm a ball starting at an angle of ϕ = 45° 134
6.11 Graph showing ball energy depletion achieved by accelerating along a left curve . . 135
6.12 Initial ball displacement to the right of the robot’s heading (θ = 115°,ϕ =−45°) . 135
6.13 Right-curving path generated to becalm a ball starting at an angle of ϕ =−45° . . 136
6.14 Graph showing ball energy depletion achieved by accelerating along a right curve . 136

7.1 Design of the Robot Simulator . 140
7.2 User interface of the robot simulator . 141
7.3 Control panel of the robot simulator . 142
7.4 Control space showing a region of realisable control samples 146
7.5 Test cases for the goal location task with ball balancing 148
7.6 Comparison of paths generated with and without ball balancing 149
7.7 Energy graph of the ball as the robot turns towards its goal 149
7.8 Following the contour of a star-shaped obstacle while balancing 150
7.9 Energy graph recorded while driving along the contour of a star-shaped obstacle . . 151
7.10 Following the contour of a U-shaped obstacle while balancing 152
7.11 Energy graph recorded while driving along the contour of a U-shaped obstacle . . . 152
7.12 Test cases for the obstacle navigation task with ball balancing 153
7.13 Test cases for the goal location task with obstacle navigation 154
7.14 Experiments showing the impact of lacking foresight in the planner at high speeds . 155
7.15 Test cases for the simultaneous coordination of all tasks 157
7.16 Energy graph of the ball as the robot navigates a star shape with all tasks in play . . 158
7.17 Energy graph of the ball corresponding to the failed test cases above 158

LIST OF TABLES

3.1 Taxonomy of single-phase tasks . 40
3.2 Example of task state prediction using arbitrary conversion factors 65
3.3 Urgency lookup table for mapping task states to an indicator of threat 66
3.4 Control samples with associated task urgencies and overall HMI rating 66

vii

ACRONYMS

AI Artificial Intelligence

ASM Action Selection Mechanism

ASP Action Selection Problem

CPU Central Processing Unit

DES Discrete Event System

FSA Finite State Automaton

HMI Homeostatic Mortality Index

ID In-schedule Dependencies

MP Multi-phase

MR Multi-robot

MRTA Multi-robot Task Allocation

MT Multi-task

MTC Minimum Turning Circle

ODE Open Dynamics Engine

ROS Robot Operating System

SMT Simultaneous Multi-tasking

SP Single-phase

SPA Sense-Plan-Act

SR Single-robot

ST Single-task

ix

1CHAPTER ONE

INTRODUCTION

This chapter provides an entry point to, and overview of, this dissertation. It states the problem
at hand and the motivations for solving it. A specific research question is formulated before
discussing the scope of this piece of work and the hypotheses made at the outset. Outcomes and
contributions are listed and finally the structure of the following chapters is laid out.

1.1 Problem Statement

1.1.1 Unrealised Hardware Potential

The field of robotics is enjoying ever-increasing popularity due to its many applications ranging
from space exploration to home aids as trivial as automated vacuum cleaners. Robot hardware
has improved immensely over the years, especially due to industrial interest. Mass production
and 3D printing of components has made robots affordable and ubiquitous. Humanoids with
twenty or more degrees of freedom (number of actuators, such as joints, that can be independently
controlled) are readily available and have the potential to perform almost any task imaginable.

The problem is that we cannot yet orchestrate all these actuators to produce the desired behaviour
and harness the power of the available hardware. The difficulty lies in finding a sequence of
controls or commands that make the many small motors come to life and coordinate to perform
a useful task.

This section examines why we are still far from reaching the theoretical limits of what could be
accomplished with the tools we have built. To do so it addresses the gap between perceived and
actual robot competence and gives examples of the state of the art in adaptive AI controllers. A
list of remaining challenges leads to a description of the chosen research gap.

1

2 CHAPTER 1. INTRODUCTION

1.1.2 The Scripting Illusion

Robots are being perceived as increasingly capable and even autonomous. While this impression
is partially justified by genuine advances in the field, it is also contributed to by the illusion of
competence created by scripted robots. Dancing humanoids, as featured in this 2017 Guinness
World Record [117], are common culprits of creating this deception. The observer is led to
believe that the robot is in some way conscious of its actions or is at least planning its moves
autonomously. Some robots are even made to look as human as possible, thereby encouraging
one to relate to the machine and credit it with human attributes [78].

However, just like in Searle’s Chinese room argument [111], a look behind the scenes immediately
destroys the illusion. The seemingly impressive behaviours are simply the result of the machine
meticulously following a script or macro, which is a detailed sequence of instructions that it
is hard-wired to execute. The benefit of this approach is that it allows the full potential of the
robot’s hardware to be utilised. The impressive results that can be achieved are not proof of the
machine’s intelligence, but rather attest to the insight and perseverance of the programmer who
underwent the arduous task of writing the script.

In spite of their lacking autonomy, scripted robots are undeniably useful. For instance, assembly
line robots are often programmed in this way to great effect. Their rigid adherence to the
instructions they are given allows them to perform high precision tasks in a short amount of time.

The same rigidity unfortunately also prevents them from reacting to changes in their surroundings.
This has a number of disadvantages, one of which is that the robot will keep going even if
someone gets in its way. A factory worker who was stabbed and electrocuted by the arm of a
welding robot in 2015 [99] is an example of how dangerous this can be. As a precaution “robots
are generally kept in cages to prevent contact with workers” [99], but although this is clearly a
sensible safety measure, it does limit the use of such robots to a confined setting.

Figure 1.1: Factory robots caged for safety reasons (image taken from [37])

1.1. PROBLEM STATEMENT 3

A further drawback of the inability to react or adapt to the environment is that even simple
changes to the requirements may call for substantial changes to the script. In the example of
dancing robots, this could mean rewriting a script just because the same dance is to be performed
on a different surface. Instructions that work when the robot is standing on carpet might cause it
to slip and fall on smoother surfaces. Needless to say, this is the antithesis to reusability.

1.1.3 The State of the Art

Prospects for Artificial Intelligence (AI) are not as bleak as the prevalence of scripting may
suggest. Adaptive controllers are being developed to take advantage of the also growing range
and accuracy of sensors. Capturing information about the environment allows controllers to
implement a sensory motor feedback loop to calibrate their actions and adapt to unforeseen
events.

Solutions in the field of mobile robotics most commonly revolved around navigation and obstacle
avoidance, with notable inventions including self-driving cars [29] and an array of robots with
potential military applications developed by Boston Dynamics [17].

Figure 1.2: Humanoid and quadruped robots developed by Boston Dynamics (image taken from [17])

Of course, these are examples on the cutting edge of technology, and unsurprisingly neither
companies nor military are particularly forthcoming with their insights. Even with the knowledge
and resources available to these organisations, human intervention is still required. This goes for
self-driving cars [16] as well as the Boston Dynamics robots, which, according to Priday [93],
rely on human remote control more than the videos would have you believe. So while adaptive

4 CHAPTER 1. INTRODUCTION

control systems, unlike their scripted counterparts, allow robots to be unleashed in the real world,
their command of the hardware they operate is still limited.

1.1.4 Remaining Challenges

The following problems continue to present some significant difficulty and are frequently
encountered in the development of AI controllers. Issues in adjacent fields of research such as
computer vision, active sensing, odometry, speech recognition etc. are also likely to crop up but
are not a subject of this thesis and therefore omitted from the list.

1. Given the almost endless possibilities, any reasonably specific task is unlikely to have an
existing solution and may require expert knowledge to solve. Even more frustratingly, a
solution may exist but not be publicly available. In either case one can expect to invest a
significant amount of time and money in the implementation of the required features.

2. The complexity of an existing algorithm might not permit real-time execution. Movement
speed has to be severely limited to prevent the robot getting ahead of the planner. In some
cases the vehicle may actually need to stop and wait for new controls. Off-line (or pre-)
computation of the entire control sequence undermines the ability to adapt to unforeseen
events and requires a complete model of the necessarily static environment.

3. Constraints on the robot’s motion abilities are not considered by the controller and result in
plans that cannot be realised. Simplistic planners may, for example, model the robot as a
particle that can move in any direction only to discover during execution that a car cannot
move sideways. A more advanced but no less common problem is the AI neglecting to cater
for the minimum turning circle of a vehicle getting larger with increasing speed.

4. Solutions to individual tasks can seldom be merged to elicit their combined behaviours.
Being able to set a robot multiple tasks simultaneously can, however, be very desirable. It
would, for instance, allow a robot waiter to navigate a restaurant and avoid collisions while
also balancing a tray. Given solutions to each of the three tasks involved, one may hope to
achieve all desired behaviours with little additional effort. Attempts in this direction will,
however, be foiled by disparities between the controls best suited to progressing the different
tasks individually. An action that benefits one task may undermine another, thus creating a
conflict of interest that has competing behaviours vying for control over the robot. With no
compromise in sight, the only option is to build a new controller specifically for the selected
combination of tasks. Often, complex formulae and human insight are required to resolve
contentions and achieve coordination.

1.1. PROBLEM STATEMENT 5

1.1.5 Research Gap

As suggested by its title, this thesis is primarily interested in task coordination. The focus is
therefore on the last of the aforementioned challenges, although all of them have to be addressed
to some extent. Specifically, the research gap lies in overcoming the problem of deciding the
relative importance of the tasks being coordinated by a single robot and doing so in a task-
agnostic manner. The distribution of tasks among teams of collaborative robots is a different
form of coordination not considered here. Existing work on task coordination can be categorised
into interleaved-, parallel- and simultaneous multi-tasking (see Action Selection Taxonomy).

Interleaved multi-tasking comprises all techniques that give different tasks alternating control
of the robot. Brooks’ Subsumption Architecture [18] is a foundational contribution to this
area. Improvements to his rule-driven approach include variations using reinforcement learning
[77][55], behaviour graphs [84][28] and scheduling [100][47]. Simultaneous execution of
multiple tasks cannot, however, be achieved by any of these inherently sequential methods.

Parallel multi-tasking allows for concurrent execution of independent actions not involving the
same robot actuators. Rather than giving a task exclusive control of the whole robot, the task
is given control of individual manipulators. Those not required by one task may be controlled
by another. Different approaches exist to resolving dependencies and isolating non-conflicting
operations that can be parallelised in this manner. For example, Lenser [76] proposes a graph
based mechanism. Taipalus [119] casts the issue as a resource allocation problem, while Towle
and Nicolescu [121] use an auction based system. Despite improving the capacity for concurrent
hardware utilisation, dependent tasks are still unable to execute simultaneously due to the absence
of a conflict resolution mechanism. The following category deals with tasks contesting the same
resource, where interference cannot be resolved by decomposition into serial or parallel actions.

Simultaneous multi-tasking is the main category of interest and contains the only existing
techniques dedicated to resolving conflict in order to progress all tasks at the same time with
the same action. Khatib [66] and Arkin [1] suggest finding the ideal action for each individual
task and then combining those to form an overall solution. The loss of information incurred by
discarding everything except a task’s highest preference can lead to compromises with which
none of the tasks is satisfied. This problem has been addressed by considering multiple alternative
actions which are rated by the competing tasks. Rosenblatt [101], Riekkie [98] and Benjamin
[9] have made notable contributions to this approach. A shared, fundamental difficulty lies in
determining the relative importance of different tasks and thereby the influence they have on
action selection [41] [38]. Rather than trying to solve the prioritisation problem, this thesis
proposes a way of avoiding it entirely.

6 CHAPTER 1. INTRODUCTION

Another research gap exists in the limited reusability of available coordination systems. Early
attempts at multi-tasking were restricted to handling a fixed set of tasks. Since then, interest
in constructing more general plug and play architectures has grown. Arkin and Khatib appear
to have been most successful in doing so, but their solutions have been superseded by designs
based on rating alternative actions. While these improve on coordination quality, they sacrifice
reusability due to their reliance on relative priorities that are once again specific to each set of
tasks. Adding to or removing from that set requires a complete re-evaluation of the hierarchy of
its members. Finding an alternative to using relative priorities facilitates the development of a
more general, task-agnostic coordination framework.

1.2 Motivation

The description of the stated problems already hints at what may be gained by solving them.

Primarily, this thesis aims to improve overall robot competence by extending the capacity for
handling multiple conflicting tasks. It is hoped that the same coordination mechanism will
eventually allow robots to tap into the full power of today’s hardware due to a reduction in
unnecessary idle time.

Increased autonomy and the ability to react to sensor information enables robots to adapt their
actions appropriately. In this way, their movement becomes safe and predictable, reducing the
need for robot cages and allowing people to interact with them.

The development of a reusable coordination mechanism should save having to build custom
software for coordinating each new set of tasks. This cuts down on development time and cost.

Finally, the work started here may enable future research. Further progress may be facilitated
and encouraged by establishing a common ground and basis for discussion.

1.3 Research Question

Given the remaining problems in the chosen field of research, along with a desire to focus on
task coordination, we arrive at the following research question:

Can a general, task-agnostic framework be devised to coordinate multiple tasks being
simultaneously executed by a single robot through homeostatic conflict resolution?

The aim is to construct a framework into which existing solutions to individual tasks can be

1.4. SCOPE 7

integrated to facilitate their coordination. Integration may require existing mechanisms to be
adapted, but doing so is still preferable to the alternative of creating custom solutions for the
far greater number of combinations of those tasks. Focusing on coordination in the abstract,
rather than on planning individual tasks, also has the advantage of being able to abstract over
task-specific details. These include design decisions such as whether a particular task should be
programmed to operate in static or dynamic environments.

The two following sections describe the scope of the investigation into the research question and
the hypotheses made in an attempt to meet the goals laid out in the motivation.

1.4 Scope

Although most technical definitions are confined to the upcoming content chapters, a clear
understanding of certain terms is required to delimit the scope of this thesis. To this end, the
following explains how key words and concepts are to be interpreted in the context of mobile
robotics and specifically task coordination. Keeping this project within reasonable bounds also
involves specifying what can reasonably be expected of the solutions developed.

1.4.1 What is Simultaneous Multi-tasking?

Intuitively, one may assume that multi-tasking is simultaneous by nature, but in fact different
types can be distinguished. As should already have transpired from the description of the research
gap, the presence or absence of interdependencies determines how a coordination problem needs
to be tackled.

Independent tasks that do not undermine each other require no special coordination mechanism.
This is only essential when tasks interact or compete. Conflict arises due to dependent tasks
trying to manipulate the same actuator(s). More precisely, the problem occurs when competing
tasks concurrently attempt to change the same state variable in divergent ways.

Dependencies can sometimes be disentangled by identifying independent actions that can be
executed in parallel, but this approach has its limits. To resolve conflict and make sustainable
progress, each action must simultaneously consider and progress (or at least not impede) all tasks.
Simultaneous Multi-tasking (SMT) is the truly concurrent coordination of multiple dependent
tasks with a single action. Proverbially speaking, SMT captures the notion of “killing two birds
with one stone”.

Of course, such solutions only exist when tasks allow room for compromise and are not inherently
opposed. If there is no common ground at all, one cannot hope to find a satisfactory solution.

8 CHAPTER 1. INTRODUCTION

1.4.2 What is a Task?

Having established what is meant by SMT, the next step towards defining the scope of the
envisaged coordination system is to specify the types of tasks for which it is intended. Although
ostensibly benign, the word task can make it surprisingly difficult to specify realisable objectives.
To curtail its vague everyday meaning, a taxonomy of tasks eligible for coordination is presented
as part of the framework in Chapter 3. A brief overview of the categories it defines is given here
after situating it within existing classifications.

Taxonomies of robot tasks are often geared towards specific domains. Quispe et al. [95] present a
taxonomy of benchmark tasks for bimanual manipulators. A slightly more general classification
of tasks involving robotic manipulators is attempted by Leidner et al. [75], but focuses on
interactions with external objects. The robot’s internal state seems not to be considered and there
is no mention of classical mobile robotics tasks such as navigation. A very specific example is
fruit picking in an agricultural setting [14]. None of these taxonomies covers a wide enough
spectrum to be of aid in defining tasks for a general coordination system that aims to abstract
over both robot hardware and the domain of application.

A general and widely recognised taxonomy of Multi-robot Task Allocation (MRTA) problems is
that of Gerkey and Matarić [44]. Although seemingly intended for a Multi-robot (MR) setting,
their taxonomy also includes a category for Single-robot (SR) tasks into which this PhD fits.
More importantly, it makes a distinction between Single-task (ST) and Multi-task (MT) robots.
Using the suggested notation, the intersection of the two relevant categories is denoted MT-SR.
This is not as close of a match as one may initially think however, owing to the fact that tasks
are assumed to be independent. In other words, Gerkey and Matarić’s taxonomy is suitable for
Parallel multi-tasking, but not for Simultaneous multi-tasking.

The significance of this deficit is pointed out by Korsah et al. [69] who set out to extend the
taxonomy to include different types of dependencies. In-schedule Dependencies (ID) come
closest to describing conflict between concurrent tasks. The most appropriate category in the
extended taxonomy is therefore the one denoted “ID [MT-SR-IA]” [69, p. 1504]. IA stands for
“instantaneous assignment” and signifies that the robot is allocated all of its task at the outset,
rather than in a “time-extended assignment” (TA) process. This distinction is of little significance
here, as we are not concerned with the task assignment problem, but with the coordination of
tasks that have already been assigned.

The difference between task assignment and action selection problems is brought out by the
taxonomy of tasks presented in this thesis. In addition to delimiting its scope, it also provides a
way of further distinguishing between tasks in an otherwise still quite broad class of problems.

1.4. SCOPE 9

Multi-phase Tasks are of an inherently sequential nature, with multiple steps required to attain
the desired solution. A detailed description of this category is given in Section 3.1.1, where the
task of stacking boxes is used an example.

An even simpler case would be waving a robotic arm from side to side. Each change in direction
marks the end of one phase and the beginning of the next as the target position of the arm changes.
In this context, conflict comes in the form of scheduling constraints, such as not being able to
move the arm left and right in the same phase. This is a task allocation or planning problem and
does not involve the type of conflict this thesis takes an interest in. Here, conflict is that arising
between tasks that have already been assigned and are competing in the same phase. Even simple
actions, such as moving the robot’s arm are not hard coded behaviours, but single-phase tasks
defined only by a target state. This gives the robot the flexibility to adjust solutions as needed to
accommodate for other tasks.

The idea is to develop a solution to single-phase task coordination which can be applied repeatedly
to also solve multi-phase tasks. An external task allocation mechanism will have to be used
for decomposing larger problems into multiple phases. A plethora of contributions on this
subject have already been published (see [112, p. 1359] for an overview of approaches to MRTA
problems). For this reason, and because everything hinges on being able to solve single-phase
tasks, the priority must be to develop a system capable of SMT.

Single-phase Tasks can be seen as the building blocks of multi-phase tasks. Most of these are
described in terms of the robot’s internal parameters. Together, these parameters form what is
referred to as a robot’s configuration. More precisely what is meant is a collection of variables,
a full assignment to which fixes all of the robot’s changing aspects at a specific point in time.
Simply put, it is a snapshot of the robot that captures information such as its location, pose,
orientation, remaining battery life, etc. Tasks may also involve environmental parameters which
are part of the external state. The categories outlined in the following cover tasks involving both
internal and external state variables. A more detailed description and further examples can be
found in Section 3.1.2.

Category 1 : Configuration Transition Tasks require the robot to change the parameters of its
current configuration to those specified by a given target configuration. Typical examples are
moving to a different location or for a humanoid robot to change posture, e.g. from sitting to
standing.

Category 2 : Environment Manipulation Tasks are defined in terms of the robot’s external
state i.e. the world it inhabits. Such tasks may include moving an object, pressing a switch or
kicking a ball.

10 CHAPTER 1. INTRODUCTION

Category 3 : Configuration Avoidance Tasks are necessary to prevent the robot from assuming
undesirable states or poses. A limbed robot could, for instance, lose its balance if its arms and
legs were not properly coordinated.

Category 4 : Situation Avoidance Tasks describe dangerous or unwanted relations between
the robot and the environment. In the example of obstacle navigation, the robot is kept at a safe
distance to obstacles in its path.

Any task that fits one of these categories and fulfils the requirements of the task-agnostic
framework is suitable for coordination. Multi-phase tasks also qualify, provided they can be
decomposed into single-phase tasks using an external task allocation mechanism. Tasks involving
multiple robots do not fit into any of these categories are outwith the scope of this thesis.

1.4.3 Demonstrator Tasks

The performance of the developed system is evaluated in Chapter 7 using a number of different
demonstrator tasks. Setting up the required tests involved solving the chosen tasks in a way that
is compatible with the proposed task coordination framework. Developing these solutions took
longer than originally anticipated. Some task solutions could be adapted form existing ones,
while others were constructed from first principles. Despite also making attempts to provide
quality solutions for individual tasks, their role is secondary to that of the coordination system
which they were designed to verify.

To ensure good test coverage, demonstrator tasks were selected from different categories of the
tasks taxonomy. Travelling to a goal location and navigating obstacles are staples of mobile
robotics and have to be represented to show that the developed system can coordinate classic
benchmark tasks. The goal location task developed in chapter four is representative of category 1.
There is intrinsic value in attaining a target location and the robot’s position is part of its internal
state, i.e. configuration. Contrarily, Obstacle navigation has extrinsic value and involves external
state, thus placing it in category 4. Ball balancing showcases the ability to solve category 3 tasks,
while also taking on a less studied problem to demonstrate the generality of the developed task
coordination system.

Category 2 is the only one not represented. This is because environment manipulation tasks
require sensor information to be processed to form a high level semantic understanding of the
environment. Recognising objects the robot can interact with is a different field of study and
beyond the scope of this thesis.

1.5. HYPOTHESES 11

1.4.4 Proof of Concept

The main aim of this dissertation is to show that multiple tasks can be coordinated in real-time
by a generic and reusable AI system relying only on sensor information. The developed theory
and presented solutions represent a proof of concept and make no claim to perfection. Being able
to generate realisable paths under these conditions, requires concessions to be made. Optimality
in particular is a property that is difficult to guarantee when only very little time is available to
decide the next action. So although the system makes best efforts, it cannot be relied upon to
find the ideal compromise between the conflicting needs of all tasks being coordinated. In fact, it
is often difficult to determine, even in retrospect, which controls would have been optimal based
on the information available to the robot at the time they were selected.

1.5 Hypotheses

By way of answering the research question, a number of hypotheses are investigated. The
assumptions made here are thought to be realistic and constructive in forming the basis for a
solution to the stated problem. A satisfactory answer to the research question rests on the truth of
these assumptions. Successful vindication of the hypotheses is hoped to inform the development
of a generic task coordination system and incite confidence in its validity.

Hypothesis 1 : The chosen definition of task is broad enough to be meaningful yet narrow
enough for coordination to be feasible.
In order for the task coordination system to be of use and deserving of the term generic, a
reasonable number and variety of individual tasks must fit the definition given in Chapter
3. If too few tasks are eligible to be coordinated we end up with yet another specialised
system. If the definition is too broad or vague, we cannot make enough useful assumptions
about the tasks and thereby lose the basis for reasoning about them – at least without
falling back on purely symbolic reasoning and drifting off into more abstract fields such as
constraint programming where solutions generally suffer from exponential complexities
and are ill suited to real-time planning.

Hypothesis 2: A generic task coordination framework can be designed to only rely on
state prediction and urgency heuristics.
The proposed framework provides a layer of abstraction that allows tasks to be reasoned
about without knowing their particulars. In other words, it is like an interface that defines
only the most fundamental properties required for coordination. These two requirements
will be discussed throughout my thesis with explicit examples given in the task chapters 4,

12 CHAPTER 1. INTRODUCTION

5 and 6. In brief, the first requirement is the ability to map controls to state variables and
the second is to map those variables to an indication of how well a task is under control.
While this is believed to be the bare minimum to make coordination viable, enough tasks
must be able to meet these requirements for the system to be generic and reusable.

Hypothesis 3: Homeostasis is a suitable principle to use as the foundation for a task
coordination system.
This is the central hypothesis on which the design of the proposed coordination mechanism
rests. The assumption is that homeostasis, the attention to threat principle, can be
used to resolve conflict between multiple competing tasks and thereby facilitate their
simultaneous progression and solution. Chapters 3 and 7 are devoted to investigating this
claim theoretically and empirically in order to answer the research question.

Hypothesis 4: Existing solutions can be found in real-time using only sensor information
and local search.
While a multi-step planner considers a sequence of controls leading all the way to the goal,
a single-step planner bases its decisions on the more immediate future. The disadvantage
of local search is that it may not find solutions requiring foresight, and the solutions it
does find can typically not be guaranteed to be optimal. However, the higher precision of
multi-step planners comes at the cost of computational complexity and this can quickly
become forbidding, especially when multiple tasks are involved. Given the necessity
of reacting to sensor information in real-time, a single-step solution is attempted. The
question of its sufficiency is addressed in Chapter 7.

1.6 Outcomes and Contributions

This thesis presents five contributions relating to task coordination, the individual tasks
being coordinated and the system built to evaluate the proposed homeostatic action selection
mechanism.

Contribution 1 : A new taxonomy of action selection mechanisms
The Action Selection Taxonomy presented as part of Chapter 2 categorises existing task
coordination mechanisms into interleaved-, parallel- and simultaneous multi-tasking. Sub-
categories of these further distinguish between the different techniques employed.

Contribution 2 : A general, task-agnostic framework for simultaneous multi-tasking
The framework consists of a taxonomy of tasks eligible for coordination together with an
interface that abstracts over the details of those tasks. The plug and play architecture is built

1.7. THESIS STRUCTURE 13

on the abstraction provided by this interface, which captures the minimum requirements
for conflict resolution to be possible.

Contribution 3 : A homeostatic conflict resolution mechanism
The proposed Homeostatic Mortality Reduction mechanism rates and compares the merit of
candidate actions on the fair, universal scale it defines. Problems connected to determining
relative task priorities or weights are avoided, thus facilitating the selection of compromise
controls capable of balancing the needs of competing tasks.

Contribution 4 : A testbed for evaluating the constructed task coordination mechanism
The testbed comprises a robot simulator and solutions to a number of individual tasks
to act as demonstrators for task coordination. The classical robotics tasks of reaching a
goal location and navigating obstacles are among those adapted for compatibility with the
task-agnostic framework.

Contribution 5 : The introduction of ball balancing as a novel demonstrator task
Ball balancing was devised as an example of a non-standard task eligible for coordination.
A physics model is developed to simulate and predict the behaviour of a ball rolling in
a spherical bowl mounted on a moving vehicle. By minimising the ball’s energy, an AI
controller can counteract external forces to keep the ball balanced and contained within its
bowl.

1.7 Thesis Structure

The following gives a brief summary of each chapter’s contents and links them together by
outlining the logical structure into which they fit.

Chapter 2 introduces the reader to task coordination and related literature. After defining key
terms, literature on action selection is presented in the form of a new taxonomy that
distinguishes between the available mechanisms based on the type of multi-tasking they
support. Homeostasis is reviewed as the basis for the proposed task coordination system.

Chapter 3 addresses the research question by designing a general framework for task coordina-
tion. The requirements for the desired system are laid out and the tasks it should be able
to handle are classified into four well-defined categories. Finally, a homeostatic control
system is developed following the structure prescribed by the framework.

Chapter 4 concerns itself with the task of reaching a goal location by generating a realisable
path the robot can follow to its destination. This is the first of four demonstrator tasks used

14 CHAPTER 1. INTRODUCTION

to evaluate the coordination system. For compliance with the framework and to satisfy the
second hypothesis, the forward kinematics for a differential drive robot are cited and an
urgency heuristic is developed that draws the robot towards its goal.

Chapter 5 provides a solution to obstacle navigation or more precisely the task of following a
contour around an obstacle at a safe distance. Ideas from existing solutions are combined
with results from Chapter 4 to guide the robot steadily and gracefully around obstacles in
its way. The desired behaviour is achieved by producing heuristics for two separate tasks:
maintaining a safe distance to obstacles and smoothly circumnavigating them.

Chapter 6 develops the novel task of balancing a ball in a shallow bowl atop a moving
robot. This more versatile alternative to the inverted pendulum problem was designed
to demonstrate the ability to keep balance both literally and in the more abstract sense
of balancing the needs of competing tasks. A specially created physics model fulfils the
coordination framework’s requirement for state prediction. The ball is kept inside the bowl
by minimising an energy based heuristic.

Chapter 7 conducts experiments using the tasks developed in the preceding chapters to evaluate
the homeostatic coordination system. Results are recorded and displayed using a custom-
built robot simulator, the design of which is described. Experiments are set up to collect
data for different combinations of tasks. The problems become progressively harder until
all demonstrator tasks are coordinated simultaneously.

Chapter 8 concludes this thesis with an evaluation of the work undertaken. It assesses the
feasibility of using homeostasis as the guiding principle for conflict resolution and
task coordination. Solutions to the demonstrator tasks are also discussed. Finally, the
dissertation culminates in a section on future work.

2CHAPTER TWO

BACKGROUND AND
ACTION SELECTION

TAXONOMY

This chapter provides a literary background on task coordination and techniques relevant to
achieving it. The review covers existing work pertaining to different types of multi-tasking as
well as principles on which successful conflict resolution may be based. The context survey
begins by placing this work within the literature and addresses inconsistent use of terminology
that may lead to confusion or incorrect classification. Following placement into the field of action
selection, a more precise classification within that area is achieved by providing a taxonomy of
different types of Action Selection Mechanisms (ASMs). Each of the major categories in the
taxonomy is examined together with a review of selected contributions that fall into interleaved-,
parallel- and simultaneous multi-tasking. A review of homeostasis, its relevance to robotics and
an outline of how this attention to threat principle can facilitate SMT completes the chapter.

2.1 Placement

The research gap and corresponding challenges have already been outlined in the introduction.
Solutions to the type of problem described fall into the field of behaviour-based control and
typically rely on a closed-loop control system. A basic form of such a system is known as the
Sense-Plan-Act (SPA) architecture and involves maintaining a centralised representation of the
world by processing incoming sensor information. The accumulated knowledge is used to form
a plan which, when put into action, changes the environment and with it the sensor readings –
thereby closing the loop.

15

16 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

When, as in this case, multiple tasks are involved, a decentralised model known as the behaviour-

based architecture is more appropriate. This architecture also implements a feedback loop akin
to that used in SPA, except that it requires a separate planning module for each task. These
modules independently produce plans most suited to the behaviours they represent, thus giving
rise to the problem of having to combine the often diverging plans to select a mutually beneficial
action [9, p. 2]. This is known as the Action Selection Problem (ASP) and is the primary field in
which this thesis is situated.

Similar works sometimes mention a related field called multi-objective optimisation. But while
there are clearly multiple-objectives involved in multi-tasking, the optimisation aspect should
not be emphasised in behavioural robotics where it is often hard to even define optimality, let
alone achieve or prove it [112, p. 313].

In summary, the area this PhD is concerned with is the intersection of behaviour-based control
and action selection with some aspects of multi-objective optimisation. Despite giving name
to a whole field of research, the definition of behaviour is surprisingly elusive and can be seen
to vary significantly between different works. Behaviours range from simple reflexes (if-then
interactions) to forming increasingly sophisticated long term plans. A number of additional terms
have been introduced in an attempt to specify more precisely the complexity of the behaviours to
be elicited from the robot. Such terms include job, project, goal, mission, task, etc. but are rarely
defined or consistently used. This thesis uses the term task, a definition of which has already
been outlined in the introduction to delimit the scope and pre-empt any misconceptions. A full
exposition of the four types of task can be found in 3.1.

Following through with the chosen task-centric terminology also means talking about task
coordination or multi-tasking rather than behaviour coordination or action selection. In any case,
the term action selection does not accurately describe more recent approaches to coordination:
While earlier approaches did select from a given set of available actions as the term implies,
today’s methods tend to synthesize, construct or search for a compromise action rather than
selecting from a pool of candidates. For this reason, action selection is only part of the overall
taxonomy of task coordination methods presented in the following section.

2.2 Action Selection Taxonomy

A number of taxonomies for categorising action selection problems and mechanisms have been
proposed, most notably by MacKenzie [83], Saffiotti [105], Pirjanian [92] and Benjamin [9],
with the latter being the most recent, despite dating back to 2002.

2.2. ACTION SELECTION TAXONOMY 17

Here, a new taxonomy is presented from the perspective of multi-tasking. It combines and
reorganises categories of the existing taxonomies, some of which focus only on one specific
branch of development, but also adds more recent contributions. Reorganisation and label
changes are justified as each category is discussed.

Three major categories distinguish between different types, or interpretations, of multi-tasking
while their sub-categories divide ASMs based on the techniques they employ. Excluded from
this taxonomy is only the very limited notion of multi-tasking sometimes used to describe multi-
purpose hardware. In that interpretation, multi-tasking capabilities may be ascribed to a robot
that can, for example, switch between different end effectors or tools. Due to the (sometimes
even manual) switching process, the tasks that can be performed are mutually exclusive, meaning
there is no coordination involved as there is no conflict to be resolved.

The structure of this literature review follows the visual representation of the new taxonomy
shown below. Contributions to each of the major categories of interleaved-, parallel- and
simultaneous multi-tasking are examined in the following.

Interleaved Multi-tasking Simultaneous Multi-taskingParallel Multi-tasking

FSA Based

Learned Rules

Scheduling

Behaviour Graphs

Task Coordination Mechanisms

Swarm
Robotics

Dependency
Resolution

Preference
Interpolation

Relative
Weighting

Universal
Scale

Figure 2.1: Taxonomy of action selection mechanisms for the coordination of multiple tasks on a single
robot

2.2.1 Interleaved Multi-tasking

This category includes all action selection mechanisms designed to determine the order in which
different tasks are permitted to execute (part of) their preferred actions. It should be noted that
despite being in the field of action selection, techniques in interleaved multi-tasking in fact
selects tasks, not actions. Once selected, a task is free to execute whichever action is most
beneficial to its progression without paying heed to the impact its execution may have on the
other goals being pursued.

Seeing as the order of execution is determined by repeatedly selecting the most eligible from a

18 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

set of tasks, this class of ASMs was labelled “Arbitration” by Saffiotti [105] in 1997. At that
time the category was equivalent to what MacKenzie called “state-based” [83], but was later
presented as one of three sub-categories of Arbitration by Pirjanian in his 1998 thesis [92].

The concept of choosing between available options is however such a fundamental principle that
it plays, at least a minor, role in most ASMs today. That includes mechanisms for simultaneous
multi-tasking, such as voting, which is why a separation based on the use of arbitration no longer
appears meaningful.

Benjamin’s 2002 taxonomy conflates all approaches based on alternating which task is in control
by branding them “No Compromise” [9, pp. 8–9]. This view is supported by the fact that controls
selected at any given time reflect only the needs of a single task. It does, however, neglect
to acknowledge that time is the contended resource in these approaches and sharing it does
constitute a form of compromise.

The term interleaved multi-tasking is suggested as an alternative since it better conveys the
notion of tasks being granted full control over the robot for short periods of time. Sub-categories
distinguish between four different strategies for determining which task is to be granted control
in the next discrete time step or interval.

2.2.1.1 FSA Based

This category corresponds to MacKenzie’s definition of state-based ASMs, but was relabelled
due to the ambiguity of the term state which in this context refers to the state of a Finite State
Automaton (FSA) and not to the physical state of the robot or that of the environment it inhabits.
Most early discoveries in the field of action selection fall into this category due to heavy reliance
on if-then style production rules which map percepts to simple, reflex-like behaviours.

Famously amongst them is Brooks’ Subsumption Architecture [18], which laid the foundation
for behaviour-based robotics. At the time of its publication in 1986, most research was aimed
at building a comprehensive model of the agent’s environment and reasoning about it using
symbolic search algorithms [19]. Brooks pointed out that such complete knowledge could only
be realistically assumed in simulated environments [20]. Solutions relying on such a model
are slow, unresponsive and ill-suited to solving real world problems [21]. The Subsumption
Architecture addresses these issues by using a decentralised representation of the world in which
a hierarchical system of behaviours controls the robot’s actions. Each layer in the hierarchy
provides a fairly simple, and therefore fast, mapping between incoming sensor information
and the controls to be executed in response. Finite state automata lend themselves well to
this rule-driven approach. The modular design allows each behaviour to be implemented by a

2.2. ACTION SELECTION TAXONOMY 19

separate FSA which is incorporated (or subsumed) into the FSA of the behaviour in the layer
above it. Only one behaviour can be active at any given time but may be interrupted by others if
need be. Higher level tasks such as mapping the environment may, for instance, be interrupted by
lower level behaviours such as obstacle avoidance. A central model of the world is not necessary
because each behaviour receives the information it requires directly from the sensors [18].

Another FSA based solution put forward by Košecká and Bajcsy [71] in 1994 follows the
Discrete Event System (DES) design. Their method can be seen as the event driven equivalent of
the Subsumption Architecture. State transitions are triggered by events, which are meaningful
changes to the environment, as opposed to any change in the sensor readings. When a new state is
reached, a pre-defined open-loop behaviour is activated. A second FSA, called the “supervisor”,
implements a closed-loop system that guides the first FSA by enabling or disabling certain events,
thereby effectively modifying the state transition table.

Arkin and MacKenzie [6] propose a comparable technique which replaces events with “perceptual
schemas” and behaviours with “motor schemas”. Schemas can be seen as small, well-defined
processes that perform a specific functionality. Perceptual schemas, which are of particular
interest in their work, implement an efficient sensor management strategy which allows for
selective perception of only the relevant regions of the environment. Motor schemas are notified
of environmental changes pertaining to the behaviour they represent and may be activated as a
consequence. A detailed explanation of schemas can be found in Arkin [1] although the method
described there does not belong in this category.

A 1997 revival of the DES approach by Pirjanian and Christensen [26] implements a three
layered “hybrid” architecture consisting of an FSA based supervisor controlling a DES behaviour
module, which in turns sits on a reactive module that handles unexpected, low level events. The
supervisor is intended to “reconcile AI planning with reactive modules” [26, p. 2], which the
authors find lacking in the approach suggested by Brooks. The supervisor is however still limited
to sequencing behaviours.

Gat presents a paper on “Three-layer architectures” [43] in which behaviours call on a top
layer “sequencer” to determine execution order. Bennett and Leonard [12] employ a similar
hierarchical control system in order to perform feature detection using an underwater vehicle.

2.2.1.2 Learned Rules

With FSA based approaches, most of the logic controlling task priorities and activation is
implicitly contained within the fixed structure of the automaton. To change the emergent
behaviour of such systems, they have to be redesigned [90, p. 11]. Even if only one behaviour

20 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

is changed, the alteration may have a knock-on effect on other tasks which then also have to
be recalibrated. Despite various tools for generating FSAs from a description, maintaining and
adjusting complex systems can be difficult and time consuming.

An alternative to hard-wiring production rules is to use reinforcement learning. Such systems are
trained to produce similar reactions to the same stimuli that cause state transitions in FSA based
approaches. Examples of this are a Q-learning technique by Lin [77] and a W-learning approach
by Humphrys [55]. Of course, these systems still have to be retrained each time their behaviour
is to be changed. Doing so requires a new reward function to be constructed, which can also be a
challenge.

2.2.1.3 Behaviour Graphs

Behaviours can also be modelled as a collection of interconnected nodes that form a graph along
the edges of which activation signals are propagated. When the sum of all inputs to a node
overcome an activation threshold, its associated behaviour is activated and gains control of the
robot. In other words, this method follows the same principles as neuron activation in artificial
neural networks.

Maes [84] and [85] demonstrate an implementation of this idea in which activation levels are
determined by the difference or disparity between the robot’s current and goal configurations.
More specifically, nodes in the “Activation Network” receive energy when the execution of
their proposed actions brings the robot closer to its target(s) or enables another action that does.
Conversely, energy is deducted where the action might hinder or reverse progress - be it directly
or by blocking another useful behaviour. The amount of energy disseminated upon attainment
of certain states, as well as the threshold values for node activation, have to be hand tuned on a
case-by-case basis.

Decugis and Ferber [28] expand on Maes’ work by constructing a hierarchy of several Activation
Networks which effectively sequence higher level tasks that are inherently conflictual and cannot
be tended to at the same time. Although behaviour selection is more sophisticated, it still elects a
single behaviour in a winner-takes-all fashion, meaning that other tasks have no bearing on the
action chosen by the behaviour put in charge.

Arkin and O’Brien [88, p. 149] introduce the “circadian rhythm function” which makes an
additional contribution to each node’s activation levels. The additional element represents a
forecast of future consequences that may ensue from present choices. This addresses a weakness
in previous methods of this type which are unable to account for uncertainty, e.g. relating to
sensor error or changes in a dynamic environment.

2.2. ACTION SELECTION TAXONOMY 21

2.2.1.4 Scheduling

Scheduling is an area that frequently comes up in searches for the keyword multi-tasking but
is absent from the existing taxonomies because ideas that originate in the design of operating
systems have only recently been transferred to robotics.

One of the earliest approaches in this direction, although not yet linked to operating systems,
was presented by Roeckel et al. where “The Task Manager prioritizes the Behaviors requesting
control and grants control to the one with the highest priority” [100, p. 322]. The prioritisation
scheme appears not to be automated as it “uses a downloaded set of orders” [100, p. 322], which
is taken to mean that priorities are static and pre-determined.

A more interesting contribution to the scheduling category was made by Groth in 2013 [47]. The
control system proposed is derived from scheduling and context switching techniques used in
multi-threading. By adding the ability to interrupt and resume tasks, the robot’s reactivity is
improved, allowing it to interact with a dynamic environment or a human operator. The focus
in Groth’s work is on environment manipulation tasks, as described in category 2 of my task
taxonomy, and is not directly applicable to this PhD. This is also due to the limited notion of
concurrency being used. The Concurrent Sequential Process (CSP) model which Groth builds
on is only capable of simulating or approximating concurrency by interleaving tasks; it does not
provide SMT capabilities. Ideas presented here may be relevant in future work however, e.g. in
the design of a high level planner to break down category 2 tasks into a sequence of category 1
tasks.

2.2.2 Parallel Multi-tasking

Parallel multi-tasking is chosen as the term to describe all mechanisms designed to distribute
work amongst independent entities being coordinated concurrently. These entities may be
individual actuators mounted to and controlled by a single robot, or they may be entirely separate
agents working towards a common goal. Swarm robotics is the field concerned with the latter
case while the former relies on a type of dependency resolution to select appropriate controls for
each of a robot’s motors. Both have in common that they strive to achieve a larger purpose by
decomposing the necessary actions into sets of conflict free operations which can be performed
in parallel.

The main difference is the scale or granularity at which they operate. Since this PhD focuses on
fine grained coordination of a single robot, swarm robotics is only briefly mentioned for the sake
of completeness.

22 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

More attention is given to mechanisms which provide the ability to find and execute non-
conflicting controls in parallel using different actuators of the same robot. Such techniques have
the potential to better utilise available hardware by reducing the idle time inherent to interleaved
multi-tasking. Approaches based on this strategy are reviewed under dependency resolution

below.

2.2.2.1 Swarm Robotics

Swarm robotics is a large field that deals with many different issues aside from action selection
such as networking, communication protocols, collaborative modelling of the environment etc.
Its categorisation into parallel multi-tasking is due to the fact that coordinating robots in a
swarm has a lot in common with coordinating different parts of the same robot. The planning
methods required also have to disentangle conflicts and are incentivised to improve efficiency by
minimising time spent waiting for other actions to complete [49].

A central idea behind solving problems in this category is to identify actions that can be taken
without impeding or obstructing others. In short, the aim is to coordinate multiple robots with
multiple actions. This differs from the main aim of this thesis which is to coordinate multiple
tasks with a single action. Hence why the focus in the category of parallel multi-tasking is on
approaches designed for individual robots from which very similar lessons can be learned more
directly.

Distributed, swarm, team and collaborative robotics fall into the MR category of Gerkey and
Matarić’s [44] taxonomy. Depending on whether individual robots are assigned parts of one task
or given separate tasks, these MRTA problems are classed as MR-ST or MR-MT respectively.
Further reading on the former category can be found in [61] and [135], while [125] is on the
subject of the latter. Key concepts in these areas are distributed problem solving and coalition

forming, which are not applicable to the SR domain for obvious reasons. A more general
overview of research in the field of swarm robotics is presented in [132].

2.2.2.2 Dependency Resolution

When it comes to parallelisation of the work-flow on a single robot, there is no way around
addressing task dependencies. This may be achieved by a very fine-grained method of action
selection, whereby individual control variables are selected one at a time. In this way an entire
control vector is assembled to make efficient use of the robot’s hardware.

Lenser [76] implements a hierarchical control system that incorporates a mode-based approach
called “Dual Dynamics” [59] into Brook’s Subsumption architecture. A “conflict graph”

2.2. ACTION SELECTION TAXONOMY 23

facilitates dependency resolution. Nodes in the graph represent the tasks waiting to be executed.
Those which require use of the same actuators are deemed to be in conflict and are linked by
an edge indicating that they cannot be simultaneously progressed. A “combinator” extracts all
non-conflicting sets of tasks from the conflict graph and evaluates them in terms of the combined
reward which their activation will predictably yield. The candidate task sets are whittled down by
process of elimination until only the set promising maximum total reward remains for execution.
Optimality can be achieved provided the reward for each task is accurately predicted.

A different way of casting the issue of parallelisation is to model it as a resource allocation
problem where the robot’s actuators represent the contested resource. Such an approach is
presented by Taipalus [119] [118] who, like Groth [47], takes inspiration from process scheduling.
Unlike Groth’s sequential scheduling technique, Taipalus mixes “the order of execution for
multiple tasks so that parts of tasks which utilize the interdependent resource of the robot can be
executed in parallel” [119, pp. 1–2].

The “ActionPool” [118, p. 38] mechanism is described as working in a similar way to Apple’s
Grand Central Dispatch (GCD) system. Each resource, which is a physical subsystem of the
robot, manages a separate pool of actions waiting for execution. Parallel multi-tasking is made
possible by creating actions in such a way as to guarantee their atomicity, i.e. independence of
other actions. This allows each resource to process exactly one action from its pool at any given
time and since there are several action pools, this means that multiple actions run concurrently.
Action priorities allow more important or urgent tasks to skip the queue and receive the attention
they require. The mechanism used to create atomic actions is not very well described but uses
the Beliefs-Desires-Intentions (BDI) agent paradigm [96] in a similar way to Joyeux, Alami
and Lacroix [62]. Human insight is also used in the formation of plans to a considerable extent,
which detracts from the value of the controller in terms of its autonomy.

Towle and Nicolescu [121] present an auction based system in which competing behaviours
bid for the use of individual actuators. The auction mechanic turns out to be a thinly veiled
metaphor for selecting the most important task. Just as in Maes’ Activation Network, importance
is quantified in terms of an “activation level”, the magnitude of which is, however, determined
by environmental factors instead of “inter-behavior communication” [121, p. 159]. The authors
point out the problems with using static priorities to determine task precedence in case of conflict
and also reject deliberative methods due to the complexity of dynamic environments [121, p. 158].
Instead they claim to be able to resolve contentions by using time constraints together with
information about the environment and the robot’s workload. Essentially, behaviour priority
increases as its deadline approaches [121, p. 163]. Most importantly the system sets estimated
completion times itself and does not rely on the operator to supply these parameters.

24 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

Knips et al. [68] present a neural dynamics architecture for reaching and grasping. Their process
model relies on Dynamic Field Theory [110] to handle everything from computer vision and
shape classification to pose estimation and movement generation. Despite the overall complexity
of the system, task coordination is limited to sequencing behaviours that are activated when
certain preconditions are met. If it were not for the fact that the robotic hand can be opened
while approaching the object to be grasped, this technique would be classified as Interleaved
Multi-tasking. Once the robot arm is in place, the grasping behaviour is activated, followed by a
lifting behaviour. The controller does react to unforeseen changes and can adapt its actions, but
at no time are the same actuators simultaneously contested. The most likely application of the
techniques described would be in sequencing multi-phase tasks or adding a scene interpretation
module for category 2 tasks.

2.2.3 Simultaneous Multi-tasking

While the field of action selection has its roots in interleaved multi-tasking, techniques in that
category no longer represent the state of the art. Even though many of the reviewed ASMs serve
their purpose well, they simply lack the capacity to pursue multiple goals concurrently. Arkin
was one of the first to point out the problems with ignoring all but one task and many others
followed [4] [1].

Parallel multi-tasking makes progress towards reducing the idle time of individual actuators but
sidesteps rather than solves the problem of coordinating dependent or conflicting tasks.

Simultaneous multi-tasking finally commits to confronting the issue of resolving contentions
between competing tasks concurrently. Different terms have been used to describe ASMs that do
so. MacKenzie uses the term “continuous” [83, p. 5] but only gives a very vague description, a
fact lamented by Pirjanian [90, p. 8], who proceeds to equate it with Saffiotti’s “command fusion”
[105, p. 12]. Safiotti defines command fusion as the task of combining “the results from different
behaviors into one command to be sent to the robot’s effectors” [105, p. 12] but contradicts
himself on the following page by explaining that “The simplest way to fuse the commands from
different behaviors is to use a switching scheme: the output from one behavior is selected for
execution, and all the others are ignored”. The latter is a description of interleaved multi-tasking
while the former, which later turns out to be the intended meaning, corresponds to Preference

Interpolation as it is presented here. Another subcategory in my taxonomy, Relative Weighting, is
quite well described as “voting” by Pirjanian [90, p. 18] but is more often mistaken for command
fusion. Simultaneous multi-tasking encompasses all of these terms and sorts contributions in this
area into three clearly distinguished subcategories.

2.2. ACTION SELECTION TAXONOMY 25

2.2.3.1 Preference Interpolation

This category corresponds to the literal interpretation of command fusion, whereby a compromise
control vector is formed by amalgamating individual preference vectors representing each task’s
ideal solution.

Khatib unwittingly made one of the first contributions to SMT in a 1986 paper on “Real-Time
Obstacle Avoidance for Manipulators and Mobile Robots” [66]. His “Potential Fields” method
was not originally conceived as an action selection mechanism, but was, as the title suggests, a
contribution to obstacle avoidance. Almost any book on AI meanwhile includes a well illustrated
explanation of potential fields (e.g. [112, p. 146–148]), which is why only their role in ASMs will
be highlighted here. The technique requires each task to define a potential (cost) function over
control space, which describes a surface called the potential field. Descending on this surface
by following its steepest gradient, a process called “gradient descent”, leads to the controls
associated with least cost for that task. Additive superposition of all tasks’ potential functions
yields a combined surface which can be used to find the overall preferable action. Equivalently,
one may express each task’s preference in terms of a control vector pointing in the direction
of steepest descent on its own potential surface. Averaging the individual preference vectors
produces the same compromise as found using the combined potential field. In brief, a mutually
agreeable action is generated by interpolation between task preference vectors.

Arkin was the first to realise the potential of this technique in the context of action selection
and made extensive use of it in “Motor Schema Based Navigation” [1]. A brief explanation
of “perceptual schemas” and “motor schemas” has already been provided in the review of
Arkin and MacKenzie. While the concept of schemas remains the same, here motor schemas
are implemented using potential fields. When a perceptual schema is sufficiently certain it
has located an obstacle, a corresponding motor schema is instantiated to create a repulsive
force that keeps the robot at a safe distance. Another schema attracts the robot towards its
goal location using a different potential function. In this way, each active motor schema (i.e.
behaviour) contributes a potential field and associated control preference. The system produces a
compromise action by linear combination of the individual task control vectors.

Another approach using additive superposition was contributed by Schöner [109] in 1992. The
details of the technique are quite different but the underlying principles are the same as those
already described.

Even if the technical issues (e.g. local minima) typically associated with potential fields can be
solved, there is an even more fundamental problem with combining preferred action vectors. The
problem stems from the loss of information incurred by discarding all but a task’s ideal action [9,

26 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

p. 10]. This leaves nothing but an erroneous assumption of linearity on which to base the quality
estimate of linear combinations of those ideals. In fact, even monotonicity cannot be assumed,
meaning that “arbitration via vector addition can result in an averaged command which is not
satisfactory to any of the contributing behaviors” [102, p. 44].

Low et al. [80] use a self-organising neural network in an attempt to bridge the gap between high-
level task planning and low-level motion control. The highest level in the four-tiered architecture
generates a sequence of checkpoints for the robot to pass through on its way to a goal location.
Lower levels are seen as reactive components with the responsibilities of transitioning between
checkpoints (using controls generated by the neural network), avoiding obstacles and monitoring
the robot’s internal state. The “command fusion module combines the control commands from
the reactive components into a final command that is sent to the actuators” [80, p. 3]. This
approach does circumvent any possible problems with local minima in potential fields, but does
nothing to address the more fundamental issue of preference interpolation.

2.2.3.2 Relative Weighting

To overcome the problems with single preferences, ASMs evolved to take multiple alternative
actions into consideration. Benjamin categorises these approaches as “multifusion” [9, p. 10], but
the term may give the false impression that the alternative control vectors are somehow convolved.
Pirjanian describes the process of compromise formation as “voting” [90, p. 18], which is more
accurate – although it should not be taken to mean that each task may only cast a single vote or
that votes are binary values. More precisely, ASMs in this category rate all alternative actions in
a given set on a continuous scale according to their individual and egoistic preferences. Once
all candidate actions have been rated, the one that commands the highest total rating is selected
for execution. However, before computing the total, each task’s preference must be scaled by
the relative weight (or importance) of that task. Weighting provides the crucial ability to direct
attention towards more critical tasks, such as preventing imminent collision. While other details
of the techniques reviewed here may vary, they all provide a relative weighting scheme that gives
name to this subcategory.

The method as outlined above already serves as a good description of Rosenblatt’s highly
influential paper “DAMN: A Distributed Architecture for Mobile Navigation” [101], from which
the following illustration was taken.

2.2. ACTION SELECTION TAXONOMY 27

Figure 2.2: Illustration of components in Rosenblatt’s “Distributed Architecture for Mobile Navigation”
(image taken from [101, p. 168])

The “DAMN Arbiter” weights the votes provided by each behaviour and sends the command
with the highest weighted total to the vehicle controller. What is not immediately clear from the
diagram is that there exist two sets of weights: “Each behavior is assigned a weight reflecting
its relative priority in controlling the vehicle. A mode manager may also be used to vary these
weights during the course of a mission based on knowledge of which behaviors would be most
relevant and reliable in a given situation” [101, p. 168]. The relative task priorities are set a priori
using human insight whereas the mode manager may (optionally) use insights from a higher
level planner to modify those weight distributions if necessary. Finer details of the method can
be found in Rosenblatt’s thesis [102].

Rosenblatt [103] expands on his previous research by adding elements of sensor fusion to
the “DAMN” architecture, thereby creating a crossover he terms “utility fusion”. Utilities are
assigned at regular intervals along candidate control vectors and summed after scaling by a
diminishing factor that represents uncertainty growing with increasing distance from the robot.
The control vector with highest utility is chosen, but not executed directly. Instead a parabolic
interpolation with adjacent controls facilitates smoother transitions than would be possible with
bang-bang control where abrupt instruction changes lead to jerky motion. The rather complex
algorithm consists of ten steps detailed on pages 4–5 [103].

In the same paper Rosenblatt also comments on work done by Yen and Pfluger [131] to
incorporate his previous work into the fuzzy logic framework (a rule based system using
multivalued logic). Fuzzy logic approaches were popular around this time with several
contributions including [130] [105] [92] [106] [91]. Rosenblatt, however, observes that the
entire category of fuzzy approaches still has shortcomings which reduce the system’s overall
effectiveness [103, p. 2] and by 2002 Benjamin states: “In summary, no defuzzification technique

28 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

has been put forth that isn’t readily open to a flaw-revealing counterexample” [9, p. 106].

Riekkie [98] proposes “action maps” to deal with a flaw in Rosenblatt’s method which lies in
the fact that control variables are determined sequentially. Specifically, the direction of the next
transition is chosen before deciding on a suitable speed. By failing to consider both parameters
simultaneously, clearly existing superior solutions may not be discovered. This is well illustrated
in [9, pp. 11–12]. In Riekkie’s approach, the full n-dimensional control space is searched (where
n is the number of controls or degrees of freedom).

Benjamin develops a technique called “Interval Programming” (IvP) [9] to deal with finding
solutions in the now exponentially larger search space. Task rating and weighting mechanics
remain unchanged with the focus being on a general solution to optimisation of a complex
objective function in high dimensional search spaces. The proposed mechanisms is essentially
a sampling approach which restricts itself to evaluating a feasible number of control samples
and then using linear interpolation to approximate intermediate values. A demonstration of this
technique in the context of marine vehicle control attests to the feasibility of the IvP method
[10]. Benjamin et al. [11] provide a guide to “MOOS-IvP” and “IvP Helm” solution tools which
can be applied to a diverse set of problems. This technique will likely be of use to the work
conducted here once it is applied to a robot with more degrees of freedom.

The described approaches have made significant advances, but share a common difficulty inherent
to this category, namely that of determining suitable relative weightings. For example, Gadanho
and Custódio comment that “One of the most difficult problems was to determine the relative
weights of importance” [41, p. 182]. Everaere and Grislin-Le Strugeon echo the same sentiment
in stating that such approaches “have shown difficulties in determining the behaviors weights for
the vote” [38, p. 1]. The problem is fundamentally that different tasks express their preferences
using objective functions with diverging ranges which also produce values in different units.
Finding relative weights is an exercise in determining a fair conversion rate that allows these
different currencies to be equated or compared. To make the matter worse, relative importance
may vary due to scarcity of a particular resource, like in any other economy. This rules out the
use of static, predetermined weights. The robot should, for instance, prioritise shorter paths more
and more as fuel levels drop. Doing so may, however, require passing by obstacles more closely
than is deemed safe. In this example, the conversion rate provides the answer to the question:
How many centimetres closer to the obstacle should the robot go per litre of fuel saved? This
question is already hard to answer although there are only two tasks involved. The difficulty we
have in quantifying priorities is likely explained by the fact that we do not think or plan this way
ourselves. An alternative, biologically inspired approach that does not require answering such
questions is explored in the following.

2.3. HOMEOSTASIS 29

2.2.3.3 Universal Scale

Since static weightings are insufficient and assessing relative importance dynamically is
problematic, this thesis proposes the use of a universal scale for rating and comparing tasks.
Instead of answering the question about relative importance, the use of a common currency is
proposed. The difficulty in this is finding a commonality between a diverse range of possible
tasks on the basis of which a suitable metric can be defined. Inspiration is taken from biology
where even primitive organisms can be observed making sensible trade-offs between their varying
needs. The mechanisms that controls decision making is based on an attention to threat principle
called homeostasis.

2.3 Homeostasis

This section investigates the possibility of defining a universal scale for rating tasks on the basis
of homeostatic urgency. A brief history and explanation of the concept of internal stability leads
to a discussion of some of its applications to AI and robotics.

2.3.1 The Attention to Threat Principle

The French physiologist, Claude Bernard, first discovered the “concept of constancy of the
internal environment” [46, p. 380] of living organisms in 1854 and developed it throughout his
career. From his observations of the regulatory system that controls body temperature, blood
sugar levels and many other critical functions, he extrapolated a more general theory about the
internal workings of the body [46, p. 383]. In particular, he notes that the “milieu intérieur”
(internal environment) seeks to maintain a state of equilibrium necessary for survival.

This principle, by which the body antagonises disruptions to its internal parameters and returns
to a stable state, was named “homeostasis” by Cannon. In his book “The Wisdom of the Body”
[23], Cannon investigates the mechanisms by which equilibrium is achieved through a series
of experiments. It is these self-regulating mechanisms that gave rise to the field of cybernetics
founded by Norbert Wiener [127].

A breakthrough in this newly established field came in 1948 when Ashby created the “Homeostat”
[7, p. 100], the first mechanical device capable of replicating homeostasis. Key in the
development of this adaptive “Ultrastable System” [7, p. 80] was Ashby’s more concrete
and practical interpretation of homeostasis as “the maintenance of essential variables within
physiological limits” [7, p. 63]. Expressing the state of the internal environment in terms
of variables enabled a more proactive engineering approach to what was previously a fairly

30 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

abstract biological process that could merely be observed. Using the abstraction afforded by this
algebraic interpretation allowed the essential variables to be plotted as points in a “phase-space”
[7, p. 95]. The task of imitating the body’s natural tendency to restore and maintain stability is
then modelled as keeping those points within a safe region of phase-space. Taking inspiration
from nature, Ashby observes that “Some external disturbances tend to drive an essential variable
outside its normal limits; but the commencing change itself activates a mechanism that opposes
the external disturbance” [7, p. 61]. Stability and equilibrium can be achieved the same way
mechanically – by favouring actions that counteract environmental changes through an equal
and opposite force.

This thesis investigates a novel way of applying homeostasis to simultaneous multi-tasking. The
basic idea is to recast task objective functions as homeostatic indicators of success in balancing
the needs of tasks competing for attention. When a task comes under threat due to the external
influences of its rivals, its homeostatic indicator will be pushed outside of its safe range and
thereby trigger a corrective mechanisms for restoring balance. While analogous to Ashby’s view
of homeostasis, it should be noted that the outlined approach is an application of a principle
for internal stability to an external measure of a task’s overall success. Obstacle clearance for
instance is defined in relation to obstructions in the external environment and is not equivalent to
the regulation of internal variables such as body temperature. To capture this extended notion of
homeostasis, its more general interpretation as the attention to threat principle is conducive.

In this very general sense the solutions in the Relative Weighting category of SMT could already
be seen as homeostatic. For the reasons pointed out in that section, a different approach is
required however. Interestingly, Ashby aptly states the very essence of the problem that these
control systems are still wrestling with today. In “Design For a Brain”[7, p. 43], he describes the
issue with the non-uniformity of the essential variables as well as the need for ordering them
according to their importance in spite of this:

The essential variables are not uniform in the closeness or urgency of their relations
to lethality. There are such variables as the amount of oxygen in the blood, and
the structural integrity of the medulla oblongata, whose passage beyond the normal
limits is followed by death almost at once. There are others, such as the integrity
of a leg-bone, and the amount of infection in the peritoneal cavity, whose passage
beyond the limit must be regarded as serious though not necessarily fatal. Then
there are variables, such as those of severe pressure or heat at some place on the skin,
whose passage beyond normal limits is not immediately dangerous, but is so often
correlated with some approaching threat that is serious that the organism avoids such

2.3. HOMEOSTASIS 31

situations (which we call “painful”) as if they were potentially lethal. All that we
require is the ability to arrange the animal’s variables in an approximate order of
importance.

This PhD addresses the described ordering problem from a new perspective. Instead of trying
to compare variables in different units and with different ranges, a fair comparison in terms
of a universal measure is attempted. A suitable metric is already indicated in the quote above:
Urgency allows even the most diverse maladies in Ashby’s extensive list to be ordered in terms
of their severity. A framework and mechanism for conflict resolution through fair compromise
based on homeostatic urgency is developed in the next chapter, but not before taking stock of
existing attempts to apply homeostasis in robotics.

2.3.2 Homeostasis in Feedback Loops

Although it only maintains one homeostatic variable, the lighting control system presented in [63]
displays some of the basic principles behind counteracting undesired change in the environment.
A robotic chandelier, consisting of multiple spotlights that can be moved to shine in different
directions, is programmed to maintain desired lighting conditions specified by the user through
speech and gestures. When the brightness, recorded by a camera in the ceiling mounted light
fixture, deviates from the target value, the controller compensates by moving its spotlights or
changing their intensities. While luminosity can be said to be under homeostatic control, the
mechanism to maintain the desired state is, essentially, a simple feedback controller. The most
effective positions for the lights is determined using depth-first search and is of little relevance to
SMT.

A more interesting use of luminance control is presented by Hernández et al. [51] to increase the
quality of camera images used to guide a line-following robot. Luminance and white balancing
are kept in acceptable bounds by adjusting camera settings such as zoom, focus and shutter speed.
As in [63], the magnitude of deviation from the ideals values leads to a proportionate response.
All of these controls are, however, independent and do not involve conflict. The only contended
resource is time and that is managed by slowing down the robot if needed. Speed is controlled
using fuzzy if-then rules integrated into a hierarchical control system.

Neither of these two examples go beyond using homeostatic variables in a feedback loop. While
the aim is to achieve a stable state, the principles of homeostasis are not integrated into the
control systems themselves, which follow standard closed-loop designs.

32 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

2.3.3 Homeostasis in Neural Networks

Within the field of AI, homeostasis appears to have made the largest impact on artificial neural
networks. One of the earliest ideas to apply Ashby’s notion of internal stability to neuron
activation was put forward by Di Paolo [30] in a paper titled “Homeostatic Adaptation to
Inversion of the Visual Field and Other Sensorimotor Disruptions”. As the title suggests, it aims
to overcome perturbation in sensory inputs by adaptation. For demonstration purposes, a simple
robot is made to approach a light source using two light sensors mounted on opposite sides of a
circular vehicle. The key feature is that the sensors can be inverted, i.e. the signals emitted by
the left and right sensors can be crossed over. Methods for recovering from this extreme form of
disruption are refined over a series of publications in 2002 [31], 2003 [32] and 2008 [56]. The
basic idea is to use a neural stability indicator (the homeostatic variable) in addition to the usual
fitness function to allow the system to withstand and adapt to sensorimotor perturbation.

Following Di Paolo’s work, there are a number of contributions aimed at improving neural
networks and, in particular, their robustness. Timmis and Neal [87] present an artificial endocrine
system based on a fairly literal interpretation of biological homeostasis that includes emotional
responses. Vargas et al. [124] [123] and Moioli et al. [86] draw and expand on work done by
Timmis and Neal. In order to build a more complete and biologically accurate homeostatic
system, the existing neural network approach is incorporated into a larger framework together
with an artificial immune system. The aim, especially of [124], seems to be the recreation
of some form of cognition, while [86] and [123] are more focused on neural networks called
“GasNets”. Finally, Williams [128] applies homeostatic plasticity to continuous-time recurrent
neural networks in order to improve signal propagation.

2.3.4 Homeostasis in Artificial Life

Work on artificial neural networks seems to be gravitating towards cognition, swarm robotics and
more generally Artificial Life. Schmickl et al. [108] apply homeostasis to the field of Artificial
Life, where the adaptive principle is to aid in the generation and evolution of artificial organisms.
An argument for the use of homeostasis in swarm robotics is made by Timmis and Tyrrell [120].
Stovold combines research from Vargas, Schmickl and Timmis (among others) to investigate
“the fundamental basis of collective intelligence by considering distributed cognition and its role
in adaptivity and homeostasis in robots” [116, p. 1].

While very effective in these areas, neural networks and evolutionary algorithms are not well
suited to multi-tasking. One of the main reasons for this is a limitation pointed out by Stovold
himself stating that “the range of behaviours is limited to those already trained into the neural

2.3. HOMEOSTASIS 33

network, and retraining takes time” [116, p. 2]. Approaches to SMT, building on neural networks
would inherit the same issue and therefore fail to provide the aspired real-time computation
and/or generality: The neural network would have to be retrained for every new combination
of tasks and that is assuming that training data is even available. The same holds true for other
learning approaches, such as the goal-directed imitation system presented in [36].

There may be applications for artificial neural networks and machine learning at the task-level,
but a different mechanisms is required for top-level coordination. The following summarises the
few attempts that have been made towards using homeostasis in that context.

2.3.5 Homeostasis in Task Coordination

In “Homeostatic Control For A Mobile Robot: Dynamic Replanning In Hazardous Environ-
ments”, Arkin [3] seeks to enhance robot autonomy by facilitating self-preservation of internal
state through homeostasis. His proposed mechanism follows an analogy to the endocrine system,
which is responsible for homeostatic regulation in the biological world. The endocrine system
communicates through the release of hormones (such as adrenaline) which can, among other
things, control energy levels and thereby increase or decrease activity in certain parts of the
body. Arkin introduces “signal schemas” which mimic the hormone transmitters and receptors
to provide a means of disseminating information about the robot’s internal variables and provoke
the appropriate adaptive reactions in the motor schemas.

The outlined approach comes to full fruition in a follow-up publication [2], which demonstrates
visible adaptation in a control system sensitive to the robot’s fuel reserves. The implementation
builds on Arkin’s previous work on motor schemas in 1987 [1] (see review above) to which
an additional layer, the “homeostatic control subsystem”, is added. Feedback concerning the
homeostatic variables is passed (via signal schemas) to the motor schemas where the information
parameterises the potential field used to produce each behaviour’s control vector. Summing
all schema vectors, yields an overall control vector which represents a compromise between
following a shorter path (to save fuel) and going a longer way around obstacles (to avoid
collision). Experiments show success but the method is still in the same category as the approach
it builds on (Preference Interpolation) and suffers from the same limitations already described in
the above taxonomy of ASMs. A summary of Arkin’s contributions to behavioural control can
be found in his book “Behavior-based Robotics” [5] published in 1998.

Gadanho [40] [41] uses homeostasis to train a control system to switch between predefined
behaviours as and when appropriate. Disruption to the homeostatic balance of certain internal
parameters triggers an “emotional” response, which guides reinforcement learning. The approach

34 CHAPTER 2. BACKGROUND AND ACTION SELECTION TAXONOMY

falls under the Learned Rules category of interleaved multi-tasking.

Yoon et al. [134] make a rather weak contribution to parallel multi-tasking which can be
described as performing interleaved multi-tasking for independent sets of behaviours in parallel.
The behaviour sets appear to be pre-defined, meaning the controller does not perform the
dependency resolution step autonomously. As is typical for parallel multi-tasking, only one
behaviour in each set can be active at the same time since there are no means of coordinating
the dependent behaviours within the set. The principle by which behaviours are activated is of
interest however, owing to the fact that it is based on homeostasis. The concept is quite simple:
Each behaviour is assigned a “satisfaction level” and the least satisfied behaviour executes its
desired controls [134, p. 3160]. Unfortunately, the paper does not explain how satisfaction
levels are determined, but from the perspective of this thesis the main contribution of this paper
(although not presented as such) is its generalisation of homeostasis and not the mechanism itself.
The key difference to other approaches is that homeostasis is applied to entire behaviours, not
just individual variables such as fuel levels. Since behaviour satisfaction is not even part of a
robot’s internal state, the approach can be seen as extending the concept of homeostasis to the
stabilisation of external or derived variables. This generalisation fits with the interpretation of
homeostasis given above, where it is described as a general attention to threat principle.

The allostatic control system constructed by Fibla et al. [107] for emulating a rodent is of
significant interest to this PhD. It combines homeostatic principles with what is arguably the
most sophisticated action selection mechanism in the Relative Weighting subcategory of SMT.
This thesis does not make a distinction between homeostasis and allostasis, as homeostasis is
taken to encompass both the idea of keeping a variable within its bounds as well as the mechanism
of antagonising change to achieve balance. In the article, homeostasis is used to describe a
simple feedback loop whereas allostasis involves deliberate behavioural changes with the aim of
maintaining stability at a meta level. Behaviours are “decomposed into minimal homeostatic
subsystems” [107, p. 1935], each of which is associated with a gradient vector field that is
generated as part of a complex learning process. Once created, the allostatic control control
system, a kind of supervisor, can set desired values for each behaviour’s objective function.
Allostasis manifests itself in the behavioural change induced by setting different targets. The
gradient vector field is used to determine whether to increase or decrease the wheel speeds
of an E-puck robot so as to bring the actual objective value closer to its target. Gradients of
multiple behaviours are combined using a weighted sum, thus placing this method in the Relative
Weighting category. Since there is no description of weights being dynamically computed, it
can only be assumed that these are manually selected, highlighting one again the problems with
this category of solutions. Another limitation lies in the fact that behaviours are rather basic and

2.3. HOMEOSTASIS 35

only include category 1 tasks. Cue following, path planning (towards a target destination) and
environment exploration are essentially different instances of the Goal Location task. It may also
prove difficult to apply the technique for adjusting controls to other robot architectures, since it
seems to be specifically designed for a differential drive robot.

3CHAPTER THREE

HOMEOSTATIC TASK
COORDINATION

This chapter describes the proposed framework for task-agnostic SMT and the homeostatic
mechanism developed for conflict resolution. A taxonomy of tasks is provided to specify the
types of problems the framework can handle and represents the first step towards its design.
Clearly defining how the word task should be interpreted, allows the system’s desired features
and requirements to be laid out. A diagram of the framework illustrates the components that
are needed to satisfy these requirements and shows how different parts of the mechanism fit
together. The internal workings of each component are laid out before the final section presents
Homeostatic Mortality Reduction as the core mechanism for conflict resolution. Central to the
presented solution is the universal scale on which task priorities can be rated and compared in
terms of their homeostatic variables. This rating scheme is integrated into the framework by
changing the functionality of some of its key components.

3.1 Taxonomy of Tasks

The word task can easily be misconstrued to mean almost anything that needs to be done. The
unbounded nature of the work required is due to a somewhat recursive definition: a task may be
described in terms of a sequence of actions which can be tasks in their own right and could be
broken down further still. For example, the task of baking a cake involves buying ingredients,
mixing them together, greasing a cake tin, etc. – but buying the ingredients is a task itself that
requires another sequence of actions (go to a shop, get a shopping cart, find the flour, ...) and
so on. Some tasks are even too abstract or open ended to be broken down. Well meant but

37

38 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

impractical advice such as “make something of your life” comes to mind. Using such a loose
definition of task would make it impossible to set achievable objectives since the diversity of
potential problems would require a universal AI as it only exists in science-fiction.

To avoid being taken to task for an imprecise definition, a more practical interpretation
is established with a view to specifying achievable requirements for the task coordination
framework. More than that, the following taxonomy of tasks is already part of that framework
since it defines its purpose and scope. It also addresses the first hypothesis in as far as it
demonstrates the ability to capture a reasonably broad spectrum of tasks, the coordination of
which seems both interesting and plausible.

The taxonomy expounded in the following distinguishes between the types of tasks that can
be simultaneously pursued by a single robot. As already explained in Section 1.4.2 of the
introduction, its closest correspondence in literature is the “ID [MT-SR-IA]” category of the
“iTax” [69, p. 1504] taxonomy for Multi-robot Task Allocation (MRTA) problems. The taxonomy
presented here focuses on the coordination of tasks, rather than on the process by which they
are assigned. It also introduces additional divisions to split up what would otherwise be a very
broad category of tasks. To do so it contrasts Multi-phase (MP) tasks and Single-phase (SP)
tasks before sub-dividing the latter even further.

3.1.1 Multi-phase Tasks

Multi-phase tasks involve inherently sequential elements and must be solved in stages. As
previously described, tasks are often recursively defined or may otherwise imply requirements
not explicitly stated. This can make it difficult to decide if or how a task needs to be decomposed
into consecutive phases.

For example, it may seem as though a lawn-mowing robot only pursues one continuous task,
when in fact it must pass through several waypoints to cover the entire lawn. The robot cannot
drive towards all waypoints simultaneously, but must visit them one after another. Switching
targets from one waypoint to the next marks the beginning of a new phase, making this a
multi-phase task.

A more involved example is that of box stacking. Let there be three boxes labelled A, B and
C. To stack these in alphabetical order, with A being the bottom box, the robot must perform a
sequence of actions in the correct order. First, it must travel to the location of box B and pick it
up. Then, while holding the box, the robot must locate box A and lower box B onto it. Finally,
this process is repeated for box C.

3.1. TAXONOMY OF TASKS 39

Consider also the additional tasks that are only implied. It is taken for granted that the robot
must navigate obstacles when travelling between boxes and counter balance to compensate for
their weight when lifting them (e.g. a humanoid could fall forwards when picking up a heavy
box). The following schedule illustrates the different phases involved in this task and also shows
other supporting tasks being coordinated alongside the main box stacking activity.

Go to box B

Phase 1

Avoid collision

Lift box B

Balance robot

Go to box A

Avoid collision

Balance robot

Put B onto A

Balance robot

Go to box C

Avoid collision

Phase 2 Phase 3 Phase 4 Phase 5
Time

Simultaneous tasks

Figure 3.1: Excerpt of a schedule for the multi-phase task of box stacking including the supporting tasks
of obstacle navigation (while travelling from one box to another) and balancing the robot (while carrying
a heavy box)

Task allocation or planning techniques are required to unpack an implicit task specification and
reformulate it in terms of an explicit sequence of smaller, single-phase tasks. While scheduling
conflicts may arise in the creation of a multi-phase plan, such as shown above, the resolution
of this type of conflict is not a subject of this thesis. The type of conflict we are interested
in is that between tasks already scheduled to take place in the same phase. As such, the
proposed framework and homeostatic action selection mechanism do not come with an inbuilt
scheduler or native support for multi-phase tasks. That does not, however, mean that such tasks
cannot be coordinated using the developed system. On the contrary, it is designed to do so in
combination with an external task allocation mechanism. Single-phase task coordination is the
first priority, because it is a necessary requirement for multi-phase coordination. With the ability
to simultaneously coordinate multiple conflicting tasks within the same phase, any sequence of
such phases can be solved by repeated application of the developed technique.

Furthermore, there is already an abundance of work on task allocation [69] and planning [112]
whereas there are very few contributions in the area of simultaneous multi-tasking (see 2.2.3).
Logistics can be worked out using existing symbolic reasoning, scheduling or constraint solving
techniques. There are also specific solutions to well known problems such as travelling salesman
or the “Tower of Hanoi” [70] puzzle, which may be seen as a more complex version of box
stacking.

40 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

3.1.2 Single-phase Tasks

Single-phase tasks have already been identified as the components of multi-phase tasks (see
individual phases in figure 3.1). They represent units of work for the robot being used. Further
sub-division into sequential elements is either impossible, impractical or simply of no benefit.

In the context of mobile robotics, the single-phase tasks one can reasonably expect to solve are,
broadly speaking, concerned with changing either the state of the robot itself or that of the world
around it. A further distinction is possible based on whether the tasks have intrinsic or extrinsic
value. The former are characterised by specific, well-defined goals while the latter seek to avoid
undesirable conditions that may arise as a result of pursuing those goals. Table 3.1 summarises
the proposed taxonomy and outlines the types of tasks that belong into its four categories. A few
paragraphs are given over to describing each of these in more detail with the support of concrete
examples.

Tasks concerning internal state Tasks concerning external state

Tasks with
intrinsic value

Category 1
State transition between given
initial and target configurations

Category 2
Manipulation of the robot’s

external environment

Tasks with
extrinsic value

Category 3
Avoidance of a region of configuration

space representing undesirable conditions

Category 4
Avoidance of situations defined
with respect to the environment

Table 3.1: Taxonomy of single-phase tasks distinguishing between tasks concerning internal or external
state variables and possessing intrinsic or extrinsic value

3.1.3 Category 1: Configuration Transition Tasks

Configuration transition tasks have intrinsic value and concern the internal state of the robot.

Tasks with intrinsic value have a clearly defined purpose that can be expressed as reaching
a specific target. The target is given in terms of a desired state which, in this category, is a
description of a robot’s internal parameters or, more precisely, its configuration. This target
configuration, together with the robot’s initial configuration, sufficiently specifies any task in this
category. The initial or start configuration describes the state of the robot when commencing a
task and may or may not be freely chosen. Since the robot can only be in one state at a time,
there can be no unknowns remaining in the initial configuration, i.e. the values of all variables
are known. The target is a desired future configuration and as such need only specify values for
the subset of configuration variables that a task is concerned with. Of course, when the robot
arrives at the target all variables will be fully assigned – even those we did not care to specify.

3.1. TAXONOMY OF TASKS 41

A typical example of tasks in this group is travelling from A to B, where A and B are locations
that can be expressed as coordinates which are part of the robot’s configuration. Say you start
in St Andrews in a car facing south. This specifies an initial configuration of (56.34°N, 2.8°W,
SOUTH). Assuming you want to drive to Edinburgh and do not mind in which orientation you
park, your target configuration is (55.95°N, 3.2°W, ?) with the question mark denoting the
freedom to choose the orientation at the destination. Once you arrive, you can of course only
park facing one direction, thus fixing the final orientation, e.g. to (55.95°N, 3.2°W, EAST).
Solving such tasks automatically involves an AI controller finding a sequence of controls to make
the transition between the initial and target configurations. In our example the control sequence
would be a detailed description of how to drive from St Andrews to Edinburgh. Generally
speaking, tasks in this category are concerned with state transition of the robot itself.

In addition to attaining a target location (using any propulsion system), tasks in this category
include moving parts of the robot (flexing an arm, bending a knee, turning the torso), orienting a
sensor to face in a particular direction or regulating internal parameters (e.g. adjusting fan speed
to regulate CPU temperature).

Another internal state variable is the robot’s remaining battery life. Recharging will typically be
a multi-phase task involving driving to a charge point (category 1) and then connecting to the
power supply (category 2, see below).

3.1.4 Category 2: Environment Manipulation Tasks

Environment manipulation tasks have intrinsic value concern the external state of the robot.

The external state of a robot can be formalised in a similar way to its internal counterpart. While
the configuration describes the state of a robot itself, the external state describes the environment
around it. Unless a map of the surroundings is provided, a robot must rely on sensor information
to build its own model of the world it inhabits. Whether provided or constructed, this model
contains information about all known features of the environment. Typically, these will include
the locations of obstacles, people, objects the robot can interact with, other robots, etc.

Tasks in this category seek to interact with, or manipulate, the perceived environment. Examples
include grasping an item, moving an object (e.g. shunting boxes by pushing or pulling), kicking
a ball, pressing a button, connecting a cable (e.g. the robot’s charger) or opening a container.
Some tasks may be defined in terms of the environment without seeking to change it directly.
Examples of this are target-chasing or acting as a goal keeper by blocking off a region of the
environment.

42 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

3.1.5 Category 3: Configuration Avoidance Tasks

Configuration avoidance tasks have extrinsic value and concern the internal state of the robot.

Tasks with extrinsic value are given rise to by tasks with intrinsic value. The need for solving the
former is a direct consequence of pursuing the specific goals of the latter. While extrinsic tasks
lack such specific targets, they are by no means less important. Rather than attaining a certain
state, these tasks aim to avoid a whole range of states that are deemed undesirable.

In the context of internal state, we are concerned with configurations that need to be avoided.
If the robot were to remain stationary in an acceptable configuration, there would never be
any danger of encountering an undesirable configuration. Unfortunately, a static robot is rarely
of much use. We have already established that solving tasks with intrinsic value necessitates
state transitions, and it is as a result of those that the robot may pass through an intermediate
configuration that is off-limits.

Tasks in this category aim to prevent the robot from entering any dangerous configurations on its
way to attaining the goals set by other tasks. Examples of dangerous states to be avoided include
unstable or imbalanced poses which cause the robot to fall over, getting one actuator tangled
in another and preventing the robot from damaging itself with its own tools (e.g. a welding
attachment). Energy or fuel rationing is also part of monitoring internal state. A task could, for
instance, prioritise the shortest path or make sure the robot travels at the most energy-efficient
speed to make sure that it can reach the next charge point before running out.

3.1.6 Category 4: Situation Avoidance Tasks

Situation avoidance tasks have extrinsic value and concern the external state of the robot.

Tasks in this final category are very similar to those in the previous in that they also arise due to
the pursuit of other goals. Solutions likewise require constraints on the robot’s motion. The main
difference is that, rather than avoiding a region of configuration space, these tasks are designed
to avoid more complex situations that cannot be defined in terms of a robot’s configuration
alone. Instead, the situations to be avoided are specified with respect to features of the perceived
environment.

Obstacle avoidance is representative of the tasks in this category. In this example, the robot must
be kept at a safe distance to any objects with which it might collide. Measuring and maintaining
an appropriate distance requires knowledge of the locations of potential obstacles which are part
of the external state. Another example may be for the robot to slow down or stop moving when
it senses that a human operator is dangerously close to it.

3.1. TAXONOMY OF TASKS 43

3.1.7 Solution properties

The task coordination framework that these definitions are leading up to is not designed for tasks
that do not fit into one of the four categories of the expounded taxonomy. One may however
be tempted to add modifiers, attributes or requirements to eligible tasks. For example, the task
of transitioning from an initial pose to a target stance qualifies as category 1. A solution may
already exist but exhibit the cliché jerky motion often associated with robots. Should this not be
acceptable, one might seek to add an adverb such as gradually or smoothly to the task description,
which may then read “smoothly transition from sitting to standing”. The following explores how
tasks like these may be interpreted and how their solutions can be approached.

The most fundamental question to be answered is whether this is still the same task or if “move
smoothly” is a separate, additional task. Either interpretation is tenable, but taking the latter view
of splitting the task into two would lead to disqualification on the grounds of no longer fitting the
taxonomy: The additional task of moving smoothly can be classified as having intrinsic value,
but neither internal nor external state can capture the notion of smoothness. That is because
smoothness is a quality which cannot be seen from, or ascribed to, a single state which is, after
all, just a snapshot of one moment in time. Many solution qualities, smoothness included, are by
contrast defined over an interval of time. They describe properties of the solution as a whole
rather than an intermediate state that is part of a desired solution.

This last insight, that qualities are properties of the solution, supports the alternative interpretation
that does not require the introduction of an additional task and thus avoids being disqualified. By
shifting the burden of dealing with the desired qualities from the task specification to the solution,
we can retain the original description of the task. We now view the original task as having
multiple solutions that are distinguished by their properties. This is in contrast to the previous
view that there are different tasks with exactly one solution each. In our example there might
be solutions for standing up quickly, gradually, jerkily, etc. and we select or create whichever
solution we desire. The task remains the same.

More abstract solution properties such as completeness and optimality may also be specified.
Completeness is the quality of always being able to find a solution, providing one exists, while
optimality guarantees that the best solution will be found. Such properties pertain to the solution
method or algorithm, not just a single solution produced by it.

Of course, the freedom to specify any desired property does not imply the existence of a solution
that provides it. Some combinations of tasks and solution properties simply cannot (yet) be
solved. However, this is no longer a problem associated with the task specification. It is simply a
sign of the limitations on what can be achieved. Realistic requirements are discussed next.

44 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

3.2 Requirements

Motivations for gaining the ability to perform SMT have already been laid out in the introduction.
The focus now shifts to designing a system with the desired features and properties. Specifically,
this means ensuring that the coordination mechanism developed here is generic and capable
of producing viable controls for a real robot in real-time. For this purpose the following
requirements must be considered in its design and implementation. It should be noted that the
high level of realism required of the solution contributes significantly to the difficulty of its
development. The motivation behind this is to prepare the system for the difficult transition to
working with physical robots, as suggested in the future work section.

3.2.1 Generic Architecture

Having lambasted existing techniques for being limited to solving a fixed set of tasks, the
suggested alternative must deliver on its promise of being generic. The aim is to allow any task
fitting the taxonomy to be coordinated. By abstracting over the specifics of the tasks in question,
they become interchangeable, thus allowing a plug and play style architecture to be implemented.
The controller need not even know which tasks it is solving and is therefore generic by design.
Of course, this precludes the use of task-specific knowledge or equations – at least within the
control mechanism itself.

3.2.2 Hardware Abstraction

It is also useful to abstract over the robot’s hardware. This allows the system to be used with
different types of robots whether limbed, wheeled or otherwise propelled. The difficulty with this
requirement lies in dealing with the different sets of controls and commands applicable to the
large variety of available robots. Many approaches avoid this problem at the cost of reusability.

3.2.3 Realisable Controls

Generated controls and control sequences must be realisable by the robot executing them.
Planning geometric paths is insufficient as they can only be followed by omni-directional vehicles
travelling at low speed. A realistic model of motion must consider a number of constraints.

To begin with, the robot cannot be modelled as a particle. Its heading must be considered and
consequently planned paths must have continuous tangents. Some vehicles have the ability
to turn on the spot when stationary, but coming to a complete stop is often inconvenient or
altogether unacceptable. Most vehicles, including cars, are simply unable to change their heading
without performing a manoeuvre such as a three point turn.

3.2. REQUIREMENTS 45

Contrary to another popular simplification, real vehicles are unable to change speed instan-
taneously. This would require infinite acceleration or deceleration when, in reality, both are
clearly finite. As a corollary of this, paths must have continuous curvature, since a discontinuity
would also require an infinitely fast change in controls. Imagine driving in a figure-eight motion
consisting of two circular pieces of track. At the joining point of the two circles one would have
to instantaneously turn the steering wheel from hard left to hard right or v.v. and a differential
drive robot would have to instantly change its wheel speeds.

Finally the vehicle’s Minimum Turning Circle (MTC), i.e. the radius of the sharpest possible
U-turn, must be considered. The turn radius depends on the vehicle itself as well as on its speed
of travel. When moving at very low speeds, the limiting factor for most wheeled vehicles is
axle length (or the distance between the wheels in case of differential drive with a restriction to
forwards-only motion). As speed increases, so does the turn radius. This dynamically changing
constraint must be considered during path planning.

3.2.4 Real-time Computation

To allow a robot to travel at reasonably high speeds, its controller must produce the next controls
in real-time, i.e. while the robot is moving. The faster the robot travels, the less CPU time is
available for planning a move of a given length. When multiple tasks are involved, the time
interval available for planning each step must be shared among them. As a result, time is scarce
and efficiency all the more critical. This requirement sets a low threshold on the permissible
complexity of algorithms, thereby ruling out a number of possible solutions.

3.2.5 Autonomous Adaptation

The robot must be able to adapt and react to changes in its environment using feedback from its
sensors. Without this ability, the controller would not be sufficiently autonomous causing it to
fail in the same sorts of scenarios as scripts and macros. When possible, the robot should be able
to solve the tasks it is given despite perturbation or changes in the outside world.

3.2.6 Unknown Environments

The robot and its controller are to rely on sensor information alone. While sensors are already
required for adaptation, a map (or model) of the environment is often supplied in addition.
Denying the AI such information makes it harder to find a solution but will ensure it is applicable
in completely unknown terrain. This does not mean the robot is debarred from recording sensor
information or building up its own model, just that it is not given any a priori knowledge.

46 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

3.3 A General Framework for SMT

The first step in constructing a suitable task coordination mechanism is to design a framework
that can provide the features needed to satisfy the above requirements. The components making
up the proposed framework are illustrated below. The diagram gives an overview of all top-level
modules and the relationships between them. A detailed explanation of each component can be
found in an eponymous section below.

Robot Sensor
Update

Abstract State
Representation

Task 1
State Prediction

Mechanism

Task 1
Potential Assessment

Robot Controller

Potential Combination Mechanism

Vehicle Hardware
Interface

Task 2
Potential Assessment

Task 2
State Prediction

Mechanism

State
Change

Raw Sensor Data

Future
Task State

Future
Task State

Task Potentials

Combined Potentials

Selected Controls

C
o

nt
ro

ls
 t

o
 b

e
 E

va
lu

at
ed

C
on

tr
ol

s
 t

o
 b

e
 E

va
lu

at
ed

Control Execution

Next Controller Cycle

Fetch Current
Task State

Figure 3.2: Framework for task-agnostic SMT with reversed flow of control compared to the classic
behaviour-based control loop (any number of tasks can be added, but only two are shown in the interest of
clarity)

3.3. A GENERAL FRAMEWORK FOR SMT 47

Particular emphasis is placed on the requirement of keeping the system generic. The easiest way
to ensure genericity and interchangeability of tasks is to design the components of the system
from an abstract, top-level view. Using a high degree of abstraction prevents any low-level,
task-specific details from seeping into the coordination mechanism itself. It also leads to a
modular design with interchangeable components that can be modified and improved without
having to change unrelated aspects.

Task-specific details deserve attention as well, but will be addressed separately in the upcoming
chapters that deal with each of the selected demonstrator tasks. For now we assume that
conceptual tasks, as one may find described in a problem specification, can be decomposed into
tasks that fit the given task taxonomy.

In line with the second hypothesis, we further assume the existence of (or at least the possibility
of creating) a state prediction and potential assessment mechanism for each taxonomy task.
Access to these two functions provides the sole basis for decision making in a system that is
otherwise completely decoupled from the tasks it is coordinating. Consequently, coordination
success heavily depends on these functions to guide search towards controls that constitute a
suitable compromise between all competing tasks. The potential function, especially, must be
a reliable indicator of how to progress and ultimately solve the task it represents. No other
indicator of success can be made available without breaking the abstraction that enables generic
task coordination.

The chosen architecture is loosely based on the classic behaviour-based control loop, but
also makes some significant modifications. Most notably, the flow of control between some
components has been reversed. Normally, State Change triggers a response in the behaviour
modules, which then submit their preferences concerning a variety of possible actions to a central
action selection unit. Here, the Robot Controller is notified of the state change and initiates
the rating process. Possible actions are generated by the controller and passed through the task
modules for rating. The result is returned back to the controller, which now has the power to
coordinate and guide the search as opposed to taking a passive role and processing only the
information it is provided. In this way, search can be directed towards or concentrated on regions
of control space which are more likely to hold good solutions.

Other ASMs, specifically those reviewed in the Relative Weighting category, could also benefit
from being integrated into the outlined framework.

48 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

3.3.1 State Change

State change occurs continuously as the robot executes the controls it is passed. The controller
works in discrete time steps however, as it requires a certain amount of time to process sensor
information and select controls. A new time step begins when the control system is first initialised
and, from then on, every time new controls are submitted for execution. As can be seen from the
framework diagram in figure 3.2, the start of the next controller cycle is an event that causes two
things to happen.

Firstly, the robot’s sensors will be updated to reflect the new state of the perceived world (see
Robot Sensor Update). Secondly, the action selection mechanism is set in motion to adjust
the robot’s actions in line with the updated sensor information (see Robot Controller). The
framework’s components will be described starting with the train of events caused by the sensor
update and will then return to the action selection mechanism, i.e. the robot controller.

3.3.2 Robot Sensor Update

At the beginning of each time step, a snapshot of all sensor readings is taken. The raw sensor
data is passed to the Abstract State Representation where it is used to build a temporary model
of the environment. The robot relies on this information alone, i.e. it is not provided with a
priori knowledge of any kind. Consequently, the robot must be programmed to cope in unknown
environments as per the requirements.

Satisfying the requirement of being able to adapt to sensor information is the responsibility of
the developed AI, but the provision of said data is a prerequisite for it to function. Since this
project is not concerned with perception related issues, the existence of a sensor for all relevant
state variables is assumed. In reality, it may, for instance, be unrealistic to expect a GPS sensor
to provide localisation with sufficient accuracy without the additional support of odometry. For
the purpose of evaluating the coordination mechanism, the details of how the current state is
determined is not of import however.

3.3.3 Abstract State Representation

The raw sensor data recorded is used to construct an abstract state representation, which is a
model of the perceived world including both internal and external state variables. Depending
on the implementation, the sensor data could simply be collected, but more often it is useful
to process it to some degree. For example, sonar sensors are used to measure the distance to
obstacles, but do not directly indicate the position of the obstacle hit point (where the sonar ray is
reflected by the obstacle). In this case, it can be useful to compute and store the hit point instead

3.3. A GENERAL FRAMEWORK FOR SMT 49

of, or in addition to, the raw distance measurement. Additionally, one may want to occlude gaps
between obstacles that the robot is too large to pass through. Storing metadata to indicate which
gaps should be closed off saves having to repeat potentially costly computations.

Once all raw sensor data has been processed, a classical behaviour-based design would
disseminate that information by pushing it to the task modules, which would in turn initiate
communication with the controller. Here, we return control directly to the controller, merely
saving the data to be queried later. This is why there is no arrow leaving the Abstract State
Representation component. Instead, there is an incoming arrow from the Task State Prediction
Mechanism, which actively retrieves any data it requires.

The state representation is made available to all components of the framework on a read-only
basis. Doing so allows the model to be queried from any number of threads or processes without
causing concurrency issues.

An alternative to such a centralised data repository would be to use a separate model for
every task. Each model would then only comprise the state variables relevant to it. This
follows the more traditional behaviour-based architecture, but was found to be an unnecessary
complication. Specifically, it leads to duplication of information and some derived values having
to be recomputed for every task that is concerned with the same state variable.

3.3.4 Robot Controller

The Robot Controller is the central component of the proposed framework. Its job is to
find and select the controls representing the best realisable compromise for progressing all
tasks simultaneously. It does so by minimising an indicator of conflict that combines the
different individual costs ascribed to candidate controls by each task. The Potential Combination
Mechanism is responsible for computing this overall indicator of quality (or lack thereof).
For now, it suffices to assume the existence of such a mechanism, as its details would only
distract from the description of the controller itself. The following discusses possible search
algorithms and the discretisation of continuous time into time steps. Since the framework can be
implemented in different ways, the discussion takes a top-level view. A specific implementation
of this component can be found in Chapter 7.

3.3.4.1 Search Algorithms

Controls must be produced in every time step, i.e. each cycle of the closed-loop control system.
As already mentioned, a new cycle begins with the submission of new controls to be executed.
Apart from leading to an update of the robot’s sensors and the Abstract State Representation, this

50 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

event also initiates the search for the next controls. In essence, all that is required is an algorithm
for finding controls that score low on conflict, i.e. the combined task potential. Search can be
implemented in different ways due to the modular design of the framework.

When coordinating relatively harmonious or benign tasks, gradient descent over control space
may be a viable option for quickly deciding a suitable action. As the number of tasks and/or
the conflict between them increases, the potential surface will become increasingly rugged
and unamenable to descent. There are numerous ways of addressing this problem. One very
interesting approach would be to try and adapt the “IvP” method proposed in [9], as already
remarked in the literature review.

For the purpose of demonstrating the proposed mechanism, a sampling based approach is
sufficient however. The implemented sampling controller (see 7.2) generates control samples
within the valid region of control space, that contains only realisable actions. Generated controls
are passed to the Task State Prediction Mechanism, thereby initiating a process that produces
their final combined score.

Each sample represents making a single step forwards. The outcome of this move is evaluated
without planning a control sequence that takes the robot all the way to its goal(s). The advantage
of this technique is that evaluation is fast, allowing a sufficient number of alternatives to be
considered in real-time. A possible disadvantage is the short-sightedness of the plans that are
formed. This thesis postulates that a single-step planner is capable of producing satisfactory
solutions despite planning only one step ahead. Chapter 7 investigates the truth of this statement
in order to verify the fourth hypothesis. After evaluating as many samples as possible in the given
time frame, the controller simply selects the controls associated with the least overall conflict.

It should be noted that the requirement for realisable controls is trivially satisfied by only
generating samples that respect the vehicle’s static and dynamic motion constraints. The
controller can only select actions it has sampled and all samples are valid, therefore the selected
controls must also be valid.

3.3.4.2 Synchronisation and Time Steps Length

Running the search algorithm will take a certain amount of time, leading to the question of how
long a time step should be.

Synchronisation
In fact, the first question to be asked is why a time step is even needed. Theoretically, the system
could operate asynchronously, with each task generating its own events that are processed as
soon as the controller is notified of them. This model does not involve temporal alignment of

3.3. A GENERAL FRAMEWORK FOR SMT 51

the evaluation of task preferences and hence requires no discretisation of time. Indeed, such an
event based system would be ideal for single-task operation. It guarantees that no CPU time is
wasted and allows the robot to react to new events immediately.

The simultaneously coordination of multiple tasks requires the preferences of all tasks to be
considered in the selection of new controls. When those preferences are recorded at different
times, a fair comparison is no longer possible. Many tasks are of a time sensitive or volatile
nature, meaning that the validity of their preferences rapidly expires. To maximise the relevance
of a comparison and to strike a fair compromise, decisions must be made based on sensor data
recorded and evaluated at the same time. This is achieved by the use of synchronisation and
discrete time steps.

Time Steps Length
A number of different policies can conceivably be used to decide the length of a time step.

The simplest approach is to wait for the controller to finish its search. This makes for a variable
time step length and has the advantage that search is guaranteed to complete with the set precision.
The problem is that time-critical tasks may require more frequent adjustments to the controls
being applied. If the controller takes too long to complete its computations, such tasks could fail
before the AI even has a chance to react.

To make sure this cannot happen, the time step length can be set to a fixed duration that is
appropriate for the most time sensitive task. Search would then ideally use all available time
to refine its results. When the allotted time expires, the controller selects the best controls
discovered so far. Reactivity is maximised by choosing short time step lengths, while accuracy
increases with duration. An ideal trade-off could be determined by running the same experiment
multiple times with different values. It is, however, to be expected that the ideal value will be
specific to the problem the robot is set. For good all-round performance, one would have to
compare time step lengths across numerous experiments or manually set a time that suits the
most volatile task.

The above policy still uses a fixed cycle length throughout the course of an experiment.
Hypothetically, the length of a time step could be changed dynamically, while the robot is
active. The difficulty here is the lack of a benchmark for comparison. The robot does not know
how well it is doing until it completes all its tasks and compares its performance with previously
completed experiments that used different interval lengths (all other parameters being the same).
Another consideration is the time one would have to invest in computing the ideal cycle duration.
The time it takes to compute that ideal value will be deducted from that available to the actual
controller. This will likely negate any potential benefits and is not seen as a realistic option.

52 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

The second of the above policies is quite clearly the most promising, but none of the techniques
is very conducive to testing. Whether precision is fixed and the time step length is variable or
vice versa, there is a nondeterministic element to the controller. For tests to be reproducible, the
system must be deterministic. To achieve this, a fixed time step length is set and the precision of
the search is adjusted to guarantee its termination within that time. Because the search algorithm
must complete even under worst case conditions, more time must be allowed than is required on
average. Any remaining time goes to waste but, for the purpose of testing, this is a price worth
paying and the reason why this last policy was chosen.

3.3.5 Task State Prediction Mechanism

The provision of a state prediction mechanism is part of the preconditions laid out in the second
hypothesis. In order to reason about a wide range of tasks generically, a two-part abstraction
needs to be created. State prediction is the first part of this. It provides a hardware abstraction
that allows different robots to be treated the same way without the controller even having to
know what type of vehicle or actuator it is controlling. This is achieved by defining a mapping
from controls to the internal or external state change their execution brings about.

Forward kinematics are an example of state prediction for a moving vehicle. Since other tasks
may revolve around different state variables, state prediction was chosen as a more general term
that does not mislead the reader by implying that all tasks must be concerned with the kinematics
equations of a vehicle. Chapter 6, for instance, develops a physics model for predicting forces
acting on a rolling ball.

Candidate controls are passed to each task’s state prediction mechanism as a first step towards
determining how beneficial their execution is likely to be for that task. The mechanism makes
an informed estimate of the future state the robot would assume if the given controls were
executed and passes this on to the next component, which considers the prediction as part of
Task Potential Assessment. Each task only makes a prediction regarding the state variable(s)
it is concerned with. In the example of obstacle avoidance, only the controls that influence the
location of the robot are of interest. State prediction, in this case, involves using the vehicle’s
forward kinematics formulae to determine the end configuration of the transition defined by the
given action. The predicted end configuration can then be used to calculate the distance to the
nearest obstacle – a value this task’s potential depends on.

How exactly state prediction works (and how task potential is assessed) is specific to each
task. Literature on action selection often glosses over the details of individual tasks, but here
a description is necessary as these two processes represent a central part of the theory and

3.3. A GENERAL FRAMEWORK FOR SMT 53

mechanism developed. Since it is not possible to describe state prediction in an abstract way, a
chapter is devoted to each of the three demonstrator tasks used to evaluate the framework and its
homeostatic variant.

For the remainder of this chapter, state prediction is assumed to be provided by a state function S

of the robot’s current state cs and given controls c. These inputs are mapped to a predicted future
state f s as shown.

f s = S(cs,c) (3.1)

The relevant current state information is obtained directly from the Abstract State Representation.

3.3.6 Task Potential Assessment

The Task State Prediction Mechanism provides the first part of the abstraction required for
generic, task-agnostic coordination. The second part of that abstraction is provided by the Task

Potential Assessment unit, which defines a function P for mapping any predicted future state f s

to its associated potential.
potential = P(f s) (3.2)

The term potential is used in the same way as in Khatib’s “Potential Fields” methods [66].
Potential, objective or cost functions (used synonymously) map a given action to the utility a
task can expect to receive upon its execution.

While state-prediction functions abstract over robot hardware, potential functions abstract over
the specifics of the individual tasks being coordinated. Having each task define and evaluate its
own objective value allows the controller to judge the progress of any task based on the output of
this function. In other words, it need not know about, or consider, the factors which contribute to
a task’s satisfaction level.

The composition of these two functions provides a mapping from a current state and a set of
controls directly to the potential rating for a particular task.

potential = (P◦S)(cs,c) = P(S(cs,c)) (3.3)

This mapping allows search to take place in control space, whereas most objective functions are
defined over state space.

54 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

Ways of assessing potential, or rather its homeostatic counterpart (urgency), are discussed in the
task chapters to follow. For now, and in line with the second hypothesis, we assume the existence
of an appropriate function.

3.3.7 Potential Combination Mechanism

As already mentioned in the description of the Robot Controller, the role of this component is to
combine all individual potentials into a single measure of conflict. Suitable compromise controls
can then be found by minimising the conflict with which they are associated.

The framework can be implemented to imitate existing ASMs in the Relative Weighting category.
Khatib’s “Potential Fields” [66] approach could be trivially replicated by computing conflict as
the sum of all contributing potentials. Reproducing Rosenblatt’s “Distributed Architecture for
Mobile Navigation” [101], requires a weighted sum.

A more sophisticated mechanism is called for to overcome the known problems with these
existing methods. The proposed solution, Homeostatic Mortality Computation, is presented
in the following section. Here, we explore generally what properties a conflict rating scheme
should possess to inform and facilitate the selection of the most promising compromise actions.

Firstly, the rating mechanism must not influence decision making unless the presence of
contentions requires it to effect a compromise. When all tasks agree on a desired action, or in
the trivial case where only one task is currently active, the controls corresponding to that action
must be selected without alteration. It is not acceptable for the compromise finding mechanism
to arrive at a needlessly inferior solution due to a distortion in the ranking of candidate actions.
In short, the system must be transparent in the case of agreement.

Secondly, a useful rating cannot hinge on the potential contributed by a particular task. The
coordination mechanism is responsible for resolving contentions between adversarial tasks, but
the presence of a particular task (let alone a synergistic or symbiotic one) cannot be assumed in a
plug and play system. The task-agnostic architecture does not expose knowledge of which other
tasks are being pursued. Consequently, each task’s potential function must be sufficient to solve
the task for which it was constructed when no other tasks are active. The coincidental presence
of cooperative tasks is beneficial, but cannot be essential to successful multi-tasking.

3.3.8 Vehicle Hardware Interface

The vehicle hardware interface has the sole purpose of actioning the controls it is passed by the
Robot Controller. Execution takes the robot to a new state and thereby completes the closed

3.3. A GENERAL FRAMEWORK FOR SMT 55

control loop, which then enters its next iteration to repeat the entire process. When the goal state
is reached, the controller simply stops sending commands, thus terminating the loop.

3.3.9 Computational Complexity

Different implementations of this task coordination framework will have different computational
complexities, depending on the search algorithm used. It is, however, possible to examine how
the number and complexity of individual tasks influences overall runtime.

To do so, we assume that the search algorithm will evaluate n control vectors. For every one of
these, each of k tasks will perform task state prediction and potential assessment. Finally, the
Potential Combination Mechanism is run once per control vector. The runtime of one cycle of
the control loop is then as follows:

runtime = n (ST 1 +PT 1 +ST 2 +PT 2 + ...+ST k +PT k +PotentialCombination) (3.4)

where ST 1 denotes the runtime of state prediction for task number one and PT 1 is the runtime of
the algorithm used to assess its potential.

For worst case analysis, assume that the state prediction and potential assessment mechanisms of
all tasks operate at the speed of the slowest, most complex task.

runtime = n (k (Sworst +Pworst)+PotentialCombination) (3.5)

To further simplify, some assumptions can be made that are likely true for most implementations.
First of all, the Potential Combination Mechanism will typically involve the evaluation of a fairly
simple equation with one term per task, e.g. a weighted sum. The complexity of this is linear in
k and negligible compared to the other computations.

Another fairly safe assumption is that state prediction will be less complex than potential
assessment. The forward kinematics of a vehicle are, for instance, expressed by a set of equations
that can be evaluated in constant time. Potential assessment cannot beat constant time and will
often involve some form of iterative refinement. Given these assumptions apply, complexity can
be expressed using big O notation as follows:

O(n k Pworst) (3.6)

Since complexity is linear in k, the system should scale well with the number of tasks. The

56 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

complexity of potential assessment depends on the individual tasks being coordinated and cannot
really be influenced. It may be possible to use approximate solutions to save time however.
The biggest issue is with the number of control vectors the search algorithm needs to evaluate.
This will depend on the robot’s degrees of freedom, i.e. the dimensionality of control space. A
sampling approach will quickly become intractable, which is why other methods, such as [9],
should be considered in high degree spaces.

Another avenue to improving on runtime is to make use of the ample opportunities for
parallelisation. It is possible to evaluate each control sample in a separate thread without
encountering any concurrency issues. Even within the evaluation of a single sample, one could
use multiple threads to evaluate the potentials of different tasks concurrently.

Finally, there are strategies for reducing the number of samples needed to find a high precision
solution. This could be achieved by biasing sample generation towards areas of control space
that are more likely to contain solutions superior to those already found. For example, one could
first evaluate a small number of widely scattered controls and then focus search in the vicinity of
the best of those samples. Optimality cannot be guaranteed in this way, but an exhaustive search
of a high dimensional space is out of the question anyway.

3.4 Homeostatic Mortality Reduction

This section proposes a homeostatic mechanism for simultaneous multi-tasking that addresses
the shortcomings of existing techniques described in the literature review. Homeostatic Mortality
Reduction is a specific implementation of the above framework. It implements a rating based
approach that attends to all tasks to a varying appropriate degree as justified by their urgencies.
Urgencies are homeostatic indicators, defined on a universal scale, which provides a fair means
of quantifying and comparing the threat posed to each task as a result of taking any permissible
action. To rate a candidate action in terms of its coordination quality, individual urgencies are
combined into a Homeostatic Mortality Index (HMI), which reflects the overall risk of failure
associated with executing that action. The mechanism for assessing and reducing mortality is
detailed in the following by explaining the modifications made to the framework to integrate the
desired features.

Specifically, Task Potential Assessment has been replaced by Task Urgency Assessment and
the role of the Potential Combination Mechanism is now performed by the Homeostatic
Mortality Computation unit. The homeostatic incarnation of the framework is shown below,
with modifications highlighted in red. All other components remain as described in the previous
section. The roles of changed components are explained in the following. This section culminates

3.4. HOMEOSTATIC MORTALITY REDUCTION 57

with an Example of Homeostatic Task Coordination to illustrate a simple application of the
introduced concepts.

Robot Sensor
Update

Abstract State
Representation

Task 1
State Prediction

Mechanism

Task 1
Urgency Assessment

Robot Controller

Homeostatic Mortality Computation

Vehicle Hardware
Interface

Task 2
Urgency Assessment

Task 2
State Prediction

Mechanism

State
Change

Raw Sensor Data

Future
Task State

Future
Task State

Task Urgencies

HMI

Selected Controls

C
o

nt
ro

ls
 t

o
 b

e
 E

va
lu

at
ed

C
on

tr
ol

s
 t

o
 b

e
 E

va
lu

at
ed

Control Execution

Next Controller Cycle

Fetch Current
Task State

Figure 3.3: Homeostatic implementation of the task coordination framework for simultaneous multi-
tasking

3.4.1 Task Urgency Assessment

Each task has its own urgency assessment unit for mapping the state variables it is passed to an
urgency value indicative of that state’s proximity to task failure. The following explains what
urgency is, defines the range of values it can take on and discusses different ways of assessing it.

58 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

3.4.1.1 What is Urgency?

Urgency can be thought of as the homeostatic counterpart to a task’s potential, cost or objective
value. As per the interpretation of homeostasis as the attention to threat principle, urgency
should reflect the threat a task is under. In the biological world, from which this concept is taken,
threat quite literally pertains to the danger of an organism dying. Since the robot is not alive
to begin with, the closest equivalent to organ failure is task failure. On the opposite end of the
spectrum is perfect harmony. Biologically this means that all organs can perform their intended
purposes and are able to keep the organism’s vital signs in check. Equivalently, robot tasks
are also stable and in harmony when they can pursue their intended purposes. These extremes
delimit the range of homeostatic urgency and define a universal scale on which all tasks can be
compared.

The challenge is now to find a strategy for projecting task-specific indicators of success (or
failure) onto the urgency scale. As long as all tasks rate urgency on the same scale, the range
of the urgency mapping can be chosen freely. To make matters easier, the interval [0,1] can be
chosen without loss of generality and will be used throughout this thesis. Zero indicates the
absence of any threat to the workings of a task, while a value of one represents failure.

The definition of the urgency mapping is, of course, task-specific and therefore a matter to
be discussed in the task chapters. General strategies for obtaining urgencies may already be
explored however.

3.4.1.2 Direct Urgency Assessment

Broadly speaking, there are two approaches to assessing urgency. The mapping from a state to
urgency can be provided by a dedicated mechanism developed from first principles or defined in
terms of existing metrics, such as task potential.

There are no restrictions on how to implement direct urgency assessment. One way of going
about creating the required mapping is to train a neural network to classify task states given to
it as inputs. This would create a direct association between a state and the threat it poses to a
certain task. A separate neural network would be required for each task, but would only have to
be trained once. The problem with using machine learning at the coordination level, whereby
retraining is required every time the number of combination of tasks changes, is not encountered.
This is because, at the task level, the system is only aware of individual tasks. Other tasks may as
well not exist and could not be considered even if one wanted to. The coordination level will be
handled by the proposed homeostatic mechanism, no matter how the task layer is implemented.

Other techniques may be based on probabilities, heuristics or other types of learning. While all

3.4. HOMEOSTATIC MORTALITY REDUCTION 59

of these approaches could provide effective solutions, they would have to be created from first
principles.

3.4.1.3 Urgency From Potential

To take advantage of existing solutions, this thesis explores ways in which urgency can be defined
in terms of task potential. Functions for assessing potential have already been developed for
many popular robotics tasks. Being able to reuse them could save a lot of time and effort.

Whichever path is taken, the computational complexity of the mechanism for urgency assessment
must be considered, as this is a likely bottleneck. Real-time control necessitates the evaluation
of a large number of samples in a very short space of time. This is a further incentive to use
potentials, which are often based on heuristics that can be evaluated in much less time than it
takes to find a precise solutions.

A Linear Mapping from Potential to Urgency
The simplest scheme for converting potential to urgency is to apply a scaling or linear mapping.
However, the range of a task’s objective function cannot be assumed to be bounded. In particular,
the maximum value may be unknown or infinite. A direct mapping onto the [0,1] range is then
either difficult or impossible, depending on the nature of the potential function.

Urgency as a Distance to the Ideal Case
Another way of defining urgency is as a measure of disparity between a candidate control vector
and a task’s ideal controls. The ideal controls are found through minimisation of the task’s
objective function using any appropriate search algorithm together with the Task State Prediction
Mechanism. Since these controls represent the best possible action for that task, they are, by
definition, associated with zero urgency. The worst possible controls for the current time step can
then be defined as those furthest away from the ideal. Control space is bounded, i.e. restricted to
the controls that are valid at any given time. This means the maximum distance the candidate
controls can be away from the ideal controls is known and finite. The urgency associated with a
given control vector is then simply defined as its distance from the ideal controls expressed as a
percentage of that maximum distance.

Unfortunately, this approach suffers from the same drawbacks that were found with ASMs in the
Preference Interpolation category. Discarding all but the ideal solution means that information is
irretrievably lost, which can result in poor solutions or even a compromise that satisfies none of
the tasks. Imagine, for instance, that an obstacle can be passed by going either way around it.
Going right may be preferable to going left, so the ideal control vector represents a right turn.
The alternative left turn is only a slightly inferior solution but, due to being on the opposite side

60 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

in control space, it is associated with abject failure. This inability to consider alternatives makes
task coordination and compromise finding almost impossible. When, as in this example, one task
only has a slight preference, another task that has a clear preference should be able to break the
near tie in its favour. Doing so is impossible in a scheme where tasks fixate on a very particular
solution without good reason.

Urgency as a Distance to the Worst Case
While the described approach does not lead to the desired results, the idea of defining a distance
between best and worst cases is not bad in and of itself. The only problem lies in the loss
of information resulting from fixing the ideal to a specific control vector. As it turns out,
this problem does not occur when instead fixing the worst case and defining it in terms of
the maximum value of the task’s objective function within the valid region of control space.
Returning to the previous example, let us assume the worst action is associated with a cost of
10 units. Going right costs 1 unit and going left 2 units. The right turn is still preferred as it
is furthest away from the worst case cost of 10. More importantly though, the left turn is now
accurately represented as being almost as good.

Two problems remain concerning the range of urgency values. Firstly, the lower end of the
urgency spectrum is hardly used because only controls associated with zero cost also yield zero
urgency. Typically, even the best available action incurs some cost, however, and will have a
non-zero urgency although, by definition, it should be zero. The second problem is that the upper
end of the range is always used because the worst case is defined using a realisable control vector.
Samples in the vicinity of this worst case will be associated with very high potential although
they do not necessarily represent failure – even if they are among the worst actions possible at
that moment in time.

Both problems are solved by the following formula and using a different definition of the worst
case.

urgency =
sampleCost− idealCost
worstCost− idealCost

(3.7)

By subtracting the ideal (i.e. lowest) cost from that of each sample, the range of values is
translated back to zero, meaning that the best sample will have zero urgency. The same is done
with the worst case potential in the denominator to ensure the size of the interval between ideal
and worst cases does not change. Finally, the definition of the worst case is changed from the cost
of the worst possible sample in the current time step to the worst outcome that can reasonably be
expected in the near future. This new definition means that only controls that really do pose a
lethal threat will be assigned maximum urgency.

3.4. HOMEOSTATIC MORTALITY REDUCTION 61

Depending on the task, the ideal and worst case costs may be defined very differently. A
time consuming search for these values is luckily not always required: The ideal cost can be
determined by evaluating the task’s objective function for the robot’s current state, provided the
objective function is admissible, i.e. never an overestimate. Any samples must then have a cost
that is greater than or equal to that of the ideal. The worst case is often more difficult to find, but
this issue will be addressed for each task separately in the following task chapters.

3.4.2 Homeostatic Mortality Computation

Once all tasks have computed their urgency score for the given controls, the results are passed to
the Homeostatic Mortality Computation unit. The purpose of this component is to project the
whole set of individual urgency values onto a single point in the Homeostatic Mortality Index
(HMI). Using this single value, different controls can be compared in terms of the overall risk
taken on by executing them. The controls associated with the lowest HMI represent the safest
option and should be selected as the most viable compromise.

As previously mentioned, this component replaces the Potential Combination Mechanism. Just
like its counterpart, it combines individual ratings into one overall rating. An analogue step
is performed in all ASMs in the Relative Weighting category. The difference is that, in those
methods, the final rating is nothing other than the weighted sum of individual ratings. Some
drawbacks of this approach have already been pointed out, but will be further illustrated as part
of the explanation of the more sophisticated and biologically accurate mechanism developed
here. The following explores different ways of computing the HMI from an array of urgencies.

3.4.2.1 Simple Addition

To begin with, it is useful to understand the problem with simple addition. Implementing such a
utilitarian scheme would indeed lead to least overall urgency and HMI rating. Ironically though,
this comes at the cost of potential failure. Pursuing the greater good can mean that individual
tasks are overruled and allowed to fail if the momentary benefit to other tasks is sufficiently high.
Consider an example with three tasks and two available actions that have the following urgencies
and HMI sums:

UrgencyArray(action1) = [0.8,0.8,0.8] => HMI(summed) = 2.4 (3.8)

UrgencyArray(action2) = [0.6,0.6,1.0] => HMI(summed) = 2.2 (3.9)

The second action will be selected on the merit of its lower HMI, thus accepting failure of one of

62 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

the tasks. If enough tasks favour an action that causes a lone task to fail, the action that serves
the majority wins out and the individual task’s needs are neglected.

3.4.2.2 Least Squares

Another favourite is the least squares method. In that model, all urgencies are squared before
summation, but the problem persists as can be seen using the same example:

UrgencyArray(action1) = [0.8,0.8,0.8] => HMI(squared) = 1.92 (3.10)

UrgencyArray(action2) = [0.6,0.6,1.0] => HMI(squared) = 1.72 (3.11)

A faster growing polynomial may solve the problem temporarily, but more tasks could be added
causing it to re-emerge.

3.4.2.3 Exponential Functions

Ultimately, what is needed is a way of mimicking the prioritisation scheme exhibited by all living
beings. The survival instinct leads to willingness to take on extraordinary risks in order to keep
any vital sign from failing. For example, a gazelle will risk drinking from crocodile infested
waters before dying of thirst. In other words, survival may require accepting overall degradation
of circumstances in the interest of preventing failure in a single aspect.

To represent the willingness to do anything to keep a task from failing, an exponential function
is proposed for mapping urgency values in [0,1] onto a mortality scale in [0,∞). Urgency and
mortality are essentially the same concept, except that mortality includes the idea of a survival
instinct. Any monotonically increasing and continuously differentiable function with the required
domain and range is a possible candidate for providing this mapping. What is best is likely to
depend on the specific implementation of the robot controller. The following formula (in which
u represents urgency) is suggested, but is by no means the only option.

mortality(u) =
e

1
1−u

1−u
− e (3.12)

This function, as well as some of the alternatives that were considered, is plotted in the graph
below.

3.4. HOMEOSTATIC MORTALITY REDUCTION 63

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

u

m
or

ta
lit

y(
u)

u
1−u

e
−1
u

1−u

e
1

1−u
1−u − e

Figure 3.4: Comparison of candidate functions for homeostatic mortality in their [0, 1] domain. All
functions tend to infinity as urgency tends to 1. This cannot be displayed without using a very large scale
for the vertical axis, which compromises the readability of the graph. For this reason, the displayed range
is limited to a value of just over 200.

The blue and green plots are deemed inferior to the red, as they too closely resemble step
functions. A gradual transition is required to properly balance the needs of different tasks and
progress them simultaneously. With an abrupt jump in mortality, the system would effectively
degrade to a task switching behaviour: As long as a task is not about to fail, it is ignored due
to its low score. Then, at the brink of failure, the task suddenly demands the robot’s full and
exclusive attention.

3.4.2.4 Equation for the HMI

Only when urgencies have been converted to mortality, can they finally be summed to yield the
HMI. The number of tasks being coordinated is denoted n, and ui is the urgency of the i-th task.

HMI =
n−1

∑
i=0

mortality(ui) =
n−1

∑
i=0

e
1

1−ui

1−ui
− e (3.13)

Of course, there is an HMI for each sample control vector c, the urgency of which also depends
on the current state cs. To express this dependency explicitly, the equation for the HMI can be
written as:

HMI(cs,c) =
n−1

∑
i=0

mortality(ui(cs,c)) =
n−1

∑
i=0

e
1

1−ui(cs,c)

1−ui(cs,c)
− e (3.14)

64 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

Once the HMI has been calculated for a given control vector, the result is returned to the
Robot Controller, which can now make a fair comparison between all candidate actions.
When the controller is satisfied that it has gathered enough information to make an informed
recommendation for the controls to be executed next, it passes those controls to the hardware
interface. If time runs out before search has come to a natural end, the controls with lowest HMI
discovered so far are executed.

3.4.3 Example of Homeostatic Task Coordination

An evaluation of the system described here can be found in Chapter 7. The tasks used for
demonstration and proof of concept are developed throughout the next three chapters. Before
considering this full scale application, a more compact toy example is presented here. Its purpose
is to aid the reader in forming a complete picture of the proposed system and all its components,
especially the homeostatic mechanism at its core.

Imagine a therapeutic drug monitoring scenario in which a robot regulates the level of medication
in a patient’s blood. The correct dosage must be administered and maintained by use of a single
linear actuator which depresses the plunger of a syringe. Feedback is provided by a sensor
measuring the concentration of the injected solution in the bloodstream. The following describes
how this problem can be modelled using two tasks compatible with the proposed framework.
While the solution is somewhat over-engineered, this model serves well for illustration purposes.

The first task used in this example is concerned with curing the patient by administering the
drug. This is a category 2 task as it has intrinsic value (healing the patient) and concerns a
state variable external to the robot (medication level in the blood). Let us further assume that a
minimum concentration of the drug is required for it to save the patient and that it becomes more
and more effective as the dosage increases. To reflect this, the task’s urgency must decrease with
increasing concentration.

With only the described task in control, the robot would simply inject the entire content of
the syringe as this is the fastest way to combat the illness. Doing so may, however, lead to an
overdose, the prevention of which requires a second task. Having arisen as a result of the first
task, the second task has extrinsic value and qualifies as category 4, since it also involves the
same external state variable. Its objective is to keep drug concentration as low as possible since
that is the best way of ensuring there will be no undesired side effects. To reflect this, the task’s
urgency must decrease with decreasing concentration.

These two tasks are evidently in conflict as they both seek to drive the same external state
variable in opposite directions. A compromise must be struck between the extremes of pushing

3.4. HOMEOSTATIC MORTALITY REDUCTION 65

the plunger all the way down and not pressing it at all. In order to determine how much to
inject, the mortality reducing controller searches control space for the action with the lowest
HMI score. The action selected in this way can be thought of as having the greatest net benefit
after considering the different urgencies of both tasks. To come as close as possible to finding
the ideal dosage, a reasonable portion of control space would normally be searched. However,
in the interest of clarity, this example will only compare three candidate control samples. The
following shows how the proposed mechanism evaluates each sample and finally selects the
controls to be applied.

The evaluation of a control sample begins with its generation by the controller, which may or
may not be able to make an informed guess as to which part of control space to focus its search
on. Let us assume that the three control samples to be compared are described by depressing by
plunger by zero, one or two millimetres respectively.

The first step in evaluating each of these samples is to make a prediction as to how they will affect
the state variable in question. Here, state prediction involves mapping the distance the syringe is
depressed (in millimetres) to the medication concentration in the patient’s bloodstream (typically
measured in moles per litre). This may be achieved in a number of steps. First, the plunger
distance is associated with the volume of liquid injected and then that volume is converted to the
amount of substance in moles. To get the increase in molar concentration, this amount must be
divided by the volume of blood in litres (which may be known or estimated using the patient’s
size or weight). In the last step, the increase in concentration is added to the current concentration
measured in the blood to yield a new predicted concentration level. These steps are shown in the
table below which assumes that 2 ml of substance are injected for every millimetre the robot’s
actuator is extended. Each millilitre of liquid is presumed to contain 0.05 moles of substance
and the fictional patient’s blood volume is taken to be 5 litres.

Actuator
distance

Volume
injected

Amount of
substance

Concentration
increase

Current
concentration

Predicted
concentration

0 mm 0 ml 0 mol 0 mol/L 0.1 mol/L 0.1 mol/L
1 mm 2 ml 0.1 mol 0.02 mol/L 0.1 mol/L 0.12 mol/L
2 mm 4 ml 0.2 mol 0.04 mol/L 0.1 mol/L 0.14 mol/L

Table 3.2: An example of task state prediction for the described therapeutic drug monitoring scenario
using arbitrary conversion factors (1 mm→ 2 ml, 1 ml→ 0.05 mol, blood volume: 5L)

The predicted concentration is then passed to each task’s urgency assessment mechanism, which
uses task-specific knowledge to rate the threat posed by entering the given state. Depending
on the task, rating may be a very complex process, but, thanks to a layer of abstraction, the

66 CHAPTER 3. HOMEOSTATIC TASK COORDINATION

coordination system need not know any of its details. In this case, a simple solution would be for
a doctor to provide a lookup table showing the dangers associated with too low a dose for the
first task as well as the risk of an overdose for the second. The relevant extract of such a table
could look like this:

Sample concentration u1 (urgency of task 1) u2 (urgency of task 2)
0.1 mol/L 0.8 0.1

0.12 mol/L 0.6 0.5
0.14 mol/L 0.4 0.7

Table 3.3: An urgency lookup table is the simplest way of mapping task states to an indicator of the threat
they represent to the success of the associated task

Since the tasks are in conflict, the minima in their urgencies do not coincide. To find a compromise
both urgencies are combined into a single HMI value that can be minimised. The previously
stated mortality formula is used for this purpose.

HMI =
n−1

∑
i=0

mortality(ui) =
n−1

∑
i=0

e
1

1−ui

1−ui
− e (3.15)

All in all, there are now three mappings that form a transitive relation between controls and their
HMI value. First controls are mapped to a predicted task state. That state is mapped to a set of
urgencies which, in turn, are used to compute the HMI. The following table shows the result of
applying these mappings to find and select the most suitable compromise action from amongst
the candidate controls.

Actuator distance u1 u2 HMI (u1,u2)
0 mm 0.8 0.1 740
1 mm 0.6 0.5 40
2 mm 0.4 0.7 97

Table 3.4: Control samples with associated task urgencies and overall HMI rating

The plunger of the syringe will be pressed down by 1 millimetre in the next time step as this
action is associated with the lowest HMI and hence represents the safest way of avoiding failure
in either task. A balance is struck between the two competing tasks by selecting a medium dose.

4CHAPTER FOUR

GOAL LOCATION TASK

This chapter is the first of three task chapters. Each takes the reader through the definition of and
solution to one of the demonstrator tasks used in the evaluation of the proposed coordination
system. Aside from this practical use, the main purpose of these chapters is to show that a diverse
range of meaningful tasks fit into the suggested task taxonomy and can fulfil the requirements
of the task coordination framework. For improved readability all task chapters follow the same
layout.

In this case, the first of the six sections, the task specification, introduces and closer defines the
task of travelling between given initial and target configurations. Task-specific objectives are
listed, followed by the classification of the goal location task as category one of the taxonomy.
An overview of existing approaches to this well-studied problem is provided as part of the
background, which also points out some of the difficulties relating to the complexity of cutting
edge techniques. The section on task state prediction discusses the use of forward kinematics
with reference to the appropriate literature for a differential drive robot, the vehicle type used
throughout this project. Urgency heuristics required for coordination by the homeostatic control
mechanism are derived in the eponymous section. A sequence of arcs is used to construct
a potential function adhering to the requirements laid out in the previous chapter, while also
guiding the robot along a smooth, low strain path to its destination. Experiments show successful
generation of goal connecting paths for a variety of problems in free space. Despite favouring
low execution time over precision, the O(1) solution can be seen to produce visibly smooth paths.
The final section briefly summarises the key points of this chapter and evaluates the presented
solution to the goal location task in the context of task coordination.

67

68 CHAPTER 4. GOAL LOCATION TASK

4.1 Task Specification

4.1.1 Task Description

The goal location task is concerned with finding and executing a path leading from the robot’s
start configuration to a given destination. Variations on this task are distinguished by their
definition of the robot’s configuration and the path qualities they value.

Here, we consider travel in the 2D plane which means start and goal configurations are specified
in terms of (x,y) points. This fully defines the state of an omnidirectional vehicle, but most
vehicles also have an orientation which may be specified. In the latter case, the start configuration
will be expressed as (x,y,φ), where φ denotes the heading. The goal configuration may or may
not specify a target direction.

Path qualities further narrow down the type of solution desired. Most commonly, the shortest
path is sought but other times the fastest or most economical route is preferred.

The following develops a solution that aims to produce smooth paths from an (x,y,φ) start
configuration to a goal specified with or without a heading. So as not to introduce any unwanted
dependencies between the tasks to be coordinated, the task assumes free space travel. Obstacle
navigation is a separate task, which is the subject of the next chapter.

4.1.2 Objectives

First and foremost, the goal location task is designed to act as a demonstrator for task coordination.
To qualify as such, the mechanism developed here must not prevent any requirements of the
overall system being met. The need for providing a real-time solution capable of generating
realisable paths is thus inherited.

Beyond constructing just any goal connecting path, the aim is to design a mechanism for
generating smooth paths. The motivation for doing so lies in the fact that undulations, kinks and
discontinuities make it hard for a vehicle to physically follow the chosen route. Especially when
it comes to travelling at speed, smooth paths are highly beneficial as the robot need not slow
down as much to manage sharp turns. It is also hoped that gradual changes in the direction of
travel will aid in coordination due to affording other tasks more time to react to a commencing
change. In terms of human-robot interaction, smooth paths are also safer as the robot’s motion
can more easily be anticipated and unwanted contact avoided.

Being able to define such a classical robotics problem in terms of the proposed task taxonomy
lends credibility to the first hypothesis. The necessary abstraction for supporting task-agnostic

4.1. TASK SPECIFICATION 69

coordination must be provided by adhering to the interface laid out as part of the second
hypothesis.

4.1.3 Task Model

To elicit the desired behaviour from the robot, its controller must be guided by a suitable urgency
heuristic. Encouraging motion towards the goal can be as simple as defining a cost function in
terms of the remaining Euclidean distance to the goal configuration, but this is not sufficient here.
Apart from the fact that such an approach yields the shortest path, which is typically not very
smooth, a distance based heuristic cannot always be reduced. Consider the case where the robot
is facing away from a goal located some distance behind it. If reversing is out of the question, as
is assumed, the path must circle round to reach the destination. All forwards moves are however
discouraged by the heuristic since the remaining straight line distance to the goal must first be
increased before it can be decreased.

To avoid this problem and also generate smooth paths, we instead choose strain energy as the
homeostatic variable. Strain is a measure of how much a path bends, meaning that its inverse can
be used to define the property of smoothness. The following integral expresses strain energy (E)
in terms of curvature κ and path length s [53, p. 455]:

E =
∫

κ
2ds (4.1)

The curvature of an arc is simply the reciprocal of its radius:

κ =
1
R

(4.2)

For a general curve in the XY-plane described explicitly by the function y = f (x), curvature is
expressed as:

κ =
y′′

[1+(y′)2]
3
2

(4.3)

where primes indicate derivatives with respect to x.

Putting these together allows the strain of a path to be written as:

E =
∫

(y′′)2

[1+(y′)2]
5
2

(4.4)

When the equation of the path is unknown, its strain can be approximated using a sequence of

70 CHAPTER 4. GOAL LOCATION TASK

arcs. These arcs are small segments of the osculating circles that best approximate the curve
within a small interval. The centre points of these circles are determined by the intersection of
two normals to the curve at the start and end of the interval. Angular extent is measured as the
angle between those normals and their length is the arc’s radius. With the radius (R) known, the
strain of each arc can simply be written as:

E =
1

R2 s = κ
2s (4.5)

The strain of the whole n-arc path is approximated by the sum:

E =
n−1

∑
i=0

κ
2
i si (4.6)

If the vehicle moves in arcs, this approximation will in fact produce the exact answer.

The challenge is now to find a goal connecting path with as little strain as possible. Although the
robot cannot follow this path directly as this would not allow for compromise, its strain is used
to indicate how well-suited a given action is to progressing the goal location task.

4.1.4 Task Classification

Attaining the target configuration has a purpose in and of itself. Since no external motivator is
required, the goal location task can be seen to have intrinsic value.

With obstacle avoidance being treated as a separate task, external state is of no concern. Only
the robot’s own configuration, i.e. its internal state, is of interest during free space travel.

Together, this places the goal location task in the first category of the task taxonomy. Smoothness
is a solution property cultivated by a task model that defines urgency in terms of strain.

4.2 Background

Autonomous navigation is a core functionality all mobile robots must provide and is correspond-
ingly well understood. In the early days, mobile agents were predominantly modelled as points
without kinematic restrictions and tended to search for shortest paths. Meanwhile smooth paths
have garnered a lot of attention, as they can be more easily realised by real robots. Many of the
techniques reviewed here were originally developed as mathematical models before being used
in computer graphics and computer-aided design [53]. Application to robotics is more recent
still. The following outlines different approaches to generating smooth paths.

4.2. BACKGROUND 71

One of the earlier contributions was made by Dubins [34] in 1957 and published in the American
Journal of Mathematics. This very influential paper describes the construction of a minimum
length path between two points with given headings. The path is composed of arcs and straight
lines that are joined together. Due to its simplicity and low computational complexity, this
solution is still used in robotics today (e.g.[82][50]). A drawback is that the path cannot
be executed by most vehicles when travelling at speed. This is because of the curvature
discontinuities at the join points between circular and linear sections of the curve. Tangents
are continuous, but this is not sufficient for vehicles that need to transition gradually from one
curvature to another. A bigger problem in the context of task coordination is, however, the fact
that the shortest path is achieved by selecting the radius of the circular arcs to be that of the
vehicle’s MTC. This means the whole path may become invalid if, due to compromise, a wider
curve is chosen leaving the remaining path to turn more than the vehicle is able. Finally, the
method is designed to optimise path length rather than reduce strain.

Clothoids, also known as Euler or Cornu spirals, are characterised by a linear relationship between
path length and curvature. By virtue of this, they are naturally continuous in curvature and have
been explored as an avenue for providing realisable paths [79]. Although they do not guarantee
least strain energy [53], clothoids can be used to achieve a good degree of smoothness. In [45]
complex paths are composed of multiple clothoid sections, whereas [67] makes a more serious
attempt as prioritising smoothness over path length reduction. Due to the close relationship
between the Cornu spiral and the Fresnel integrals (the former is the result of a parametric plot of
the latter), a lot of computation revolves around them. The difficulty of computing these integrals
along with the need to set global waypoints detracts somewhat from their use in real-time systems
[97].

The Bernstein polynomial functions used in Bézier Curves are much more easily evaluated [24].
The number of control points determine the degree of the curve and with that also its shape.
Precision increases with increasing degree, but so does complexity. Placement of the control
points to produce smooth curves is an issue addressed in [65].

Splines, which are piecewise polynomials, do a good job of interpolating points and can also
provide smooth paths [94] with curvature continuity [114]. Variations on splines and other
interpolation techniques such as NURBS [89] are concisely summarised in [97].

Finally, there are optimisation methods for producing not only low but least strain paths
[133][81]. However, these involve deeper or more extensive search and are not suited to real-time
computation, especially for robots travelling at high speeds. Both contributions cited here use
Hermite’s interpolation method and are geared towards computer aided geometric design.

72 CHAPTER 4. GOAL LOCATION TASK

4.3 Task State Prediction

For the controller to evaluate how much progress a candidate action makes towards the robot’s
destination, it must be possible to predict where that action will lead. This is known as the
forward kinematics problem [35, p. 29], sometimes also referred to as odometry in the context of
autonomous vehicles [112, p. 737]. The equations of motion are of course different for each type
of vehicle, but can easily be found for most common designs. This project uses a differential drive
robot for which the appropriate equations are derived in [35, p. 41]. Equations for synchronous
drive, tricycles, and cars can be found in the same source. Hence, the framework’s requirement
for a state prediction mechanism is easily satisfied.

4.4 Urgency Heuristics

Unless otherwise indicated, the methods reviewed in the background section are considered to be
fairly computationally efficient. Nonetheless, the search space is multi-dimensional with several
control points, way points or other parameters having to be found. Essentially, what is meant
by “fast” in the context of robotics, is the ability to update the path to the goal with sufficient
frequency – typically once every cycle of the control loop. Real-time control is achieved because
the generated paths are of high quality with properties that allow them to be followed by the
robot with little further processing. In other words, we can afford to run these algorithms because
they need only be run once in each time step.

Finding one good path and sticking to it can hardly be described as a recipe for compromise,
however. As already established, task coordination requires several alternatives to be rated and
compared in each control cycle. Evaluating all candidate actions with such accuracy as provided
by cutting-edge methods is unlikely to be feasible. The same problem has been encountered
in the areas of computer-aided design and industrial engineering, for example by Bertolazzi
and Marco [13], who advocate a more drastic trade-off between smoothness and complexity.
Specifically, biarcs (two arcs joined with continuous tangents) are said to be suitable for real-time
applications. Biarcs were first used in computer-aided geometric design by Bolton in 1975 [15],
having already been used in shipbuilding five years prior to that [60]. In robotics, the virtues of
quick two arc approximations seem to be less appreciated as of yet with a recent contribution to
collision avoidance [129] being one of few uses.

When connecting two (x,y,φ) “knots”, i.e. start and end configurations, there is only one degree
of freedom left [13]. This section discusses two ways of finding low strain paths among the
family of interpolating biarcs created by varying the one free parameter. The first method
performs a linear search for the merge point at which the biarc’s two component arcs are joined.

4.4. URGENCY HEURISTICS 73

In a second version, the turn distribution of the two arcs is set to mimic that of a clothoidal path,
thereby eliminating the need for search altogether.

The section concludes with a procedure for converting the strain of the goal connecting biarc
path to a suitable urgency value.

4.4.1 Biarc Strain Minimisation

As previously pointed out, it is insufficient to construct a geometric path for the robot to follow.
Most vehicles are restricted in their freedom to move and at high speeds even the most agile
robots succumb to the laws of physics. Having reinforced this point, we proceed to do just that:
Construct a geometric path. However, the robot will not be required to follow it. Instead, the
geometric construction is used to calculate the strain of the remaining journey from the robot’s
current configuration (which may be imaginary) to its destination. An AI controller then selects
viable controls which minimise total strain to the best of the vehicle’s abilities. Strain is thus
used to guide the robot along a path that is as similar as possible to the low strain geometric path.

Here, a goal connecting path is constructed using only two arcs. While this will rarely yield the
optimal least strain solution, the method is well-suited to reactive, real-time control, for which it
was conceived. The path has continuous tangents, but not continuous curvature. Despite this, it
provides a close enough approximation for present purposes.

4.4.1.1 Known Values

A navigation problem is defined by only two given configurations, each of which consists of a
position on the (x, y) plane together with an angle that indicates the direction in which the robot
is facing. The first is the robot’s start (or current) configuration and the second is a known goal
configuration. Start and goal can be connected by a straight line, the length of which is easily
computed. Unless the robot is already facing in the direction of its destination and the target
heading is also the same, the straight line is not a valid solution. A single arc may be used to
transition between the start and goal orientations, yet cannot simultaneously achieve the goal
position in all but very simple cases. The method described here merges two arcs to do what one
alone cannot.

4.4.1.2 Single Arc Connection

The first step in constructing the biarc is to connect start and goal with a single arc that goes
through the required total turn. Of course, this arc is not a solution in itself, but it provides a
geometric framework for merging the two arcs that form the final path. As can be seen in the

74 CHAPTER 4. GOAL LOCATION TASK

diagram below, the headings at the start and goal configurations are at angles α and β to the
straight line connecting them. This line will also be the chord of the single arc, which is why it is
labelled chord0. In total, the path must go through a turn of α +β to reach the desired heading.
The single, symmetric arc will generate the required total turn, but inevitably has the same angle
at either end. This angle is the average angle θ = α+β

2 which results in the tangents shown as
dotted blue lines that clearly do not align with the desired headings.

chordchord00
Start Goal

Figure 4.1: A single arc connecting start and goal configurations provides a frame of reference for biarc
construction. Headings are shown as black arrows with angles of α and β to the chord. The orientation of
the arc’s tangents at the start and goal configurations is given by θ , the average of α and β .

4.4.1.3 Merge Point

To satisfy both end angle constraints, the arc is now split into two. Key in splitting the arc
is making sure that the first of the two new arcs leaves a problem that can be solved by the
second arc. That means the second half of the problem must have equal tangent angles at either
end and the tangent at the goal must be in line with the β angle. If this were not the case, we
would again be faced with an asymmetric problem that cannot be solved using a single arc, thus
failing to reduce the initial problem. The trick is to pick the merge point MP, at which the two
individual arcs are joined, on the single arc. Why this works will become apparent as the method
is developed.

4.4. URGENCY HEURISTICS 75

chordchord00

chordchord11 chordchord22

StartStart GoalGoal

CC00

MPMP

Figure 4.2: Construction of the merge point with one remaining degree of freedom to allow different
biarc solutions to be specified by moving the merge point along the single arc

The location of the MP can be varied to obtain different two arc solutions. Its position along
the single arc is determined by the angle 6 Start C0 MP where C0 is the single arc’s centre of
curvature. Let 6 Start C0 MP = 2 λ1. This is convenient because then λ1 is the angle between
the chord of the first arc (from Start to MP) and the blue tangent lines at those points. Proceed
the same way for the second arc from MP to Goal, noting that λ2 is determined by λ1 because
the single arc goes through a total turn of 2 θ .

2 λ1 +2 λ2 = 2 θ = α +β ⇔ λ2 =
α +β

2
−λ1 (4.7)

4.4.1.4 Biarc Fitting

Once the merge point has been set, the arcs on either side can be fitted to match the headings at
the start and goal configurations. To do so, we add an angle δ to the chord angle λ1 of the first
arc and subtract the same amount from λ2. This way the total turn remains unchanged, while its
distribution does change. If δ = 0, the arcs lie exactly on top of the single arc, but to fit them
such that their tangents align with the headings at Start and Goal, we let δ = α−θ .

δ = α−θ = α− α +β

2
=

α−β

2
(4.8)

76 CHAPTER 4. GOAL LOCATION TASK

The first arc then has an angle φ1 = λ1 + δ between chord1 and heading α . The second arc
aligns with β using φ2 = λ2−δ . As can be seen from the final construction shown below, the
symmetry of the rotation by δ at the merge point ensures that the two arcs have continuous
tangents. Furthermore, the total turn is preserved and the remaining turn after the first arc is
equally distributed amongst the end angles of the second arc, allowing it to complete the path.

chordchord00

chordchord11 chordchord22

MP HeadingMP Heading

StartStart GoalGoal

CC

MPMP

Figure 4.3: Fitting a biarc connecting start and goal configurations via the merge point at which the two
component arcs meet with continuous tangents

4.4.1.5 Strain Computation

Using κ = 1
r and s = r φ (where r is the radius and φ the turn of an arc), we can rewrite strain as:

E =
φ

r
(4.9)

An arc goes through twice the turn of its end angles, meaning that the first and second arcs have
respective strains of

E1 =
2 φ1

r1
E2 =

2 φ2

r2
(4.10)

where only the radii remain to be found and these can be expressed in terms of the chord lengths.

r1 =
chord1

2 sinφ1
r2 =

chord2

2 sinφ2
(4.11)

4.4. URGENCY HEURISTICS 77

The chord lengths are:

chord1 = 2 r0 sinλ1 chord2 = 2 r0 sinλ2 (4.12)

and finally we find the radius of the single arc as:

r0 =
chord0

2 sinθ
(4.13)

4.4.1.6 Strain Minimisation

The biarc of least strain can now be found via linear search to an arbitrary precision. To do so,
the merge point is iteratively moved along the single arc solution by selecting different values
for λ1. If n biarcs are sampled, then the i-th merge point is chosen using:

λ1 =
i θ

n−1
(4.14)

The strain of each sample is computed as the sum of the strains of both component arcs. A
suitable, smooth biarc path is selected by choosing the sample associated with least total strain
energy.

4.4.2 Biarc Clothoid Approximation

While a linear search time is already very good, a direct constant time construction can be
achieved by using insights from clothoids. As already mentioned as part of the background,
clothoids have a linear relationship between path length and curvature.

Curvature

PathLength

Figure 4.4: Ratio of turn between the first and second halves of a clothoid split equally in terms of path
length

78 CHAPTER 4. GOAL LOCATION TASK

In curvature – path length space, the clothoid is a straight line (here of standard gradient 1) with
the area under the curve representing turn. The above illustration already shows how the clothoid
can be split up into two parts of equal path length (see blue and red areas). By dividing these
areas up into equal sized triangles, it is easy to see that the first half of the path goes through
a quarter of the overall turn, leaving 75% to be done by the second part. To mimic this turn
distribution with a biarc, simply select α and β to be in the same 1:3 ratio. With α fixed by
the robot’s initial heading and the direction of the straight line to the goal, we can only choose
β = α

3 . This skips the whole iterative merge point selection step, allowing direct evaluation of:

δ =
α−β

2
(4.15)

The curvatures, path lengths and strain energies of the two arcs are then computed in the same way
as above. By approximating a clothoid, we inherit some of its desirable smoothness properties
without search. This O(1) solution does come at the price of sacrificing the ability to reach the
target heading, seeing as β is determined by the desired ratio. So instead of (x,y,φ) goals, only
(x,y) points can be chosen for the destination. For a constant time algorithm the generated path
is still pretty smooth and represents a good trade-off between complexity and accuracy. Since
speed is the most valuable commodity, this is the method of choice for which test are conducted
in the following section.

4.4.3 Mapping Controls to Strain

The ability to construct a biarc between any two configurations allows candidate controls to be
rated in terms of their prospects of completing the remaining journey smoothly.

Let the robot be at a current configuration (C) with goal configuration (G). To rate an action (a),
first use the state prediction mechanism to find the end configuration (E) of the transition its
execution results in. For the goal location task, state prediction is assumed to be provided in the
form of a forward kinematics function fk:

E = f k(C,a) (4.16)

The path the robot takes from C to E is known (defined by the action) and can be costed for
strain. For a differential drive robot that generates arcs, this is trivially done using the already
established formulae. Other vehicles may produce different primitive forms of motion, the strain
of which will be costed differently. Whichever way obtained, this strain is referred to as the past

4.4. URGENCY HEURISTICS 79

strain since the robot is now imagined to be at end configuration E. Generally:

pastStrain = strainO f PrimitiveMotion(C,a,E) (4.17)

Given that the motion will have the same strain, no matter where it originates, C is in fact an
arbitrary input to this function. By extension, so is E which is determined by C and a, leaving
the action as the only real parameter:

pastStrain = strainO f PrimitiveMotion(a) (4.18)

The remaining journey from E to G is approximated using the biarc construction mechanism
described. Summing the strain contributions of the two fitted arcs yields the future strain.

f utureStrain = biarcStrain(E,G) = biarcStrain(f k(C,a),G) (4.19)

The total strain of the path from C to G via E can then be written as the sum:

totalStrain(C,a,G) = strainO f PrimitiveMotion(a)+biarcStrain(f k(C,a),G) (4.20)

Using this strain heuristic, the controller can now proceed along the lowest strain path by
selecting the action associated with least total strain.

4.4.4 From Strain to Urgency

While the strain heuristic given above is sufficient to guide a controller solving only this one task,
an urgency heuristic is required for multi-tasking. Ideal and worst cases are defined here to allow
urgency to be expressed in terms of strain. Specifically, the missing parameters to the following
equation are sought.

goalUrgency =
Esample−Eideal

Eworst−Eideal
(4.21)

Assuming we had a perfect heuristic for the strain of a path between two configurations, the
ideal would simply be the value obtained by providing current and goal configurations as the
parameters to that function. In lieu of such perfection, the biarc approximation is used.

Eideal = biarcStrain(C,G) (4.22)

80 CHAPTER 4. GOAL LOCATION TASK

There is a caveat however: The approximation is not admissible, i.e. the biarc may overestimate
the strain of the remaining path. This should not come as a surprise; after all, precision
was willingly traded for computational efficiency. Indeed, the trade-off can be made without
repercussions as long as no sample can trump the ideal strain. Strictly speaking, admissibility
is not even a requirement, only that Esample ≥ Eideal . If this were not the case, the numerator in
the above formula for the goal location task’s urgency would be negative. Since Eworst > Eideal ,
urgency would also be negative and thus outwith the valid range of [0,1].

The danger seems remote until one realises that each sample is evaluated using a total of three
arcs compared to the two arcs used in the biarc approximation of the ideal. One arc is specified by
the sample action and generates the arc from C to E and then the path from E to G is completed
with a further two arcs. So in fact, the sample almost inevitably undercuts the ideal due to its
superior precision.

An easy remedy is to empirically observe the maximum amount by which the supposed ideal can
be outbid and then reduce it accordingly. It was found that strain can be reduced to just over 90%
(or by a factor of 0.9) of the initial biarc estimate by using an additional short sample arc. So, the
following ideal can no longer be beaten by a sample – although it may still be an overestimate
which can be undercut by using more arcs to construct a higher precision path.

Eideal = 0.9 biarcStrain(C,G) (4.23)

The worst case for the goal location task would be never reaching its destination, i.e. continuing
along an infinitely long path with infinite strain. In practice, this theoretical case is too abstract
to be of interest. A more practical interpretation of the worst scenario that may actually come
to pass in the foreseeable future is having to turn around and go in the opposite direction. To
quantify this in terms of strain, add a semi-circle arc (i.e. a U-Turn) at the robot’s MTC radius to
the journey and then evaluate its strain.

Eworst = Eideal +uTurnStrain (4.24)

With a bit of cancellation in the denominator, this gives the following expression for the urgency
of a control sample:

goalUrgency(C,a,G) =
totalStrain(C,a,G)−0.9 biarcStrain(C,G)

uTurnStrain
(4.25)

4.4. URGENCY HEURISTICS 81

4.4.5 Motivation to Accelerate

The solution developed so far is theoretically sound, but one would be wrong to assume it
contains a motivation for the robot to reach its destination. It is easy to presume that setting a
goal implies that it should be attained sooner rather than later, but as always, a machine needs
to be instructed explicitly. Not only does the robot lack a motivation to accelerate, it is in fact
discouraged from doing so. This undesired bias towards slow motion is explained by the higher
degree of precision afforded by using many small arcs instead of fewer larger ones. The slower
the vehicle moves, the smaller the individual arcs and the more accurately the least strain path
is realised. Since the robot is motivated to reduce strain, it will edge forwards in a lacklustre
fashion.

To encourage a brisker pace, the controller must be rewarded for selecting faster control samples.
A slight modification of the formula for the total strain of an action provides the needed incentive:

totalStrain(C,a,G) = DF strainO f PrimitiveMotion(a)+biarcStrain(f k(C,a),G) (4.26)

where DF is a discount factor in [0,1] which reduces an action’s past strain contribution to
the total. The discount only applies to the transition made by the sample action and not to the
future component. So to benefit most from the discount, a larger proportion of the path must be
generated by the action and this is achieved by selecting faster speeds. The discount should be as
small as possible, to prevent a distortion of the actual strain. If there is no sufficient penalty for a
high strain action, the smoothness of the path will degrade. A value of DF = 0.97 was found to
produce the desired effect without compromising smoothness unnecessarily.

One exception remains, and that is the straight line case in which all strains are zero and the
discount has no effect. When a straight line is a valid solution to connecting start and goal
configurations, it is also indisputably the best. A line has κ = 0 and therefore Eideal = 0. Any
sample action producing part of that straight line will have a past strain of zero for the same reason.
The future journey will be the remainder of the ideal line and likewise have no associated strain.
In summary, strain is zero all along that ideal line – including at the robot’s start configuration at
which it may as well remain, since no gain is to be had by moving.

The problem is evidently the zero curvature factor in the formula for strain. Path length, which
is otherwise considered, disappears along with curvature. To make sure this cannot happen, all
curvatures are artificially incremented by one. This does indeed solve the issue, but although it
appears as though all samples are treated equally this is not the case. Measuring strain in this
way can change the ranking of sample actions.

82 CHAPTER 4. GOAL LOCATION TASK

Let there be two arcs with the following lengths, curvatures and strains:

κ1 = 1.0 length1 = 1.0 E1 = (1)2 1.0 = 1.0 (4.27)

κ2 = 2.0 length2 = 0.3 E2 = (2)2 0.3 = 1.2 (4.28)

The first arc has a strain of 1 and the second a strain of 1.2, but this ordering changes when
curvature is artificially incremented by one:

E1 = (1+1)2 1.0 = 4.0 (4.29)

E2 = (2+1)2 0.3 = 2.7 (4.30)

Now the second arc appears to have significantly less strain than the first although the first is
smoother. The above is an example of a fairly severe case. In practice, the difference in length
between candidate control samples is never as big due to the short time steps. As a result, the
adverse affect on ranking is not detrimental. The described fix can be (and is) used to solve the
issue of zero strain straight lines, although it somewhat sullies the otherwise clean theory. A
more elegant solution that simultaneously removes the need for the discount factor is to add a
time-sensitive task as proposed in the future work section.

4.5 Experiments and Results

Experimental results shown in this section attest to the competence of the developed solution
for real-time smooth path finding. All screenshots displayed in the following were taken from
the purpose-built robot simulator described in Chapter 7. It is important to first make sure
that all components of the system are working before turning to the more complex problem of
coordination. That is why results presented here pertain only to the goal location task itself, i.e.
tests are carried out in isolation without interference from other tasks. For an evaluation of the
coordination system as a whole, likewise refer to Chapter 7.

Test cases are set up with goal configurations at different angles in relation to the robot’s initial
heading. Since only (x,y) goals are selected, the headings at the goal configurations will not
influence the path and need not be varied. Specifically, targets are set at intervals of 45° in terms
of the initial chord angle, i.e. the angle of the line connecting the start and goal points. This
covers the most significant edge cases with which the system may conceivably struggle.

4.5. EXPERIMENTS AND RESULTS 83

Consider a robot starting at S : (x = 0,y = 0,φ = 0), i.e. at the origin of an XY-coordinate
system facing along the positive X-axis. The first experiment aims for a goal positioned at
G : (x = 1,y = 1), which means that the angle of the chord connecting S and G is 45°. A single
arc could solve this problem using a quarter circle turn, going through 45° at either end for a
total of 90°. Without a goal heading being prescribed, a lower strain path can be found that
goes through less turn. The described situation is pictured in figure 4.5a together with the path
generated. Figure 4.5b shows the same problem mirrored on the X-axis with a chord angle
of −45°. While the path is the exact mirror image as it should be, it is important to test for
these cases as wrong assignment of the direction of turn was the most common source of error
encountered. Angles going the wrong way around have the opposite sign and can cancel out,
leaving the false impression that a straight line is required.

(a) Anticlockwise turn (b) Clockwise turn

Figure 4.5: Goal connecting paths generated for chord angles of ±45° by minimising biarc strain

Start and goal configurations are marked as S and G respectively with red arrows indicating the
heading of the robot (the heading at G can be ignored). A small circle around the goal marks an
area of tolerance within which the robot is accepted to have reached its destination. The robot
itself is drawn as a larger red circle with a black arrow indicating its current orientation. Black
lines radiating out from the vehicle indicate distance sensors. These are not yet needed as the
task assumes free space, but will play a key role in obstacle navigation (see Chapter 5).

The same experiment is repeated for a more severe chord angle, this time of 90°. A semi-circle
could solve this problem, but again a path with less turn is preferred.

84 CHAPTER 4. GOAL LOCATION TASK

(a) Anticlockwise turn (b) Clockwise turn

Figure 4.6: Goal connecting paths generated for chord angles of ±90° by minimising biarc strain

With a chord angle of over 90° in magnitude, the goal is located behind the robot. This case is of
particular interest because the desired path initially leads away from the goal. A distance based
heuristic would struggle in this case, but minimising strain results in a smooth path without a
drastic turn to greedily reduce goal distance.

(a) Anticlockwise turn (b) Clockwise turn

Figure 4.7: Goal connecting paths generated for chord angles of ±135° by minimising biarc strain

4.5. EXPERIMENTS AND RESULTS 85

A straight line is ironically one of the most difficult paths to produce when working with strain
energy. There simply is no incentive to move towards a goal when the heuristic function is
already at its minimum value of zero right where the robot currently is. Because the remaining
journey is not associated with any strain, the situation is (at least numerically) indistinguishable
from one where the robot has already reached its destination. The following test confirms that
the workaround for this problem does indeed have the desired effect.

Also shown is the pathological case where the goal is exactly behind the robot with a chord angle
of 180°. Due to collinearity of S, G and the robot’s orientation, the problem looks similar to
the straight line case. Indeed, if the robot were allowed to reverse it should do so but here we
assume forward only motion. Due to perfect symmetry clockwise and anticlockwise routes have
the same strain. This may make it difficult to decide which direction to turn in. If other tasks
were present, their preferences could tip the balance towards one direction or the other. In the
absence of external influences, the decision is made simply based on floating point precision
which will favour one side by a minuscule amount of strain. Oscillation between left and right
turns need not be feared however, since symmetry is broken after the very first step is made.

Figure 4.8: Goal connecting paths generated for chord angles of 0° (straight line) and 180° by minimising
biarc strain

So far the initial orientation of the robot has not been varied. To make sure that all angles are
rotated correctly with respect to the robot’s orientation, the above experiments are repeated for
different initial headings. The following screenshots show the successful generation of paths for
all rotated problems.

86 CHAPTER 4. GOAL LOCATION TASK

Figure 4.9: Collection of test cases with an initial robot heading of 90° and a variety of chord angles.
Solutions consistent with those from previous experiments demonstrate correct rotation in line with the
robot’s orientation.

4.5. EXPERIMENTS AND RESULTS 87

Figure 4.10: Collection of test cases with an initial robot heading of −135° and a variety of chord angles.
Solutions consistent with those from previous experiments demonstrate correct rotation in line with the
robot’s orientation.

As can be seen, the path shapes are invariant under rotation. Experiments show success across
the board with the ability to connect any (x,y,φ) configuration to any (x,y) goal.

88 CHAPTER 4. GOAL LOCATION TASK

4.6 Summary and Evaluation

Solutions for finding least strain energy curves already exist, but are better suited to computer-
aided design and graphics where time constraints are laxer. A number of smooth path generation
techniques that produce low, but not least strain were reviewed. These trade precision for speed
to different degrees and have been applied to robotics problems with great success. For rating and
comparing the large number of alternative actions that must be considered in task coordination,
the search space is still dauntingly large however.

This chapter proposed an even more drastic trade-off between smoothness and speed. A low
strain path is roughly approximated using only two circular arcs. This is insufficient to provide
support for reaching a goal heading, but enough to connect an (x,y,φ) start configuration to any
(x,y) goal. Most importantly, the arcs can be fitted and costed for strain in O(1) time, which
makes up for their lack in precision – at least for present purposes. Such low computational
complexity could only be achieved by foregoing curvature continuity, which is justifiable as the
path will not be followed directly. Instead the arcs are discarded as soon as they have played
their part in computing a strain based urgency heuristic to guide the robot in selecting actionable
controls. Making a fair comparison to existing techniques is difficult due to this disparity in their
underlying premise.

The presented solution conforms to the task coordination framework. In line with the second
hypothesis, it provides a state prediction mechanism and an urgency heuristic. The goal location
task fits category one of the proposed taxonomy of tasks and is the first example given in support
of the first hypothesis. With tests showing successful navigation in free space, the task can be
declared a suitable demonstrator for the coordination system.

5CHAPTER FIVE

OBSTACLE NAVIGATION
TASK

Having obtained a working solution to the goal locational task we now consider another common
problem, namely that of navigating obstacles. Two separate heuristics are designed to deal with
avoiding collisions and circumnavigating obstructions in the robot’s path. These heuristics and
other key aspects relating to this task are developed over the course of six sections laid out as in
the previous chapter.

The first section reflects on the intuitive expectations one might have of obstacle navigation
before progressing to a more precise specification. In creating a model to satisfy the set
objectives, the need for a second task is discovered. The conceptual task of obstacle navigation
is accordingly split into two category four tasks that together produce the desired behaviour. A
review of related literature examines a variety of existing approaches and ways in which these
may be adapted to meet the requirements of the framework and coordination mechanism. State
prediction concerns itself with obstacle detection and the measurement of distance between
the robot and obstacles in its vicinity. A geometric model of the environment allows distances
to be estimated after simulating the application of candidate controls. Urgency heuristics are
developed for both aforementioned taxonomy tasks. The obstacle avoidance heuristic builds on
classical methods mentioned in the literature review. Circumnavigation uses a novel technique
combining results from the goal location task with existing concepts. Testing assesses the ability
to steadily circle a diverse range of obstacles at a safe distance. As with other tasks, the tests
are performed in isolation to rule out interference from other sources. A summary of key points
concludes this chapter together with an evaluation of the presented solution. This final section
also assesses compatibility with the framework and the suitability of obstacle navigation to act
as a demonstrator for task coordination.

89

90 CHAPTER 5. OBSTACLE NAVIGATION TASK

5.1 Task Specification

5.1.1 Task Description

Obstacle navigation is such a prevalent task it should require little explanation, yet ironically it
has been so well studied that distinction between its many variations is meanwhile called for.
While intuitively the task is for the robot to deal with all encountered obstructions using any
means necessary, a given solution will be more specialised. Some will only deal with static
obstacles whereas others can avoid moving obstacles by making predictions about their future
positions. Reliance on a priori knowledge of the environment (as opposed to sensor information)
is a further distinguishing factor. Sometimes even the type of obstacle matters, with a number of
planners not being able to escape concave shapes. Finally, the robot may react to obstacles in
different ways. Some obstacle avoidance techniques, merely seek to prevent collision by turning
the vehicle and retreating back into free space. A more proactive approach is to circumnavigate
obstacles by following their outline until progress has been made. This would for instance be
appropriate when traversing a labyrinth as it corresponds to the hand-on-the-wall rule.

The latter approach is pursued in this chapter, which defines obstacle navigation as the task of
circumnavigating obstacles by following their outline at a safe distance. In this way sustainable
progress can be made even in the presence of concave obstacles. Following a contour around
obstacles rather than clinging to their edges leaves room for error and more importantly
compromise. Furthermore, the safety margin can be varied to allow for robots of varying,
finite dimensions. The task must rely solely on sensor information but does not consider moving
obstacles.

5.1.2 Objectives

The aim of this chapter is not to improve on the many existing solutions to obstacle navigation.
Instead, it seeks to adapt already existing approaches to fit within the task coordination framework
and serve as a demonstrator for SMT. Adaptation is required in two main areas.

Firstly, there appears to be no existing technique for obstacle navigation in complete isolation of
other tasks. This is unsurprising as such a task would be useless outside of a task coordination
framework in which the impetus for the robot to move comes from other tasks. Consequently,
available solutions invariably include the drive to reach a goal location as well. Since the
framework prescribes strict separation of the responsibilities of all tasks being coordinated, the
goal oriented aspect needs to be divorced from the rest of those mechanisms for them to qualify.
The difficulty of segregating these aspects depends on how closely they are linked in theory.

5.1. TASK SPECIFICATION 91

Secondly, the adapted demonstrator task must provide some leeway for task coordination to be
possible. A too rigid policy for following a specific route around obstacles would be detrimental
to the process of finding the required compromises.

Another objective is to develop a mechanism to allow the single-step planner to succeed in
situations that would otherwise require the foresight it cannot provide. Using a short-sighted
obstacle navigation mechanism, the robot can quite literally paint itself into a corner. The
problem is exacerbated by the requirement to generate realisable paths adhering to a realistic
minimum turning circle. While the robot may currently be satisfied that it is at a safe distance
to the nearest obstacle, it may already be destined to crash due to its failure to anticipate that
even the most severe turn it is capable of will lead to collision a few steps down the line. To
pre-empt this issue, an incentive is to be created for the robot to turn towards and align itself
with the target obstacle contour in a timely fashion. Early turning prevents situations such as
the robot reaching the contour facing the obstacle with too little space to perform the necessary
right-angle turn to either side. Even once the contour has been successfully joined, a similar
problem persists. Irregular obstacle shapes and corresponding changes in the direction of the
contour which follows its outline may demand abrupt turns that must likewise be commenced
before the vehicle’s MTC is breached. In summary, the desired mechanism should facilitate
smooth contour joining and following.

Lastly, a successful adaptation of the task to comply with the requirements of the framework
serves as further evidence to support the first and second hypotheses.

5.1.3 Task Model

Inciting the robot to perform the task as described requires guidance by heuristics defined in
terms of the appropriate homeostatic variables. This section discusses which of the obtainable
state variables best reflect an action’s ability to further the task’s agenda.

Collision prevention is the most fundamental feature of obstacle navigation and also the easiest
to provide. Urgency may simply be based on obstacle distance, or more specifically the gap
between the robot’s perimeter and the closest obstacle edge to it. This distance is suitable as a
homeostatic variable but must first be derived. It is neither part of the robot’s configuration, nor
a property of the environment but calculated from a combination of both. State prediction is
responsible for inferring the required information by interpreting readings from the available
sensors. The only constant that needs to be supplied is the target contour distance, which is
chosen with the vehicle’s dimensions in mind. Its value simultaneously defines the desired offset
from the obstacle and the bounds for the homeostatic variable.

92 CHAPTER 5. OBSTACLE NAVIGATION TASK

Regulating obstacle distance is necessary but not sufficient to fulfil all stated objectives. Figure
5.1 illustrates what would happen, as opposed to what should happen, when the robot is guided
by obstacle proximity alone.

O
B
S
T
A
C
L
E

Robot

Obstacle contour

(a) Collision due to late turning

O
B
S
T
A
C
L
E

Robot

Obstacle contour

(b) Success due to early turning

Figure 5.1: Late turning (informed by obstacle proximity) versus early turning (using path smoothing)

The figure shows the contour as a green line following the edge of a grey obstacle at a safe
distance. Ideally, the centre point of the circular robot should follow this line. In the diagram on
the left the vehicle’s current position (solid red) is on the contour exactly as it should be, but its
heading (black arrow) is not aligned with it. The predicament the robot is in can already be seen
although its single-step planner is oblivious to the fact that collision is imminent as indicated by
the possible future positions shown in transparent red. To ensure there is enough manoeuvring
space to align with the contour, the turn must be commenced before entering the red-striped
danger zone. Since foresight is limited and the distance-based penalty for encroaching on the
obstacle only comes into effect once the contour has been crossed, the robot cannot be expected
to turn before reaching it. Herein lies the necessity for a smooth contour joining and following
mechanism, which will also allow the fourth hypothesis to be upheld. Producing the desired
behaviour shown in the diagram on the right will evidently require an additional homeostatic
variable.

Seeing as proximity alone is not able to induce early turning, the question is what can. An
obvious first choice is to encourage the robot to align with the contour by reducing the angular
difference between their orientations. As with contour distance, this homeostatic variable is also
derived from parts of the robot’s configuration and information about the obstacle – in this case

5.1. TASK SPECIFICATION 93

the course of the contour. Conveniently, the latter can be deduced from the obstacle locations
already detected, so no additional state prediction is required.

The caveat is the lack of an incentive to turn gradually. If all paths generating the correct amount
of turn were equally valid, turning may be postponed without apparent consequences until the
robot again comes up against its MTC. A possible remedy is to consider the rate of turn rather
than its total, but it is unclear how to define the worst case (i.e. the homeostatic bounds) for
turning rate. Even the ideal, average rate can only be calculated with knowledge of which point
on the contour the robot should merge with and how long the path to that merge point is. At this
stage, it emerges that in fact what is needed is simply a smooth path, for which a strain based
solution has already been presented. Applying that solution requires a goal location to be set,
meaning that a way of determining suitable contour merge points needs to be devised. Inspiration
for how to do so is sought in related literature reviewed as part of this task’s background.

There are now two homeostatic variables on which to base the urgency heuristic for obstacle
navigation. Contour distance and the strain of a contour joining path do not however share the
same denominator. This makes it difficult to use both to parametrise the same heuristic function.
Fortunately, the task coordination framework was designed precisely for this situation in which
seemingly unrelatable objectives need to be weighed against each other. To take advantage of
this, the single conceptual task of obstacle navigation is reformulated in terms of two taxonomy
tasks: collision prevention and contour following. Urgency heuristics for each are developed in
the eponymous section later in this chapter.

5.1.4 Task Classification

The only reason for approaching an obstacle is if another task benefits sufficiently to justify the
risk. Lacking any sort of internal drive, obstacle navigation must have extrinsic value. The same
applies to the two taxonomy tasks into which it was divided – although it is easier to see this is
the case for the collision avoidance task. Contour following may initially appear to be pursuing
its own goal by aiming for a specific merge point. While this is true, it should not be forgotten
that the need for doing so only ever arises due to other tasks. Furthermore, the merge point need
never be reached. It serves only to encourage the robot to converge on and follow the contour.

As discussed, there are alternatives for the homeostatic variables. Irrespective of which is chosen,
the situations to be avoided will always be defined in terms of the robot’s position relative to that
of obstacles in the environment. Both taxonomy tasks depend on the position of the contour and
by extension that of the obstacle, meaning that external state is involved.

Collision prevention and contour following can therefore be classified as category four tasks.

94 CHAPTER 5. OBSTACLE NAVIGATION TASK

5.2 Background

This section roughly sifts through the plethora of contributions to obstacle navigation in search
of solutions that can be adapted to comply with the task coordination system. An outright
solution cannot be hoped for due to the already mentioned unique requirement for the complete
segregation of task responsibilities. Instead we hope to extricate the relevant parts of existing
mechanisms which, all too often, interweave goal seeking with obstacle navigation. Solutions
with irresolvable codependencies and/or other shortcomings can be excluded from further
consideration. Examples of these cases serve to explain why the same is true for all approaches
sharing the undesirable trait.

Khatib’s potential fields approach [66] was already reviewed in the context of task coordination.
Here, we take another look at it from the perspective of obstacle avoidance for which it was
originally intended. Choset et al. [25, p. 77] aptly summarise this technique using an analogy to
a charged particle:

The potential function approach directs a robot as if it were a particle moving in
a gradient vector field. Gradients can be intuitively viewed as forces acting on a
positively charged particle robot which is attracted to the negatively charged goal.
Obstacles also have a positive charge which forms a repulsive force directing the
robot away from obstacles. The combination of repulsive and attractive forces
hopefully directs the robot from the start location to the goal location while avoiding
obstacles.

As can be seen from this description, potential fields make no exception when it comes to
entwining goal seeking with obstacle navigation. What sets the approach aside from many others
is that it is easy to separate the goal and obstacle components. The gradient vector field that the
robot descends on is composed of the superposed (i.e. additively combined) individual vector
fields for goal attraction and obstacle repulsion. Using the repulsive obstacle field on its own
provides the type of behaviour required for the collision prevention task. The only mandatory
adjustment is to replace the particle model of the robot with one able to take the robot’s size into
account. Indeed, the urgency heuristic developed for collision prevention in the next section is
based on the principle of distance based repulsion described here.

In terms of the contour joining task, Khatib’s solution has little to offer. With some adaptations,
the robot can be made to observe the desired contour distance but the technique cannot induce
smooth or early turning. Seeing as the robot gets stuck in concave shapes due to the well-known
local minimum problem, it is a far cry from following a contour around the obstacle.

5.2. BACKGROUND 95

Bug algorithms [57] [58] do not suffer from the local minimum problem and are "amongst the
earliest and simplest sensor-based planners with provable guarantees" [25, p. 17]. The robot
moves in a straight line towards the goal location until an obstacle is detected by one of its
sensors. Upon contact, the particle robot latches onto the obstacle edge like a bug, giving the
method its name. Completeness guarantees stem from a set of rules that only allow the robot to
relinquish the obstacle under certain conditions. Specifically, sustainable progress has to have
been made such that the possibility of a loop, by which the robot returns to a previous location,
can be ruled out. Given that there are only a finite number of obstacles and each is visited at
most once, the robot must eventually arrive at its destination. There are many versions of bug
algorithms with different conditions for leaving the obstacle. For example, [64] improves on the
earlier versions cited above by allowing earlier leaving without loss of guarantees.

A remaining problem is that the robot is still modelled as a particle. With the planner assuming
it will fit through any gap, collision is inevitable, e.g. when a real robot of finite width tries
to move through a narrow passage. The problem may, however, be overcome using obstacle
dilation [35, p. 179]. This technique artificially enlarges obstacles by creating a virtual boundary
around them. Although the robot is still considered to be a point it will now cling to the virtual
boundary, thus not colliding with the real obstacle. Obstacle dilation requires knowledge of
the positions and shapes of all obstacles in order to enlarge them, meaning it cannot be used in
unknown environments.

Even if a global map of the environment were provided, the traditional bug algorithms named so
far produce only geometric paths. That is to say, they assume an omnidirectional vehicle without
restrictions on speed, acceleration or minimum turning circle. Since a real robot cannot follow
such a path, this technique does not deliver the desired degree of realism.

A more pragmatic approach is taken in Potbug [126] which addresses a number of practical
issues. As its name suggests, it is a crossover of potential fields and bug algorithms, which allows
it to provide many of the features we require while preserving guarantees. Most importantly, it
selects subgoals on a contour at a safe distance around the obstacle. Aiming for these bypasses
the local minimum problem in Khatib’s approach and simultaneously allows the robot’s width to
be taken into account without needing a global map. Furthermore, realisable paths are generated
in real-time due to the efficiency of potential fields. Goal reaching is quite deeply ingrained in
the technique, but the idea of setting subgoals can be used and further improved. The urgency
heuristics section explains how the principles used here can be adapted for contour joining.

More recent solutions such as [42] and [122] focus on improving path smoothness but rely on
prior knowledge of the environment and are inextricably linked to goal reaching.

96 CHAPTER 5. OBSTACLE NAVIGATION TASK

5.3 Task State Prediction

A prerequisite for applying any obstacle navigation technique is the ability to localise the robot
in relation to features in its environment. Specifically, state prediction for this task involves
estimating how far the robot will be away from obstacles after making an imaginary move. The
previous chapter already explains how forward kinematics can be used to predict the position of
the robot. This leaves only the challenge of inferring the position of nearby obstacles using the
robot’s sensors. Having gathered all relevant information, obstacle distance can be calculated for
the robot’s current configuration as well as estimated for future positions reached after applying
given controls. Of course, predictions are only valid for samples within the robot’s sensor range
as a global map is neither provided nor constructed.

5.3.1 Obstacle Detection

A variety of sensors can be used for obstacle detection. They can be grouped into contact sensors,
proximity sensors and visual sensors.

Contact sensors (mechanical bumper switches) are the only type not appropriate for this project.
This is because they are activated upon physical contact – at which point the obstacle navigation
task has already failed according to its present definition.

Proximity sensors include radar, laser range finders, infrared and sonar sensors. All of these have
different advantages, disadvantages and areas of application. For example, infrared sensors suffer
from interference through sunlight, but such details are not of great concern here. The following
assumes the robot is equipped with sonar sensors but is applicable as long as a reasonably reliable
source of information can be provided.

Visual sensors, i.e. cameras can offer a lot more than just depth of field. The computational cost
of image processing is a disadvantage however, especially as the additional data is not required
for present purposes.

Whichever way obtained, the recorded distance values need to be transformed into knowledge
about the location of obstacles. The point at which a sensor ray hits an obstacle can be computed
from the position of the sensor, the distance it measured and simple trigonometry. Obstacle
points thus detected are relative to the robot’s frame of reference. Optionally, these points can
be expressed in terms of a global coordinate system using a translation by the robot’s position
and rotation by its orientation. Global coordinates are a requirement for building up a map of
accumulated information. When, as in this case, the robot strives not to return to previously
visited areas of the environment, there is however little value in doing so.

5.3. TASK STATE PREDICTION 97

5.3.2 Gap Occlusion

Detected obstacle points can be used without any further processing, as indeed they are in many
methods such as Khatib’s potential fields [66]. A drawback of this approach is that the AI
controller will interpret the gaps between detected obstacle points as free space. While this could
be the case, the perceived gap may just be a blank in our knowledge due to insufficient sensor
coverage or an invalid reading. Even if there really is free space between adjacent obstacles, it
may not be wide enough for the robot to pass through.

Sealing off such gaps by connecting obstacle points that are closer together than the vehicle
is wide can prevent collisions caused by erroneous assumptions of free space. This type of
occlusion also serves to encourage smoother paths by ensuring the robot does not turn towards
every crevice in the obstacles it engages.

One method of filling in the gaps between known points is to use a feature extraction technique
such as the “Hough Transform” [8]. Using this, it is possible to approximate the actual shape of
objects such as circles, lines and parabolas from a fairly sparse set of edge points.

Linear interpolation of close together points is a crude but more efficient alternative to feature
extraction and has been found to be sufficient. The implemented approach is illustrated below
using the example of a robot approaching a gap between two obstacles.

(a) Workspace view (b) Detected obstacle points (c) Occlusion lines

Figure 5.2: Representation and interpretation of distance sensor readings showing the occlusion of gaps
too small for the robot to navigate. A bird’s-eye view of a robot facing two obstacles with full information
is shown in (a). The same scenario is displayed from the robot’s perspective in (b) with detected obstacle
points marked as red dots at the ends of the black sensor rays. Occlusion lines are sketched in (c).

98 CHAPTER 5. OBSTACLE NAVIGATION TASK

The algorithm used for deciding occlusion computes the distances between all detected obstacle
points, closing any gaps narrower than a pre-set occlusion distance. For scalability with the
robot’s size, this distance is specified as a multiple of the vehicle’s width. The red lines block gaps
that are definitely too narrow to navigate, while the blue lines indicate a potential passageway
that may or may not be occluded depending on what is considered safe. In the figure above, the
occlusion distance is set to twice the robot’s width, which just closes the gap but leaves a little
recess into which the robot may dip. The actual implementation uses a width-multiple of three
which would result in that alcove being smoothed over entirely.

Lines drawn in green are evidently superfluous as they are concealed by the red ones which are
closer to the robot. They are created because it is not sufficient to only consider joining obstacle
points detected by adjacent sensor rays. The ray passing straight through the gap would otherwise
prevent it being occluded by the blue lines shown. Deciding connectivity based on Euclidean
distance solves this problem but produces the superfluous lines as a by-product. Determining
which lines are hidden from the robot’s view may however take more time than is saved by
removing them from consideration.

5.3.3 Distance Measurement

Locating obstacles is merely a means to the end of satisfying the framework’s requirement
for a state prediction mechanism. For obstacle navigation, two mappings, which can together
associate control samples with obstacle distance, need to be provided. The vehicle’s forward
kinematics are used to map any given control vector to the end point of the motion generated by
its execution. That end point (or indeed any coordinates) can then be mapped to the Euclidean
distance between it and the nearest known obstacle in its vicinity. Once the obstacles have been
detected, the distance is trivially found by iterating over all obstacle points and selecting the
one closest to the coordinates being sampled. The procedure is the same when working with
occlusion lines, only that here the perpendicular distance is computed between a point and a line
rather than between two points.

It is important to note that using occlusion lines does not guarantee more accurate measurements.
In the ideal case, the obstacle edge is indeed straight (at least between the two known points
linearly interpolated) and an exact distance is obtained. When the obstacle is convex, the obtained
result will be an overestimate of the actual distance but more precise than using only known
obstacle points. Concave obstacles will lead to an underestimate that can be further off the mark
than point to point distance. Even in this worst case, occlusion lines are still superior. While
accuracy is important, their main virtue lies in removing noise by smoothing over irregularities
in the obstacle’s shape – not to mention blocking gaps the robot would otherwise get stuck in.

5.4. URGENCY HEURISTICS 99

5.4 Urgency Heuristics

Having successfully defined an appropriate state prediction mechanism, we proceed to mapping
the obtained state information to an indicator of task success as per the second hypothesis. As
such, this section develops urgency heuristics for both obstacle avoidance and contour joining
tasks. It also explains in more detail why two separate tasks are required, or more specifically
why contour joining cannot fully replace collision prevention.

5.4.1 Collision Prevention

Collision prevention is a task that depends purely on the distance between the robot and the
nearest obstacle. For the purposes of distance measurement and collision detection, we assume a
circular vehicle of radius r. This can be done without loss of generality as a bounding circle may
be substituted for any shape of robot. Obstacle distance must be measured from the centre of that
circle to the closest obstacle point or occlusion line. State prediction will provide the distance
to the robot’s coordinates which are assumed to coincide with the centre point of the bounding
circle. Should this not be the case, state prediction must be invoked using the centre of the circle
in place of the robot’s coordinates. Let the resulting distance be:

dsample = distance(circleCentre,closestObstaclePoint) (5.1)

With the ability to predict the distance for any sample position, this leaves only the question of
how to define the best and worst cases for this task. The worst case is easily defined as the robot
crashing into an obstacle. This need not to happen at speed. The task fails as soon as the robot’s
body comes into contact with the obstacle edge. According to our model, that is the case when
the robot’s centre point is at distance of r from the obstacle. The worst case distance is thus:

dworst = r (5.2)

The ideal case is when the robot is in free space, but since this is unlikely to be the case for long,
we settle for keeping obstacles at a safe distance. As with gap occlusion, distances should be
expressed in terms of the robot’s size for scalability. Potbug follows a contour set at a distance
of three times the robot’s radius, which corresponds to leaving one robot width between the
obstacle and the robot’s outer body [126, p. 7]. To account for likely compromises, a slightly
larger safety margin is appropriate. For this reason contour distance (CD), which is also the

100 CHAPTER 5. OBSTACLE NAVIGATION TASK

task’s ideal obstacle distance, was set to four times the robot’s radius.

dideal =CD = 4r (5.3)

Now equipped with the ideal, worst and sampled distances, urgency for obstacle avoidance can
be expressed using the equation suggested in Chapter 3. What this formula yields is effectively
the percentage of the buffer zone that the robot has penetrated.

proximityUrgency =
dsample−dideal

dworst−dideal
(5.4)

Inserting the known constants and simplifying yields:

proximityUrgency =
CD−dsample

CD− r
=

4r−dsample

3r
(5.5)

The function is defined for domain r ≤ dsample ≤CD and has the required range of [0,1]. Edge
cases are dsample < r in which case proximityUrgency = 1 (task failure) and dsample >CD where
proximityUrgency = 0 (task fully satisfied).

5.4.2 Contour Joining

Strain has been identified as a suitable homeostatic variable for parametrising an urgency heuristic
capable of encouraging smooth contour joining. The task model developed in a previous section
already plays with the idea of enlisting the help of the mechanism underlying the goal location
task. Doing so would provide an elegant solution, but requires target locations to be set at
strategic locations along the contour where the robot’s path can be merged with the course it
takes. Here, the remaining pieces of the puzzle are assembled to bring the outlined technique
to full fruition. This involves setting merge targets in both directions along the contour and
defining merging urgency to fairly represent the choice between these alternatives. In addition
to developing the method itself, we also discuss when it should be applied, i.e. under which
conditions the robot should or should not follow a contour around an obstacle.

5.4.2.1 Setting Contour Merge Targets

Merge targets are moving subgoals positioned on the contour of an obstacle with a heading
pointing along it. If well placed, they can guide the robot towards and into alignment with the
contour without running the risk of reaching the vehicle’s MTC. The attractive force they exert
may, however, lead the robot astray in some cases. One such occasion is when the robot is drawn

5.4. URGENCY HEURISTICS 101

into engagement with an object that was not in fact in its way to begin with. A solution to this
problem will be presented later. First, we discuss why using only a single merge target can create
an almost arbitrary, yet strong and potentially damaging bias towards a certain direction. The
following depicts this scenario.

G

OBSTACLE

Robot

ContourMT1 MT2

MT : Merge Target

Figure 5.3: Illustration used to explain why fixation on a single merge target can result in needlessly
poor decision making. If only one of the merge targets (drawn as blue arrows) is selected, a powerful
bias is created towards the direction marginally preferred by the obstacle navigation task. Better founded
preferences put forth by other tasks may be overruled due to the false impression that turning away from
the single merge target will result in failure.

Two candidate merge targets are shown as blue arrows, although only one of them will be
selected. If selection is based on strain as suggested, the right merge target will be chosen and the
left discarded. No matter how merging urgency is now defined, it must surely reflect an action’s
prospects of reaching the selected subgoal. With a left turn representing the polar opposite of
the desired direction, the corresponding action will come close to, if not define, the worst case.
Any competent coordination system will then make it near impossible for the robot to move left
towards supposed task failure. Consequently other tasks’ preferences will be dwarfed and largely
ignored. For example, to reach the goal location (G) marked in the diagram, the robot would
have to go all the way around the obstacle. This is as lamentable as it is unnecessary. The strain
of the left arc is only slightly greater than that of the right and represents a very real alternative –
especially if other tasks favour that direction. As it stands though, even heading straight for the
obstacle will seem more appealing.

The key is to consider both merge targets in the urgency heuristic. Before going into the details
of how to cost the alternatives fairly, we first need to find the merge targets to be used. The

102 CHAPTER 5. OBSTACLE NAVIGATION TASK

following presents an algorithm for the geometric construction of two merge targets along the
contour of a detected obstacle. An illustration of all relevant points supplements the description.

OP

Robot

CCP MT2MT1

MRMR

CCP:
Closest Contour PointMR : Merge Radius

OP : Obstacle Point

MT : Merge Target

Figure 5.4: Geometric construction of merge targets based on the robot’s position in relation to the closest
detected obstacle point

1. Use the described state prediction mechanism to obtain the coordinates of the robot’s centre
point (R) and the obstacle point (OP) closest to it.

2. Let~o be the obstacle vector from R to OP (depicted as a red arrow).

3. To the end of~o, add a contour vector~c going in the opposite direction with length CD.

4. The end point of~c is the closest contour point (CCP) in relation to the robot’s position R.
Note that this point can lie on either side of the robot depending on whether or not it has
already penetrated the contour.

5. Let~l and~r be orthogonal to~o and pointing to the left and right of the CCP respectively (see
green arrows).

6. Scale~l and~r until they reach the intersection with the merge radius (MR). The required vector
length of

√
MR2−d(R,CCP)2 is obtained from the right-angled triangle 6 CCP R MT1.

7. The two merge targets (shown in blue) are defined by the ends of the scaled vectors~l and~r,
the directions of which also specify the target headings.

5.4. URGENCY HEURISTICS 103

The only constant remaining to be chosen is the merge radius. Like the contour distance
previously defined, the merge radius should also be expressed as a multiple of the robot’s body
radius. With nothing to go by, an appropriate value was found through experimentation, which
suggests that merge targets should be chosen approximately four robot lengths ahead of the
vehicle. Again taking the robot’s size into account, we set MR = 9r.

It is acknowledged that the described geometric construction algorithm only produces merge
targets that fall exactly on the contour when the obstacle is straight-edged. For curved obstacles,
the merge targets may be closer to, or further from, the obstacle’s edge than they should ideally
be. More accurate coordinates could be found through search, but the effort has proven to be
unwarranted. Precision is not paramount because the robot’s step size is small and the merge
targets are continuously updated while travelling along the contour. Because the selected target
need never be attained, it suffices as long as it provides a reasonable basis for local decision
making. As is evidenced by the experiments conducted in the following section, the desired
behaviour can be achieved as a result of chasing a moving goal that remains a fixed distance
ahead of the robot.

5.4.2.2 Merging Urgency

With a mechanism for generating merge targets now at our disposal, we can define merging
urgency in terms of the strains of the paths leading to them. In fact, it is not even necessary
to get to urgency via strain. The urgency function developed in the previous chapter can be
applied directly with the merge targets set as the goal locations. This saves having to specify new
ideal and worst cases, since the returned values are already in the interval [0,1]. Moreover, path
smoothness properties are automatically inherited, meaning that urgencies will not only indicate
how to join the contour but how to do so gradually.

For a given control sample the obtained urgencies are:

urgency1 = goalUrgency(MP1,sample) (5.6)

urgency2 = goalUrgency(MP2,sample) (5.7)

The problem, of course, is that there is a separate urgency for each of the merge targets when
actually a single overall heuristic is desired.

A simple remedy is to combine both goal location urgencies into merging urgency by averaging.

mergingUrgency =
goalUrgency(MP1,sample)+goalUrgency(MP2,sample)

2
(5.8)

104 CHAPTER 5. OBSTACLE NAVIGATION TASK

Unfortunately, the resulting cost metric struggles to distinguish clearly between different control
samples. This is because the urgency for going to the left merge target increases as the robot turns
right, while the urgency for reaching the right target decreases. The result is that the opposing
preferences effectively cancel each other out (more or less depending on the robot’s angle to the
obstacle).

A better approach is to cost a sample with regard to how well it does at joining the contour at
either merge target. This more accurately represents the choice the robot has. We assume that a
left turning sample will continue moving left and a right turn will in fact proceed to the right
merge target. Merging urgency is then the minimum of the two goal urgencies:

mergingUrgency = min(goalUrgency(MP1,sample),goalUrgency(MP2,sample)) (5.9)

The urgency thus defined can be visualised as a conic shape which the robot is discouraged from
entering.

OBSTACLE

Robot

Merging urgency

Proximity urgency

Figure 5.5: Visualisation of proximity and merging urgencies as areas in workspace

The above shows both proximity urgency (red striped area) and the newly introduced merging
urgency (blue hatching). To avoid entering the blue area, the robot will turn smoothly towards
one of the merge targets. In the absence of other tasks it will choose the merge target associated
with least strain, but is also ready to strike a sensible compromise in the face of conflict.

It is interesting to observe that contour joining defines an undesirable region of state space just
like obstacle avoidance. This helps understand why both are category four tasks despite one of
them actually building on the goal location task, which is a prime example of category one.

5.4. URGENCY HEURISTICS 105

5.4.2.3 Engaging

Returning to a previously mentioned problem, consider the prospect of a merge target attracting
a robot towards an object that is not an obstacle to it. Unlike proximity urgency that only acts to
repel a robot already close to the obstacle, a merge target exerts an active pull. With a fairly large
merge radius (MR = 9r), it is not unlikely for a merge target to be created along the contour of a
fairly distant object. Under normal circumstances the robot may simply pass by the object, but
due to the merge target it will be drawn into its orbit and onto a detour. As a preventative measure,
obstacle engagement is restricted to situations in which the robot’s path is in fact obstructed.
Two conditions must be met for an object to be deemed an obstacle.

Firstly, only obstacle points within a cone in front of the robot will be considered in the decision
to engage. In other words, the robot must be driving towards the object for it to be deemed an
obstacle. Centring the cone on the robot’s heading with a width of around 80° to 90° has proven
effective. Relevant obstacles are engaged while those in the peripheral vision are safely ignored.

Secondly, an engage radius (ER) is introduced. Obstacle points detected outside of a circle
around the robot are likewise not considered as requiring action. This leaves the robot some time
to change its course before committing to following the obstacle. The engage radius must be
larger than the contour distance (CD = 4r) and smaller than the merge radius (MR = 9r). If it
were smaller than the contour distance, obstacles would be engaged too late for smooth joining
to be possible. On the other end of the spectrum, an engage radius larger than the merge radius
would mean this condition poses no restriction as all merge targets would be in range. Between
these extremes there is quite a lot of flexibility. A value of ER = 7r works well.

Unless both of these conditions are met, no merge targets will be generated and consequently
there will be no merging urgency. The robot is then able to continue on its path in perceived
free space without being led astray. It should be noted though that the cone is only used to
decide whether or not to enter the engaged mode. Samples outside of the cone are not discarded,
meaning that all obstacle points detected are still considered in merge point construction once
the robot has engaged.

5.4.2.4 Disengaging

Having formally defined a state of engagement, there must also be a way of disengaging so as
not to chase merge targets around the same obstacle in perpetuity. Even if the urgencies of other
tasks may eventually overcome the pull of the obstacle, the contour would likely be followed for
much longer than it should be. To avoid forcing other tasks into making needless compromises,
the situations in which the contour can be left need to be identified. While leaving too late

106 CHAPTER 5. OBSTACLE NAVIGATION TASK

certainly impacts other tasks, leaving too early may result in the robot falling back into a concave
out of which it cannot escape. Fortunately, BUG algorithms have already addressed this problem
by defining conditions under which the robot can and should disengage. The following three
conditions were adapted from those (especially [64]), but may vary between different members
of the BUG family.

All of the following conditions must hold for the robot to disengage:

1. The robot is facing away from the obstacle.

2. Moving forwards in the direction the robot is facing reduces the distance to the goal that the
obstacle was obstructing.

3. The robot is currently closer to that goal than when it engaged the obstacle.

Sticking to the obstacle edge and these (or similar) conditions, BUG algorithms can guarantee to
make lasting progress. With only a finite number of obstacles between the robot and its goal,
completeness is assured. In the context of task coordination these guarantees are, however,
reduced to a best efforts policy. Interference from other tasks is unpredictable, making it
impossible to rule out a forced departure from the prescribed path.

Realistic restrictions on acceleration and deceleration rate may also cause a diversion from the
contour. For example, the robot may have accelerated along a straight edge. When the obstacle
finally curves round allowing the robot to get to the other side of the obstruction, the vehicle is
moving too fast to make the required turn. It overshoots while trying to decelerate but finds itself
in free space facing away from the obstacle which is now out of sight. Even if not all conditions
are met, the robot must disengage in this situations as there are no merge targets to aim for. See
figure 5.11 for a depiction of the describe scenario.

5.4.3 The Need for Two Tasks

The experiments shown in the following section may give the false impression that the obstacle
avoidance task is effectively subsumed or replaced by contour joining. This illusion is created
due to the latter always being able to pursue its favoured actions in the absence of other tasks, i.e.
under the circumstances in which the tests are conducted. In this situation, contour joining is
indeed sufficient to achieve and maintain the desired, safe contour distance. As soon as other
tasks force a compromise action, success can no longer be assured. Figure 5.6 illustrates a
conflict of interest that would cause collision were the obstacle avoidance task not explicitly
represented.

5.5. EXPERIMENTS AND RESULTS 107

Robot
Alternative paths

OBSTACLE

Ideal path

Figure 5.6: Compromise paths (blue) with equal merit in terms of contour joining despite the lower
trajectory leading to collision without intervention by the obstacle avoidance task which is able to
disambiguate

In this example, the robot is already on the contour and would elect to continue along it by
following the black line shown. The blue curves represent identical, but mirrored alternatives
that may be advocated for by other tasks. Due to symmetry, both curves must have the same
strain and consequently also produce identical goal location urgencies. Evidently though, the
lower path leads to collision, demonstrating that the contour joining task, despite appearances,
has no concept of obstacle avoidance and would be insufficient on its own.

5.5 Experiments and Results

This section documents the experiments carried out to confirm the validity of the solutions to
both collision prevention and contour joining. Tests were run using the robot simulator described
in Chapter 7, from which the screenshots shown here were taken. All results are for the tasks in
isolation so as to rule out interference from other sources.

5.5.1 Collision Prevention

To begin with we examine how the collision prevention mechanism can solve the aforementioned
problem, i.e. prevent the contour joining task striking compromises leading to a collision it is
unable to foresee.

Consider the experiment in figure 5.7 where the robot starts facing along a wall which it is
dangerously close to. To re-establish a safe contour distance, the vehicle immediately starts
turning left. The realistic acceleration model precludes an instant left MTC turn, although this
would be ideal. Instead the curvature of the path increases gradually as the robot accelerates.
The collision prevention task is satisfied as soon as the robot reaches the contour, marked here
with a green dot.

108 CHAPTER 5. OBSTACLE NAVIGATION TASK

Figure 5.7: Re-establishing a safe obstacle distance by turning away from a dangerously close obstacle.
After reaching the contour (green dot) behaviour is undefined due to the absence of unsolved tasks. In this
case the robot decelerates while continuing to turn left.

Once the contour has been reached, there are no more active tasks to influence the robot, leaving
it unguided and its behaviour undefined. One may expect it to stop immediately when there are
no more tasks to solve but even if there were a motivation for stopping, it would be illegal to
do so. The robot cannot stop abruptly because it has to decelerate as gradually as it accelerates.
Instead the robot goes into a left MTC spiral and slowly decelerates because, in the absence of
any active heuristics, the controller defaults to selecting the slowest legal left turn. While the
resulting path may be unexpected, this is by no means an error but simply an implementation
specific artefact. Were there still other active tasks, their goals would be pursued.

The above experiment is not repeated for different types of obstacle as the behaviour is always
exactly the same.

5.5. EXPERIMENTS AND RESULTS 109

5.5.2 Individual Obstacles

Unlike collision prevention, contour joining results in different paths for different obstacles.
First, consider navigating individual obstacles of different shapes and sizes.

The following shows successful circumnavigation of a regular square and an irregular polygon.
It is interesting to note that the path around the square is a rotated square. This is explained by
the controller trying to follow the contour exactly but lagging behind due to the acceleration
limit that introduces a type of phase shift.

Figure 5.8: Smooth contour joining and following for polygonal obstacles

The effects of obstacle occlusion are demonstrated next. Trying to navigate the star shape on the
right would normally result in a very jagged path due to high variations in the readings from the
distance sensors. Gap occlusion smooths out these irregularities and facilitates the generation of
a path almost as smooth as that around the circle shown on the left for comparison.

Figure 5.9: Smooth contour joining and following for smooth and jagged circular obstacles

110 CHAPTER 5. OBSTACLE NAVIGATION TASK

Navigation of the following concave is made possible by the BUG-like features of the developed
solution. A standard potential fields based technique would get stuck in a local minimum, but by
aiming for merge targets moving along the contour, the obstacle can be successfully rounded.

Figure 5.10: Smooth contour joining and following for a concave obstacle

Next is an example of forced disengagement, an eventuality already mentioned after the
discussion of the situations in which the robot should disengage. At first the robot has no
trouble going around the triangle, but by the second lap it has accelerated too much to manage the
turn at the acute point of the triangle. While still decelerating, the robot overshoots the obstacle
and loses sight of it. Suddenly finding itself in free space, there is no task left to solve and the
controller decelerates going round in a left spiral for reasons already explained. If another task
were still active it could now be pursued without interference, so the overshoot is not a problem.
Even if the obstacle were still in the way, it would simply be re-engaged as needed. Theoretically,
overshoot could occur every time the obstacle is engaged. This pathological case is as unlikely
as it is that the robot will re-engage at exactly the same point and with exactly the same speed
each time. Nevertheless, this is one of the reasons for which completeness cannot be guaranteed.

Figure 5.11: Smooth contour joining and following for an acute triangle

5.5. EXPERIMENTS AND RESULTS 111

The obstacle the system struggles most with is an extreme V-shape in which it is easy to get
stuck. Although this is a concave, that is not what causes the issue. The root of the problem lies
in the algorithm for setting merge targets. As the robot enters the V-shape it is closer to one of
the V-lines than the other. The side it is closer to defines the contour which the robot will follow
into the narrow (see figure 5.12). By the time the opposite V-line is closer and the merge target
switches to the other side, it is already too late to initiate a U-turn to escape the funnel. The
problem can be alleviated by setting a larger maximum occlusion distance to close up the narrow
part of the V-shape. Relaxing the acceleration limit to allow the robot to perform tighter turns to
get back out of the cul-de-sac also helps. What is really desired though, is a more sophisticated
mechanism capable of recognising the need to switch to the other side of the V-shape sooner.
For present purposes the suggested remedies are sufficient, as evidenced by the successful run
shown on the right. Nevertheless, improved merge targets represent a more elegant solution.

Figure 5.12: Smooth contour joining and following for a V-shaped obstacle demonstrating how a short
occlusion distance can lead to collisions that can be prevented using a more appropriate setting

5.5.3 Gaps Between Obstacles

The ability to differentiate between passable gaps and dangerously narrow ones is tested here.

Figure 5.13a is an example of a gap that is theoretically passable but too narrow for passage to be
deemed safe. The robot correctly ignores the gap, behaving as through it were a solid rectangle.
Upon close comparison with the actual rectangle (figure 5.13b), an almost imperceptible

112 CHAPTER 5. OBSTACLE NAVIGATION TASK

difference can be noticed when looking closely at the top left curve of the generated path.
This difference can be ascribed to the fact that the gap is not occluded at all times. For occlusion
to work, the gap must be straddled by two detected obstacle points. At times when only one of
the two squares is in sensor range, the gap will momentarily be open.

(a) Occlusion of a small gap (b) Solid object for comparison

Figure 5.13: Successful occlusion of a narrow gap with behaviour almost identical to that produced when
following a comparable solid obstacle

Now consider the same scenario with a wider gap (see figure 5.14). The screenshot on the left
shows the robot seizing the opportunity to pass through a gap that was recognised as being
open. After completing one circuit of the obstacle the robot returns to the open gap. Again it
decides to go through but this time it fails and collides with the upper obstacle. The reason is a
very restrictive acceleration limit that was deliberately set for demonstration purposes. On first
encounter with the gap the robot is still travelling slowly, having just accelerated from a standing
start. Due to the relatively low speed, the vehicle’s dynamic MTC is still sufficiently small to
pass through the gap. The second time round, the robot has had time to accelerate to a speed that
no longer permits executing the tight turn required. Since the contour joining task is unaware of
obstacles posing a threat, the controller makes best efforts to turn and ultimately crashes. The
experiment is repeated with a more reasonable acceleration limit which leads to success as can
be seen in the image on the right. One may also observe that the ability to change speeds more
rapidly allows for a path that more closely follows the contour.

5.6. SUMMARY AND EVALUATION 113

(a) Open gap, too restrictive acceleration limit (b) Open gap, appropriate acceleration limit

Figure 5.14: Navigation of an open gap showing the effect of different acceleration limits

5.6 Summary and Evaluation

This chapter provides a solution to obstacle navigation. To satisfy the objectives of collision
prevention and smooth contour joining, two corresponding taxonomy tasks are developed. A
state prediction mechanism is provided for both and a separate urgency heuristic is derived for
each.

Obstacle avoidance depends on the distance to the closest obstacle edge detected by the robot’s
sensors. Smooth contour joining is based on strain and reuses the solution to the goal location
task in the computation of its urgency. Merge points to either side of the robot are considered,
allowing for fair and unbiased compromise with other tasks when it comes to deciding on a
direction in which to follow the contour.

Experiments see both tasks fulfil their intended responsibilities. Obstacle occlusion allows a
wide variety of irregularly shaped obstacles to be navigated smoothly.

The first and second hypotheses are substantiated by the successful definition of and solution to
this classical robotics problem in a manner compatible with the task coordination framework.
The fourth hypothesis is upheld by eliminating the need for significant foresight in joining the
obstacle contour.

In light of this, both obstacle avoidance and contour joining tasks are deemed fit to act as
demonstrators for task coordination.

6CHAPTER SIX

BALL BALANCING TASK

This chapter introduces ball balancing as the third and final task. The structure mimics that of
the two previous chapters and comprises the same six sections.

The task specification gives a definition of the task to be solved along with concrete objectives.
It also discusses how ball balancing can be classified in terms of the task taxonomy and which
principles are most suited to informing a solution. Literature on the approach to ball balancing
taken here is sparse but related work includes some similar problems such as pole balancing,
which was the inspiration for creating this task. State prediction is the main section in this
chapter. A custom physics model is developed to simulate and predict the behaviour of a ball
in a moving spherical bowl. The same formulae used for state prediction are also relevant to
the following section, which derives an energy based heuristic function quantifying the urgency
with which ball balancing needs to be tended to. Experiments for this task in isolation focus on
becalming an initially perturbed ball. Success is demonstrated by controlling the robot in such a
way as to counterbalance the forces acting on the ball. The final section summarises the main
features of this task and evaluates its suitability to task coordination.

115

116 CHAPTER 6. BALL BALANCING TASK

6.1 Task Specification

6.1.1 Task Description

The ball balancing task is easily described as that of keeping a ball within a shallow bowl
mounted atop the robot. When the robot accelerates, forces act on the ball causing it to move
away from its resting position at the bottom of the bowl. The latter is modelled as a spherical cap
that is open towards the top. This allows the position of the ball within the bowl to be defined in
terms of spherical coordinates (r,θ ,ϕ). Since the radius of the bowl stays fixed, only θ and ϕ

change as the ball moves. The zenith angle, θ , indicates the height of the ball, while the azimuth
angle, ϕ , describes its geographic position in the horizontal plane. The task of keeping the ball
from falling out of the bowl can then be described as keeping its zenith angle below that of the
rim of the bowl. Difficulty can be adjusted by raising or lowering the height of the rim.

Keeping the ball balanced or re-balancing an already perturbed ball requires control over the
robot’s acceleration. The ball is subjected to the types of forces that people experience in a car
where acceleration, breaking and sudden changes in direction can be felt. While these forces are
responsible for agitating the ball, they can also be used to becalm it. To do so the robot should
select controls that result in forces that oppose the motion of the ball and rob it of its energy.
Conflict arises due to other tasks also demanding control over speed and direction of the vehicle.

6.1.2 Objectives

The main objective of this chapter is to create a visual and intuitive task for demonstrating the
developed coordination system. Ball balancing is the embodiment of homeostatic stability and
an indicator of coordination success that goes beyond the traditional goal and obstacle problems.

In addition to its value as a demonstrator, the developed balancing abilities also find practical
application. The example of a waiter balancing a tray was used in the introduction to explain
the need for SMT. As with the ball, balance is kept by controlling the forces of acceleration.
The same principle can be applied to ensure comfort of ride in a self-driving car or, for that
matter, the stability of the robot itself. For instance, a humanoid could easily lose balance when
not coordinating its movements. Ball balancing provides an abstract representation of all these
possible applications and demonstrates the concept rather than a specific incarnation of the issue.

Finally, the solution developed in this chapter contributes towards verifying the first and second
hypotheses. Balancing is an example of a meaningful task that fits the task taxonomy, thereby
encouraging faith in the first hypothesis. The second hypothesis is addressed by providing a
working physics engine for ball movement prediction and a corresponding urgency heuristic.

6.1. TASK SPECIFICATION 117

6.1.3 Task Model

As in the preceding chapters, the task needs to be modelled in terms the machine can understand.
Again this is achieved by formulating the objective in terms of variables that can be placed
under homeostatic control. While the conceptual task is readily understood, it is not immediately
clear which factors the urgency heuristic should depend on. Various options including existing
configuration variables as well as derived values are considered.

As a human performing this task, one would keep the following factors in mind:

• The distance of the ball from the centre of the bowl

• The maximum height the ball reaches when moving in the bowl

• The angles between which the ball swings (θ)

All of these are essentially the same in the sense that they describe the ball’s location, albeit
using different variables. Since the ball’s theta angle is part of the robot’s state already, it would
make sense to use it. It does not require any values to be derived or converted from spherical to
Cartesian coordinates.

There is, however, a problem with all purely positional approaches: The speed of the ball is not
considered and as such a ball speeding through the bottom of the bowl would be associated with
zero urgency. Unlike a ball resting at the bottom, which really is the ideal case, a fast moving
ball will soon pass through the centre and climb up the opposite side of the bowl. If the ball
is moving fast enough this may even cause the task to fail, meaning that an urgency of zero is
totally inappropriate.

Having recognised the significance of the ball’s speed, one may decide to base urgency on it.
However, speed alone is also insufficient. As the ball reaches the apex of its motion, its speed
will decrease to zero before rolling down in the other direction. Consequently, a ball that stops
just short of the rim of the bowl before changing direction will be assigned zero urgency. A small
nudge in the wrong direction could cause immediate failure, but, even if that does not happen,
the ball will gather a significant amount of speed when rolling down.

Since neither position nor speed are sufficient on their own, urgency will have to take both factors
into consideration. The problem is that these indicators are different measures that cannot simply
be added. At this point one may consider decomposing the balance task into two taxonomy tasks,
but fortunately there is a more elegant solution. Converting the ball’s height into potential energy
and its speed into kinetic energy gives two comparable values in joules. These can now be added
to yield a single objective value. As long as the energy of the ball stays below a certain threshold,
it cannot fall out of the bowl.

118 CHAPTER 6. BALL BALANCING TASK

6.1.4 Task Classification

Ball balancing can easily be identified as a task with extrinsic value. In the absence of other
tasks, the robot would not have to move and the ball would never be agitated. Even if the ball
were initially in motion, it would lose energy due to friction and eventually come to a standstill
without the robot taking any action.

Depending on whether the task is concerned with internal or external state, it would be classified
as category three or category four respectively. Interestingly, this distinction depends on the
interpretation of the task. In the literal sense, the ball is not part of the robot as it is not firmly
attached to it. This would mean the task is interacting with the external environment and therefore
in category four. Here, the ball is seen as an indicator of the robot’s balance however. This
is an internal parameter, meaning the task is placed in category three. For practical purposes
this distinction is of little consequence. The only difference it makes in the implementation is
whether the ball’s state is part of the robot’s configuration or the environment.

6.2 Background

When it comes to ball balancing in the present sense, there is very little background to speak of.
Some approaches to balancing other objects exist but are not applicable here. The problem is
that the physical properties of different objects vary significantly and require different solutions.
For this reason, there is no close correspondence in the literature to the approach taken here,
which was specifically designed as a demonstrator task for SMT. Nevertheless, the following
gives some background on related work, including pole balancing, which was the inspiration for
this task.

Searches for keywords such as robot ball balancing turn up results pertaining almost exclusively
to a particular class of robots called “Ballbots”. Ballbots are omnidirectional vehicles propelled
by a single spherical wheel which is also their only contact with the ground (see figure 6.1).
Lauwers et al. describe the development of “Ballbot” in [73] and [74].

Since these projects are concerned with balancing the robot on a ball and not the other way
around, they have little in common with the task presented in this chapter. However, Ballbot
does show how acceleration can affect balance and demonstrates that it can be restored and
maintained through controlled motion.

6.2. BACKGROUND 119

Figure 6.1: Ballbot “Rezero” balances on a sphere which is at the same time its only means of propulsion
(image taken from [52])

The Stewart Platform [115] is another example of a machine capable of achieving balance
through controlled motion. This parallel manipulator uses six linear actuators to support and
control a platform on which objects may be stabilised.

Figure 6.2: The Stewart Platform is able to stabilised and rebalance objects on top of it using six linear
actuators to compensate for perturbation and arrest unwanted movement (image taken from [72])

120 CHAPTER 6. BALL BALANCING TASK

A video by “Full Motion Dynamics” [39] shows how a ball can be balanced on a Stewart Platform.
While the mechanism is proficient at maintaining balance, it would be impractical to install such
a platform on most robots. In any case, it circumvents the problem rather than solving it. The
goal here is not to use additional hardware to allow the robot to ignore the balancing issue, but to
show that the robot can itself take care of balancing while also performing other tasks.

Taipalus [119, p. 1] describes a balancing problem involving liquids: “Consider the scenario
where a human or a robot is moving a glass filled with a liquid substance. The human would
intuitively avoid spillage depending on the environment, urgency of the movement or value of
the liquid, while the robot would have difficulty even noticing if it spills something”. However,
the problem is not further addressed.

Pole balancing is the closest counterpart to the task developed throughout this chapter. It involves
an agent, traditionally a small cart, moving back and forth in order to keep a pole hinged to its
top in as upright a position as possible [22]. This is also known as the pole-cart, stick balancing
or inverted pendulum problem. Given the similarities to ball balancing, one may even consider
using this task in its stead. One reason for which this may seem appealing is the prospect of
reusing existing solutions to the problem. For example, Hougen et al. [54] propose a mechanism
for training a neural network to control the cart. Provided with an input vector encoding the
current state of the system, the trained network outputs a single torque value, the sign of which
determines the direction of motion. The problem with this design, and generally all approaches
that produce controls for direct execution, is that no provision is made for assessing the quality
of alternative actions. As already established in Chapter 3, this is a basic requirement for
compromise formation and the reason for which such techniques cannot be used directly. The
system could be modified to output a rating in place of controls, but there are further limitations
inherent to the task of pole balancing that cannot be overcome. Its high volatility demands almost
undivided attention and dominates the robot’s behaviour by forcing it to change direction rapidly
in order to prevent the sensitive pole from toppling. This leaves little leeway for compromising
with other meaningful tasks. In any case, pole balancing can only be paired with tasks operating
in the same one dimensional space in which it operates.

Ball balancing was conceived as a more flexible and versatile alternative with wider application
beyond cart-like robots limited to moving horizontally in one dimension. While the ball is
volatile enough to pose a significant challenge for an AI system to control, its behaviour is not
too erratic for task coordination to be feasible. Since the task described does not appear to have
been solved, a physics model for simulating the behaviour of the ball is developed from first
principles. The following section relies on formulae that can be found in the mechanics section
of most physics books (e.g. “Fundamentals of Physics” [48]).

6.3. TASK STATE PREDICTION 121

6.3 Task State Prediction

This section develops a physics model for predicting the next position of the ball after the
execution of a given control vector. The following discusses the forces acting on the ball and
how they can be quantified using known values.

6.3.1 Known Information About the Robot’s Position

Information about the robot’s movement is required to work out the direction and magnitude of
the translational acceleration acting on the robot and the ball it is carrying.

The robot’s current position is obtained from its sensors as a vector in the XY-plane on which it
is travelling. Let ~P(t) denote this position with t representing the current time step.

Keeping a record of the coordinates the robot passes through allows previous positions to be
looked up. The robot’s position in the preceding time step (t−1) is given as ~P(t−1).

After applying a given set of controls, the robot’s new position will be

~P(t +1) = f k(~P(t),controls,T SL) (6.1)

where f k represents the forward kinematics function for the vehicle and T SL is the length of a
time step (in seconds) i.e. the length of time for which the controls are applied.

6.3.2 Known Information About the Ball’s Position

The development of a state prediction mechanism for the ball requires a model for representing
both its position and motion. As previously mentioned, spherical coordinates are well suited to
specifying the ball’s position within its spherical cap. Angular velocities are used to represent
motion.

Current information about the ball’s state at time t, is available from the robot’s sensors which
yield

currentBallPosition = (rθ ,θ ,ϕ) (6.2)

where rθ is the known radius of the spherical bowl, θ is the zenith angle and ϕ the azimuth
angle.

At any given time, the ball is at a particular height on a plane parallel to the XY-plane. This
horizontal plane has a circular intersection with the sphere. If the θ coordinate of the ball were

122 CHAPTER 6. BALL BALANCING TASK

fixed and only ϕ varied, the ball would travel along such a circle, the radius of which is given by:

rϕ = rθ sinθ (6.3)

The following illustration uses such horizontal circles to represent the sphere.

Figure 6.3: The ball moves within a spherical bowl, represented here using horizontal circles. The red
dot indicates the position of the ball which can be expressed in terms of both Cartesian and Spherical
coordinates.

As can be seen, the origin of the Cartesian coordinate system is at the centre of the sphere with
unit vectors:

î =

1
0
0

 , ĵ =

0
1
0

 , k̂ =

0
0
1

 (6.4)

6.3. TASK STATE PREDICTION 123

Finally, the ball’s current angular speeds are known as ωθ (t) and ωϕ(t). These are stored
between each time step, but could also be computed as the positional differences divided by the
time step length T SL.

The task is now to predict the ball’s spherical coordinates at time t+1 using the available
information. To do so, consider the forces that act on the ball when a given set of controls is
executed.

6.3.3 Acceleration due to Robot Translation

The first force to be modelled is that caused by acceleration or deceleration of the robot.
Acceleration can be felt as the force pressing a driver into their seat when making a fast start.
The seatbelt is needed to quell the opposite force caused by sudden breaking.

Acceleration is the change in speed over time, so we first need to ascertain the robot’s speeds.

~vRobot(t) =
1

T SL
(~P(t)−~P(t−1)) ~vRobot(t +1) =

1
T SL

(~P(t +1)−~P(t)) (6.5)

Using these, the acceleration can be calculated as:

~aRobot =
1

T SL
(~vRobot(t +1)−~vRobot(t)) (6.6)

The ball’s acceleration due to the robot’s translation in (x, y) is shown here as a vector in 3D
Cartesian space. Note that the force on the ball is equal and opposite to the direction of the
robot’s acceleration as indicated by negation.

~at =

−~aRobot .x

−~aRobot .y

0

 (6.7)

6.3.4 Acceleration Due to Gravity

Gravitational acceleration is easily represented as a pull towards the negative Z-axis using Earth’s
well known constant g≈ 9.81 m/s2.

~ag =

 0
0
−g

 (6.8)

124 CHAPTER 6. BALL BALANCING TASK

6.3.5 Centrifugal Acceleration

Finally, when travelling horizontally along a circle in ϕ , the ball experiences a radial acceleration
known as the centrifugal force. This fictitious force really expresses the absence of centripetal
force, which always points towards the centre of rotation and is given by Fc =

mv2

r where v is
velocity and r is the radius of the circle. The centrifugal force is modelled as having the same
magnitude but pointing in the opposite direction, i.e. outwards from the centre of rotation. To
find its magnitude, the ball’s (known) speed in ϕ , which is given in radians per second, first
needs to be converted to a speed in meters per second using v = ω r, where ω is angular velocity.
We can now write:

Fc =
mv2

r
= m r ω

2 (6.9)

Inserting our known angular velocity, ωϕ(t) and the radius rϕ yields the magnitude of our force.

|ac|= m rϕ ωϕ(t)2 (6.10)

To give direction to this force, consider how the cylindrical unit vectors are related to the
Cartesian unit vectors. r̂

ϕ̂

ẑ

=

 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1

 î

ĵ
k̂

 (6.11)

For a small enough period of time (in which the height z does not change), the ball can be seen
as orbiting a cylinder. The outward direction of the centrifugal force is given by the radial unit
vector r̂. Since this vector is of length 1 by definition, we can scale it to the desired magnitude
by multiplication.

~ac = |ac|

cosϕ

sinϕ

0

 (6.12)

We now sum all force vectors to get aball , the total acceleration the ball is subjected to.

~aball =~at +~ag +~ac (6.13)

6.3.6 Effective Acceleration Component

The ball cannot move freely in 3D Cartesian space however, so we are only interested in the
component of this force that points along the surface of the bowl. At any given time, the surface

6.3. TASK STATE PREDICTION 125

of the bowl can be approximated as the sphere’s tangent plane at the ball’s location. The aim is
now to project the Cartesian acceleration vector onto this plane to get the effective acceleration
vector~ae f f . To do so we need the normal vector of the plane, which is conveniently given by the
spherical unit vector r̂ as seen below. r̂

θ̂

ϕ̂

=

sinθ cosϕ sinθ sinϕ cosθ

cosθ cosϕ cosθ sinϕ −sinθ

−sinϕ cosϕ 0

 î

ĵ
k̂

 (6.14)

In other words, the plane’s normal vector is:

n̂ =

sinθ cosϕ

sinθ sinϕ

cosθ

 (6.15)

Using this normal vector, the acceleration orthogonal to the plane of motion can be expressed as
the projection ~aorth = (n̂·~aball)n̂ and subtracting this orthogonal component from the original
acceleration vector yields the effective acceleration in the ball’s momentary plane of motion.

~ae f f =~aball−~aorth (6.16)

6.3.7 Linear Velocity to Angular Velocity

So far, we have been operating in 3D Cartesian coordinates. A translation to spherical coordinates
is required in order to obtain the accelerations in terms of θ and ϕ . This is done by projecting
the effective acceleration vector onto the spherical basis vectors. The dot product directly yields
the length of these projections because, as above, one of the vectors has unit length.

aθ =~ae f f · θ̂ m/s aϕ =~ae f f · ϕ̂ m/s (6.17)

The unit of these accelerations is still meters per second and needs to be converted to angular
velocities. In so doing, it is essential to bear in mind that the radii of the movements in θ and ϕ

are different. They have already been defined as rθ and rϕ respectively.

aθ =
~ae f f · θ̂

rθ

rad/s aϕ =
~ae f f · ϕ̂

rϕ

rad/s (6.18)

126 CHAPTER 6. BALL BALANCING TASK

6.3.8 Damping and Friction

So far, we have looked at factors that contribute to the ball’s acceleration, but, over time, the
ball will also lose energy. The biggest factor to consider is friction, which is modelled here in a
simplified manner by use of a damping factor. Friction has no effect when the ball is half way up
the sphere on either side (θ = π

2 or θ = 3π

2) because it is in free fall at these points. As the ball
descends, friction increases until it reaches its maximum effect at the bottom of the bowl. More
precisely, the effectiveness of damping due to friction varies according to negative cosθ .

The amount of friction would, in reality, depend on a number of factors such as the material of
the ball and the bowl. Instead of defining these, a damping factor is used by which speeds are
multiplied. Let this factor be dampingPercentagePerMs and define the percentage of the angular
velocity that is lost due to friction every millisecond. The effective damping factor, considering
the ball’s height, is then given as:

e f f ectiveDampingPerMs =−cosθ dampingPercentagePerMs (6.19)

This now specifies how much energy is lost, but it is more useful to define a damping factor that
specifies how much energy remains.

dampingFactorPerMs= 1−e f f ectiveDampingPerMs= 1+cosθ dampingPercentagePerMs

(6.20)
Finally, this factor is applied every millisecond, meaning that in our time step length (given in
seconds) damping is applied 1000 T SL times, giving a total damping factor of:

dampingFactor = dampingFactorPerMs1000 T SL (6.21)

Through experimentation it was found that reducing velocities by 0.1% every millisecond led to
the best results, but the damping percentage can be adjusted as desired.

6.3.9 Predicted Theta Position

It is now possible to calculate the ball’s new velocity as:

ωθ (t +1) = dampingFactor (ωθ (t)+aθ T SL) (6.22)

Applying this speed for the length of the time step yields the next θ coordinate.

θNext = θ +(ωθ (t +1) T SL) (6.23)

6.3. TASK STATE PREDICTION 127

6.3.10 Conservation of Angular Momentum

It may be tempting to calculate ϕNext analogously, but it is not quite that simple. Due to the
change in θ , the radius of the circle along which the ball travels in ϕ has now changed. If, for
instance, the new radius were smaller but the angular velocity remained the same, then the ball
would travel a shorter distance in the same time. This goes against one of the most fundamental
laws of physics: Energy cannot disappear. Energy conservation is achieved by compensating for
the change in radius by multiplying the new angular momentum by the quotient of the old and
new radii. We call this factor the angular momentum conservation factor (AMCF).

AMCF =
rθ sinθ

rθ sinθNext
(6.24)

6.3.11 Predicted Phi Position

Using the AMCF , the new angular velocity in ϕ can be expressed.

ωθ (t +1) = dampingFactor AMCF(ωϕ(t)+aϕ T SL) (6.25)

As the last step, compute the next ϕ coordinate.

ϕNext = ϕ +(ωϕ(t +1) T SL) (6.26)

The predicted next coordinates of the ball are:

predictedBallPosition = (rθ ,θNext ,ϕNext) (6.27)

6.3.12 Additional Factors

Two factors have yet to be accounted for in the presented physics model. The first is rotational
inertia, which essentially describes how much effort is required to change the rotational velocity
of an object. In the case of the ball rolling in the bowl, there is not much effort involved and
inertia can be neglected without causing any significant changes to the ball’s behaviour. All it
would do is reduce rotational speeds by a small amount.

Secondly, the ball’s radius has not been considered, i.e. it has been modelled as a particle. If the
ball had a significant radius, its centre of mass would be closer to the centre point of the sphere
and that would mean its radius of rotation would be shorter than rθ . Again this would have very
little impact – unless the ball were really quite large.

128 CHAPTER 6. BALL BALANCING TASK

6.4 Urgency Heuristics

For assessing the urgency of the ball balancing task, a heuristic function of the robot’s
configuration is defined. The function can be called with any sample configuration to be
evaluated. As mentioned earlier in this chapter, urgency will be based on the ball’s total energy.
The energy consists of potential and kinetic components, which can be calculated using the
information stored in the sample configuration.

The potential energy is computed using the well known formula

Epot = m g h (6.28)

where m is mass, g the gravitational acceleration, and h the height of the ball above the bottom
of the spherical bowl. Mass will be known, but can be disregarded as it is a constant factor and
will cancel out at a later stage. With g also known, this leaves only the height to be computed
from the spherical coordinates of the ball.

h = rθ + rθ cosθ (6.29)

The radius rθ is that of the sphere.

Kinetic energy is given by the expression:

Ekin =
1
2

mV 2 (6.30)

where m is mass and V is velocity.

Seeing as the ball has a velocity in θ and in ϕ , there will be two contributions. Before plugging
these values into the energy equation, the angular velocities (stored as part of the configuration)
have to be converted to linear velocities.

vθ = rθ ωθ vϕ = rϕ ωϕ (6.31)

The sum of both kinetic energies can then be written as follows (mass can be omitted, i.e. set to
one, for the same reason as with potential energy):

Ekin =
1
2

m(v2
θ + v2

ϕ) (6.32)

6.4. URGENCY HEURISTICS 129

The total energy of the sampled configuration is simply the sum.

Esample = Epot +Ekin (6.33)

In order to score this on the urgency scale, the ideal and worst cases need to be defined. The
worst case is task failure, where the ball falls out of the bowl. To modulate the difficulty of
the balance task, the hight of the ball’s rim can be varied. It is specified in terms of an angular
displacement in θ from the bottom of the bowl. For example, with a maximum angle of π

4 , the
ball is allowed to oscillate between π− π

4 and π + π

4 . The maximum height above the bottom of
the bowl is then

maxHeight = rθ + rθ cos(π−maxAngle) (6.34)

The energy of the ball at the rim of the bowl is its potential energy at the maximum height.
Reaching or exceeding this energy means failing the task.

Eworst = m g maxHeight (6.35)

The ideal case is easily defined as the ball resting at the bottom of the bowl where it has neither
potential, nor kinetic energy.

Eideal = 0 (6.36)

Since the ball’s energy may change fairly rapidly, these ideal and worst cases can be achieved
within a foreseeable amount of time. If this were not the case, it would be preferable to set them
to values that can in fact be attained within a few seconds. A simple policy may be to use a
maximum amount by which the sample’s potential can vary (e.g. Esample±10%).

Whichever way the ideal and worst cases are set, the balance task’s urgency at the sample
configuration is computed using the formula discussed in the coordination chapter. At this stage
the mass of the ball cancels out.

urgency =
Esample−Eideal

Eworst−Eideal
(6.37)

130 CHAPTER 6. BALL BALANCING TASK

6.5 Experiments and Results

6.5.1 Physics Simulator

The correctness of the physics engine was continuously verified throughout its development and
refinement using a specially created simulator, of which the following is a screenshot. On the
left, the sphere is shown as a 3D projection. A top-down view of the ball can be seen at the
bottom right and above it is the control panel of the simulator.

Figure 6.4: Screenshot of the ball-physics simulator showing a 3D projection of the sphere along with a
top-down view of the ball and the application’s control panel

Initially, the ball was given a non-zero height (e.g. θ = 100°) with no initial speeds. When the
simulation starts, the ball can be seen rolling down the side of the bowl as potential energy is
converted to kinetic energy. The ball passes straight through the bottom of the bowl where it
reaches maximum speed and then begins its ascent on the opposite side, demonstrating how
kinetic energy is converted back to potential energy. Due to friction (modelled using the damping
factor as explained earlier), the ball loses energy over time, meaning that it cannot regain its
starting height on the opposite side of the bowl. As the simulation continues, the ball oscillates

6.5. EXPERIMENTS AND RESULTS 131

back and forth like a pendulum with gradually decreasing period, until it comes to rest at the
bottom of the bowl with all energy depleted.

As a next step, the ball was given an initial speed in ϕ . For example, vϕ = π means the ball
goes half way around the bowl in one second or full circle in two seconds. Of course the ball
also drops in θ as it circles in ϕ . The resulting behaviour can best be described as elliptical
oscillation about the bottom of the sphere.

Finally, the simulator allows the user to set the robot’s wheel speeds. This feature allows
examination of the ball’s response to acceleration and was used to verify that the robot can
influence the energy of the ball. Once the ball was moving the way one may expect and the
model was deemed accurate, a robot controller was implemented to reduce the energy of the ball.

6.5.2 Stationary Robot

To establish a benchmark for evaluating the experiments to come, first consider the simple case
of a stationary robot. Like in the physics simulator, the ball is given an initial height. Its starting
position can best be seen in the top-down view of the sphere. Here, a ball with coordinates
(r,θ ,ϕ) = (15cm,115°,0°) is displayed.

Figure 6.5: Top-down view of a ball with an initial displacement from the bottom of the bowl

Without intervention by the robot, the ball’s energy graph looks as follows. The vertical axis
shows the ball’s total energy (sum of potential and kinetic energies) in joules and the horizontal
axis shows time in terms of the number of discrete time steps.

132 CHAPTER 6. BALL BALANCING TASK

Figure 6.6: The ball’s initial potential energy diminishes over time without robot intervention. Positional
variations in friction explain the small wave-like ripples in the energy graph (see Damping and Friction).

6.5.3 Straight Line Acceleration

We now allow the robot’s controller to intervene and observe how effectively it can reduce the
ball’s energy by accelerating. It will do so by driving forwards (its heading is along the positive
x-axis) in a straight line, i.e. in line with the ball’s motion, because this way its acceleration has
maximum effect on the ball. The robot could choose to turn as well, but acceleration orthogonal
to the ball’s direction of motion has no damping effect on its energy and is therefore of no benefit.

Figure 6.7: Graph showing a ball’s potential energy being actively depleted by accelerating the robot in a
straight line to counteract the forces moving the ball once released from its initial height (θ = 115°)

The graph shows that the robot is able to bring the ball to a standstill in 150 time steps, which is
only half of the time it takes to come to rest naturally. This is despite the fact that the robot has

6.5. EXPERIMENTS AND RESULTS 133

to wait for 40 time steps before it can start accelerating because it takes that long for the ball to
swing to the opposite side of the bowl. As can be seen from figure 6.8, the ball does not regain
its starting height due to losing some of its energy to friction while rolling from one side of the
bowl to the other.

Figure 6.8: Top-down view of the ball having reached the opposite side of the bowl with a maximum
displacement of just under 12 cm (down from 13.5 cm due to losing some energy to friction)

Accelerating before that time would increase the energy of the ball because driving forwards
accelerates the ball backwards (in direction of the negative x-axis), exacerbating the problem. If
the robot were allowed to drive backwards, which it is not, it could already intervene by doing so.
This experiment demonstrates that the AI is able to discern that not moving at all can sometimes
be the best policy. Since the robot does not move until t=40, the energy graph exactly matches
the previous one up to this point.

Between t=40 and t=70, the ball rolls down the slope of the bowl from the direction of the
negative x-axis towards the bottom of the bowl. In this time the robot accelerates as much as it
physically can to maximally decrease energy, which is evident in the steep drop in the graph.

At t=70 the ball reaches the bottom of the bowl with only very little energy remaining.
Nevertheless, this residual energy carries the ball through the centre of the bowl. In response, the
robot then slowly decelerates to help roll the ball back into the centre. The deceleration phase
takes fairly long as it needs to be done slowly. An abrupt decrease in speed would give the ball
enough energy to roll back up the slope it just rolled down.

134 CHAPTER 6. BALL BALANCING TASK

6.5.4 Acceleration Along a Curve

To further increase the complexity of the problem, let the ball start at an angle to the heading of
the vehicle. We set up the experiment with the same starting height, but set ϕ =+45° as shown.

Figure 6.9: Initial ball displacement to the left of the robot’s heading (θ = 115°,ϕ = 45°)

As before, the robot is facing in the direction of the positive x-axis. Since the vehicle is not
modelled as a point, it cannot immediately drive towards the ball. Using the arcs it is restricted to
generate, the most effective path is a curve of gradually increasing curvature as displayed below.

Figure 6.10: Left-curving path generated in workspace to becalm a ball released from an initial position
of (θ = 115°,ϕ = 45°)

6.5. EXPERIMENTS AND RESULTS 135

Despite not being well aligned to solve this problem, the experiment shows success at driving
into the ball to reduce energy as much as possible. Again this is only possible past t=40, but after
that the energy can be seen to rapidly decline as the curved path is generated.

Figure 6.11: Graph showing a ball’s potential energy being actively depleted by accelerating the robot
along a curved path to counteract the forces moving the ball once released from its initial coordinates
(r,θ ,ϕ) = (15cm,115°,45°)

The same experiment is repeated with the ball’s initial position mirrored on the x-axis. This is to
confirm that the resulting path curves in the opposite direction, as one would expect.

Figure 6.12: Initial ball displacement to the right of the robot’s heading (θ = 115°,ϕ =−45°)

136 CHAPTER 6. BALL BALANCING TASK

Indeed, the robot produces a path of the exact same shape except that it is mirrored on the
x-axis. This means the robot is able to orient itself in the direction the ball oscillates, where its
acceleration has maximum effect.

Figure 6.13: Right-curving path generated in workspace to becalm a ball released from an initial position
of (θ = 115°,ϕ =−45°)

The energy profile is identical to the one previously shown – as indeed it should be.

Figure 6.14: Graph showing a ball’s potential energy being actively depleted by accelerating the robot
along a curved path to counteract the forces moving the ball once released from its initial coordinates
(r,θ ,ϕ) = (15cm,115°,−45°)

6.6. SUMMARY AND EVALUATION 137

Interestingly, the robot can stop the ball even more quickly when it starts at an angle in ϕ ,
despite this being a more difficult problem. The reason behind this is the short-sightedness of the
one-step planner being used. Guided only by the desire to reduce the ball’s energy as much as
possible in the very next time step, the robot greedily accelerates in the straight line case. This
strategy almost completely stops the ball by t = 70, which is indeed faster than the 100 time steps
needed in the case where the ball starts at an angle. The AI has not, however, considered that a
deceleration will be required if the ball cannot be stopped before it passes through the lowest
point of the bowl. By the time this happens, it is already too late to correct the error. The robot is
forced to decelerate slowly so as not to excite the ball. When driving in an arc, it accelerates less
quickly which means it takes 100 steps to stop the ball, but it need not spend as long decelerating.

Finally, it should be noted that the robot will not necessarily stop when the ball reaches the
bottom. Its best course of action is to maintain whichever speed it is at when the ball reaches
zero energy because any change in speed will cause an acceleration that will reintroduce energy
into the system.

6.6 Summary and Evaluation

This chapter documents the development of a complex physics model for simulating ball motion
in a spherical bowl under the influence of translational, gravitational and centrifugal acceleration.
State prediction also takes friction and the conservation of angular momentum into account.

An urgency heuristic is defined in terms of the potential and kinetic energies of the ball. Together,
these two mechanisms provide the functionality required by the coordination mechanism and
show that the first and second hypotheses are not unreasonable.

Experiments demonstrate a robot controller successfully bringing the ball to a stop from a state of
unrest by reducing its energy. The results also indicate a disadvantage with single-step planners,
which is of interest in the context of the fourth hypothesis. Since the short-sightedness does
not lead to failure, but only a non-ideal solution being selected, this is not conclusive evidence
that task coordination cannot work with a single-step planner. As long as it is simply a trade-off
between computational complexity and accuracy, this is a compromise that likely needs to be
made to allow for real-time planning.

The solution to the task presented here is independent of the homeostatic mechanism. It may
be a useful addition to other systems and could also be used in conjunction with different task
coordination mechanisms, including a multi-step planner. The task fulfils all the requirements
laid out and is deemed suitable for coordination purposes.

7CHAPTER SEVEN

SIMULATIONS AND
RESULTS

Equipped with solutions to the developed demonstrator tasks, this chapter proceeds to test the
proposed task coordination system. The first section describes the robot simulator that was
developed for this purpose. Next, the design of the AI control system used in all the following
tests, as well as the ones already presented in the task chapters, is explained. The bulk of the
chapter is made up of the experiments themselves. Results are obtained for coordinating each
pair of tasks, as well as all of them simultaneously. Findings are analysed and interpreted in a
final section.

7.1 Robot Simulator

Before discussing the experiments conducted in the evaluation of the task coordination system,
this section introduces the simulator with which results were obtained.

7.1.1 Available Simulators

Initially, Webots [27] was trialled as a testbed for the developed theory. At the time, this was
a commercial robot simulator sold by Cyberbotics. One of the main difficulties encountered
with Webots had to do with its physics engine, a fork of the Open Dynamics Engine (ODE)
[104]. While very popular, the engine did have a number of known issues [33]. Approximations
were used to make up for a lack of computational efficiency, leading to a loss in precision.
This adversely affected the ball balancing task, as the forces acting on the ball were often too
insignificant to register and when they did, the ball could suddenly lurch forwards. Meanwhile,

139

140 CHAPTER 7. SIMULATIONS AND RESULTS

Webots has become an open source project and may have improved but the change came too late
for this PhD.

The Robot Operating System (ROS) [113] could have been a viable alternative, had it not been
built on the same physics engine as Webots and inherited the problems already observed. Since
ROS is an open source project, it may have been possible to develop a custom physics plug-in
or patch the issue. However, such a fix would have had to be actively maintained to ensure
continued compatibility with the simulator. Backward compatibility may have been dropped
with any update, leading to a loss of functionality.

7.1.2 Design of a Custom Simulator

To ensure all required features could be provided and ball physics calculated with the necessary
accuracy, an own simulator was built in Java. This endeavour did not involve as much additional
work as one may expect. Task state prediction mechanisms had to be developed for all
demonstrator tasks and the robot simulator is essentially an amalgamation of these. So as
not to overcomplicate matters, it is designed for a simple 2D environment and, for now, only
supports differential drive robots.

The following diagram displays the simulator’s main components and indicates how they interact.
A brief explanation of each component follows.

AI Controller

Selected
Controls

Robot Model

State Evolution

Main Control Loop

GUI

Environment Model

Sensor
Data

Selected
Controls

New State

Next Cycle
Sensor Data

Robot
Configuration

Sensor Data and
Collision Detection

Communication

Figure 7.1: Design of the robot simulator showing all major components and their interactions

7.1. ROBOT SIMULATOR 141

7.1.3 Graphical User Interface

The simulator’s graphical user interface consists of two windows, a control panel and a view of
the simulated environment.

Robots and obstacles are viewed top down as seen in the following screenshot of the main
application. The buttons at the top can be used to play, pause or step through the simulation.

Figure 7.2: User interface of the robot simulator used in the evaluation of the proposed homeostatic task
coordination mechanism

The control panel is used to add robots to the simulation. A wide array of settings may be
specified, including the robot’s size, number of sensors, start and goal configurations etc.
Different obstacle courses can be loaded from file and a variety of controllers can be selected.

142 CHAPTER 7. SIMULATIONS AND RESULTS

Figure 7.3: The control panel is used to add and remove robots to/from the simulation. It allows properties
of the robot to be changed, different controllers to be selected and task parameters to be set.

7.1. ROBOT SIMULATOR 143

7.1.4 Main Control Loop

Once the user has set up a problem by specifying its parameters in the control panel, the
simulation can be started. Doing so spawns a thread to run the main control loop.

In each iteration of that loop, which marks the passing of one discrete time step, the system
evaluates the sensors of all active robots. It does so with the help of the Environment Model,
which, among other things, works out the distances that should be registered by a robot’s sonar
sensors. The recorded sensor data is sent to the Robot Model and passed on to the AI Controller,
which has until the start of the following time step to decide the next action. While the next
controls are being computed, the ones selected at the end of the previous step are executed. This
means the controller is always acting on sensor information that was recorded in the previous
time step. Not implementing this delay would be unrealistic as it would imply that controls are
computed instantly. In reality, the robot is moving while it is processing. It cannot spend the
whole time step computing and then teleport to the end of the transition it decided on.

For the response time to be good, the time step length must be as short as possible. Along with
many other parameters it can be set using the simulator’s control panel. The default duration is
only 16 milliseconds to ensure the robot is responsive and the physics simulation accurate.

7.1.5 Robot Model

A separate model is created for each robot in the simulation and contains all the information
pertaining to it. This includes fixed parameters such as the robot’s size and number of sensors, as
well as changing variables making up its configuration. The problem the robot is tasked to solve
is represented in memory by its start and goal configurations.

In addition to storing data, the model, which can be thought of as a virtual robot, also
communicates with its AI controller. It does so by sending it the raw sensor information
recorded by its sensors. In return it receives the controls selected for execution in the next time
step. Execution is simulated by passing the controls to the State Evolution component.

The only type of robot currently supported is a differential drive vehicle [35, p. 18]. Although in
future the developed control system is to be tested using a variety of vehicle architectures, this
type is well-suited for initial experimentation. Differential drive describes propulsion by two
independent wheels which are positioned on either side of the chassis. The vehicle is controlled
by changing the speed with which each wheel turns. When both wheels rotate at the same rate
the robot travels straight ahead in the direction it is facing. Curves, specifically circular arcs,
are generated by using unequal wheel speeds. The robot will turn in the direction of the slower

144 CHAPTER 7. SIMULATIONS AND RESULTS

wheel. Straight lines and arcs are thus its primitive motions. More complex paths, such as
ellipsoidal ones, cannot be generated directly but are instead approximated using a sequence of
primitive motions.

7.1.6 AI Controller

The AI controller is not part of the robot simulator, but a stand-alone component that
communicates with it. This design decision was made in preparation for the transition to
working with physical robots (see Future Work).

The controller is an implementation of the task coordination framework, or, more specifically, its
homeostatic variant. The details of the proposed action selection mechanism for SMT can be
found in Chapter 3 and will not be repeated here.

7.1.7 State Evolution

State evolution is the component in which most of the actual simulation takes place. It receives
selected controls and works out how their execution will affect both the robot’s configuration
and the state of the external environment.

Fortunately, the state prediction mechanisms already developed for each task perform the same
functionality and can be reused (see sections 4.3, 5.3 and 6.3). This allowed the robot simulator
to be built with very little overhead.

When the new state has been determined, it is passed to the Main Control Loop, where the states
of all robots are collected and used in the following controller cycle.

7.1.8 Environment Model

The simulated world is a 2D workspace with obstacles. Obstacle courses can be loaded from files
containing a description of the locations and sizes of circular, polygonal and C-shaped obstacles.

When the Main Control Loop receives new robot state information, it uses the environment
model to perform collision tests and to assign new sensor data to the robot model. If collisions
or other indicators of failure are detected, the control loop is notified and an appropriate error
message is shown in the graphical user interface. The user is likewise informed upon successful
completion of all tasks.

7.2. CONTROLLER IMPLEMENTATION 145

7.2 Controller Implementation

To show that the developed theory has practical application, a controller needs to be able to select
useful controls by minimising the provided heuristics. Individual tasks are solved by selecting
the controls associated with least urgency. When multiple tasks are to be coordinated, their
homeostatic mortality index is used instead.

For a differential drive robot, search space is two dimensional with only left and right wheel
speeds needing to be found. Not yet suffering from the curse of dimensionality with two degrees
of freedom, a sampling approach is tractable. For higher dimensions, a technique such as
Benjamin’s “Interval Programming” (IvP) [9] method may be more appropriate.

Sampling takes place in the first quadrant of control space, i.e. only positive values for the wheel
speeds are considered. A differential drive robot can usually reverse by selecting negative speeds,
but here we restrict the vehicle to forwards-only motion. This serves several purposes. Firstly,
not all vehicles can reverse (e.g. aeroplanes) so a general solution should not rely on this feature.
Secondly, slowing down to change direction and then accelerating again is typically inefficient
and can result in motion that is not at all smooth. Finally, this restriction allows certain features
of the system to be demonstrated. For example, the strain-based heuristic allows the goal location
task to first move away from its destination before turning round to approach it.

Search is even further restricted to model (semi-)realistic acceleration and deceleration limits.
Although the entire space can be sampled, most of those samples could not be executed by a
real robot. Changing speeds takes time and the time steps are small, so each wheel can only be
accelerated or decelerated by a small amount in each interval. This is accounted for by limiting
search to a small square centred around the robot’s current wheel speeds. The valid region is
illustrated in figure 7.4 as a blue frame.

146 CHAPTER 7. SIMULATIONS AND RESULTS

Figure 7.4: Control space for a differential drive robot within which a blue frame bounds the space of
realisable controls to be considered in deciding the next action

It is assumed that the robot can instantly change speeds within this region, which of course is not
entirely accurate. The simulation step lengths are however so small that the approximation seem
reasonable. Depending on the power of the motors being simulated, the size of the speed frame
can be varied.

Samples are distributed evenly throughout the marked area in a grid. A 16 by 16 grid would
for instance generate 256 control samples. Each sample represents a candidate action which
is costed in terms of urgency or using the HMI. The controls with least cost are selected for
execution. For best results, the controller should evaluate as many samples as it can in its allotted
time.

7.3. EXPERIMENTS AND RESULTS 147

7.3 Experiments and Results

This section presents a series of experiments designed to empirically evaluate the developed
homeostatic task coordination mechanism.

The first step towards ensuring the correctness of the system is to assert that it does not intervene
unnecessarily. When only one task is being “coordinated”, the ideal controls for that task should
be executed without modification, i.e. as though the coordination mechanisms were not active
at all and the task were in full control of the robot. This property was successfully confirmed
by running the coordination mechanisms with each task to be coordinated. Consequently, the
results do not deviate from those already documented in the task chapters above and will not be
repeated here. The results presented in this chapter focus on cases where there are at least two
tasks active at the same time such that conflict occurs and coordination is required.

7.3.1 Goal location with ball balancing

Simultaneous coordination experiments begin with the combination of goal seeking and ball
balancing. In this constellation, one might expect the robot to rapidly accelerate towards its
destination, while making only the required concessions in terms of speed and direction to keep
the ball in its bowl. The reality does not live up to these expectations, which are borne of the
human proclivity to inject a sense of time and urgency into most any task. As already discussed
in Chapter 4, the goal location task is motivated primarily by the reduction of strain and cares
less about the time of arrival. The little motivation for haste that was artificially instilled by
use of the discount factor for past strain is quickly annulled by the balancing task’s aversion to
acceleration.

Without any notion of a deadline, coordination is simple. The robot can follow its desired path to
the goal as long as it moves so slowly that the ball is not perturbed. From the controller’s point
of view, it is finding the perfect solution as both urgencies can be kept close to their ideals and
the HMI is correspondingly low. So although the resulting behaviour may not correspond to
initial expectations, the system is in fact doing exactly what it was constructed to do.

Any plans to hasten proceedings by increasing the goal location task’s discount on past strain
will backfire. While doing so does increase the gap between the urgency of fast and slow control
samples, it also lowers overall urgency. In comparison, the balance task’s urgency is now larger
than it was before, which lends even more weight to its preference for low speeds. It is then
unsurprising that the results obtained vary little from those presented in the task coordination
chapter. An overview of generated paths is shown below. The biggest difference is that these
similar paths take a lot longer to execute.

148 CHAPTER 7. SIMULATIONS AND RESULTS

Figure 7.5: Collection of test cases demonstrating successful coordination of the goal location and ball
balancing tasks

Since the difference between the goal location task run with or without ball balancing is almost
imperceptible, consider the following direct comparison. The robot that has already attained
the goal location on the left is unencumbered by the need to consider balance. Lagging behind
is the slow moving robot that is coordinating both tasks. The paths generated are very similar,
except for a slight difference in curvature. A less severe turn is beneficial to balance as the
sideways acceleration component is smaller. This is where the homeostatic mechanism effects a
compromise to balance the needs of turning towards the goal and keeping the ball’s energy low.

7.3. EXPERIMENTS AND RESULTS 149

Figure 7.6: Comparison of paths generated with and without ball balancing: the robot not considering
balance has already attained the goal on the left whereas the one balancing the ball is lagging behind

The ball’s energy variation throughout this journey is displayed in the following graph.

Figure 7.7: Energy graph for the ball-balancing robot in the above experiment

Just how slowly the robot moves can be seen from the horizontal axis, which indicates that
the robot took about 420 steps to reach its goal. This compares to just 159 steps without the
balancing task. Naturally the physical forces acting on the ball at these speeds are weak. Two

150 CHAPTER 7. SIMULATIONS AND RESULTS

humps in the curve mark changes in curvature. The first peak in energy coincides with the robot
transitioning from an almost straight line to a left turn. Then, when the path straightens out again,
the second spike occurs due to another change in the direction of acceleration. Even at the apex
of these humps, energy barely reaches 0.02 joules. For reference, the task does not fail until the
ball reaches around 2.45 joules at the rim of the bowl.

The low energy is explained partially by the absence of a motivation for taking on more risk,
but is also evidence of the coordination mechanism fulfilling its purpose. All in all, the system
behaves as it should even if not as one may have expected initially. Compromise is evident
in the speeds being selected as well as in the curvature of the generated path. Both tasks are
coordinated and brought to successful completion in all experiments conducted.

7.3.2 Obstacle navigation with ball balancing

More severe conflict arises in the combination of obstacle navigation and balancing. Obstacle
avoidance and contour joining are grouped together due to their symbiotic relationship. So in
fact there are three tasks being coordinated in the following experiments.

Despite the continued lack of an incentive to move at high velocities, tension between the
tasks is increased due to the need of following more constrained paths around the obstacles.
While making the required turns, the robot experiences radial accelerations which cause larger
centrifugal forces to act on the ball. An example of this is given below.

Figure 7.8: Following the contour of a star-shaped obstacle while balancing

7.3. EXPERIMENTS AND RESULTS 151

At first the robot moves slowly, explaining the almost flat-lining energy graph shown below.
After completing a few laps of the obstacle, the robot is in better alignment with the contour
and can accelerate. An increase in speed may be motivated by obstacle avoidance. This is the
only task that has a strong preference for high velocities as its proximity-based urgency falls
off more rapidly when the robot takes large steps away from the obstacle. On top of that, the
slight oscillations of the ball in the bowl can at some times favour a change in speed with both
acceleration and deceleration being able to becalm the ball depending on its position.

Eventually however, the acceleration leads to increased agitation of the ball. Energy peaks at
values in excess of 0.7 joules, which is significantly more than was reached in the previous
experiments involving the goal location task. When energy levels rise too high, the controller
decreases both curvature and speed. This behaviour repeats in cycles as shown by the energy
curve between time steps 650 and 1050.

Figure 7.9: Graph of the ball’s energy as the robot circumnavigates the star-shaped obstacle shown above

The robot is not always able to turn back onto the contour after a manoeuvre designed to
rebalance the ball. In the next experiment, the controller deems it too dangerous to switch from
a severe right turn to a left turn. As a result, it leaves the U-shaped obstacle it was following.
Having reached free space, the obstacle navigation tasks no longer influence behaviour and the
robot eventually comes to a stop with the ball at rest.

152 CHAPTER 7. SIMULATIONS AND RESULTS

Figure 7.10: Following the contour of a U-shaped obstacle while balancing

The corresponding energy graph shows one initial peak caused by the robot accelerating away
from a start position close to the obstacle edge. Energy rises again between time steps 340 and
400 as the robot goes from a left turn to a right turn inside the U-shape. The ball is now too
perturbed for the vehicle to go back into a tight left turn. So instead of continuing along the
obstacle edge, the controller opts for a more gradual turn that leads into free space.

Figure 7.11: Graph of the ball’s energy as the robot circumnavigates the U-shaped obstacle shown above

7.3. EXPERIMENTS AND RESULTS 153

Figure 7.12: Collection of further test cases demonstrating successful coordination of the obstacle
navigation and ball balancing tasks

A screenshot of further experiments is shown above. The paths taken around the edges of the
polygonal shapes are similar to those produced by attending to contour joining in isolation. Most
likely this is explained by there being less radial acceleration when following these straighter
edges.

It is then surprising that the path around the circular obstacle is also smooth. The perfect circular
shape is a possible explanation. While centrifugal forces will be at work, there is never any
change in curvature. This is not the case with the star-shape, although the obstacle occlusion
mechanism does its best to smooth out the rough edges. It seems that these small differences
are nevertheless enough to have a visible impact. Overall behaviour is often not caused by one
factor on its own but by a string of contributing events. A chain reaction may easily be caused.
In this case a change in curvature may move the ball into a slightly different position, bringing
the robot marginally closer to the obstacle edge. This results in an acceleration away from the
obstacle to avoid collision which in turn agitates the ball etc.

Despite this volatility, experiments for the two tasks of obstacle navigation and ball balancing
have shown that a compromise can still be found when motion is more constrained due to
following a specific obstacle contour as opposed to merely aiming for a point in free space.

154 CHAPTER 7. SIMULATIONS AND RESULTS

7.3.3 Goal location with obstacle navigation

The last pair of tasks to be tested is the goal location task in conjunction with obstacle navigation.

A collage of successful experiments demonstrates the ability to navigate differently shaped
obstacles without clinging to their contour for longer than is conducive. This attests to the
practicality of the obstacle engagement and disengagement conditions.

Figure 7.13: Collection of test cases demonstrating successful coordination of the goal location and
obstacle navigation tasks

7.3. EXPERIMENTS AND RESULTS 155

The recurring complaint is speed of execution. Not only is there a lack of a sufficiently powerful
motivator for acceleration, the controller actually benefits from selecting low speeds. This is
because small arcs allow for more fine-grained (and seemingly superior) compromises to be
made. At the heights of contention between the two tasks, the vehicle slows to a crawl.

A further point of critique is that the robot ventures dangerously close to the edge of obstacles
before decidedly turning away. While the coordination mechanism does eventually prioritise
collision avoidance, the pull towards the goal location seems overly strong.

A possible culprit is the formula for the homeostatic mortality index. Despite reaching infinity
within the [0,1] interval over which it is defined, its slope ascends gradually to begin with. The
system is therefore lenient with low to medium urgencies which may not be sufficiently penalised.
This could lead to early signs of warning being blithely dismissed. Any adjustments to the
formula would of course apply to all tasks equally, meaning the effect may cancel out.

Even if the symptoms could be slightly alleviated in this way, the problem unfortunately runs
deeper. The following experiments substantiate the suspicion that a lack of foresight is to blame.

Figure 7.14: Experiments showing the impact of lacking foresight in the planner at high speeds

156 CHAPTER 7. SIMULATIONS AND RESULTS

The only difference to the previously successful tests is that all start configurations were moved
left so that the robots start in free space. Weak as their incentives may be, the robots do accelerate
before reaching the obstacle. In three out of four cases the higher velocities lead to collision.

Slow growing or not, the HMI can and will reach infinity. So although the robot may pass by an
obstacle closer than desired, the system should do everything in its power to prevent an actual
collision.

As it turns out, the homeostatic mechanism does do everything it can, but breaking the
acceleration limit is not within its power. That is not to say these problems are unsolvable.
If the robot were to turn earlier, failure could easily be averted. Early turning is in fact precisely
what the contour joining task was designed for, so what is stopping it from doing its job?

The reason is not to be found in the coordination system itself, which prioritises tasks in
accordance with the urgencies they report. Instead, the problem is that urgency is under-reported
due to lack of foresight. Planning only one step ahead, the controller fails to realise that turning
must be initiated even earlier given the speed the vehicle is travelling at. In other words, the
AI does not account for the time it takes to accelerate or decelerate. This leaves the robot in a
situation in which it must either defy its physical limitations or brace for impact. As the former
is not possible, the latter results.

A temporary fix may be to somehow inject the concept of speed management into the system
either by modifying the contour joining task’s urgency heuristic or by introducing a separate
task. Ultimately though, the problem is a more general one and could reoccur in any context, i.e.
with other tasks that requite some form of extended lookahead. In the long run, a more general
solution, such as a multi-step planner, is required. The fourth hypothesis was successfully upheld
for all individual tasks, but is not sustainable when multiple tasks are to be coordinated under
realistic conditions.

7.3.4 Coordinating all tasks simultaneously

Finally, all four tasks are coordinated together.

With some apprehension, the same experiments that caused collision even without the balance
task are repeated with it activated. Despite the complexity of the problem being increased, its
addition is initially beneficial. Having to be mindful of the ball prevents the fatal acceleration
towards the obstacles. This is an example of a coincidental synergy between tasks.

7.3. EXPERIMENTS AND RESULTS 157

Figure 7.15: Collection of test cases showing the behaviour resulting from the simultaneous execution of
all tasks

Although collision is avoided, only one of the experiments is completed with all tasks being
satisfied.

The star-shaped obstacle is successfully navigated with the robot reaching its goal having averted
all but very minor perturbations of the ball. Keeping the ball’s energy low is not a challenge
to begin with as the robot suffers from the usual pattern of slow movement already discussed.
This is why the energy curve (see figure 7.16) is almost completely flat, with only a small spike
marking the point of increased acceleration that occurs once the goal is in view.

One may get the impression that the other robots are also on course to reach their respective
goals. Yet, in the screenshot above, balance has already been lost due to a sudden spike in energy.
Possible reasons for this are explored in the following.

158 CHAPTER 7. SIMULATIONS AND RESULTS

Figure 7.16: Energy graph corresponding to the successful experiment shown above where the robot
navigates the star-shaped obstacle with all tasks in play simultaneously

The energy graphs for the failed experiments are very similar, which is why only that of the
circular obstacle is given as an example.

Figure 7.17: Energy graph corresponding to the failed experiment shown above where the robot navigates
a circular obstacle with all tasks in play simultaneously

As previously observed, the robot can get dangerously close to obstacles obstructing its path to
the goal location. After very slow movement close to the edge of the obstacle, the robot finally
faces free space again. At this point the collision avoidance task’s pronounced preference for
acceleration dominates overall behaviour. Proximity urgency is the only one with a powerful bias
towards high speeds when it has the chance to increase obstacle distance. Not having the foresight

7.3. EXPERIMENTS AND RESULTS 159

to predict long-term consequences for the ball’s balance, the robot recklessly accelerates. At the
same time it also turns towards the goal, adding radial acceleration.

The same holds true for the successful case however, so there must be an additional reason to
explain the intensity of the energy spike. Two possible explanations are given, although neither
is conclusive.

The first possibility is that the controls required to becalm the ball are not within the realisable
region of control space. Accelerating to flee the obstacle coupled with the turn towards the goal
location restricts sampling to similar controls to those just executed. These may not include an
action that generates a force in the opposite direction to the ball’s motion. Then, the controller is
not only prohibited from selecting controls that counteract the forces on the ball, but might even
be forced to select controls that exacerbate the problem. Of course, the robot should never be in
this impossible situation to begin with. In this case, a lack of foresight would be to blame.

It is strongly suspected that the above issue can and does occur in this and possibly other
situations. Yet, the abrupt hike in energy over the course of just 10 time steps seems unnatural.
If this were true, it would suggest that energy could be created out of nowhere by an error in the
physics engine. No such error could be found however. There is one case in which a singularity
occurs which might be responsible. Recall the formula for the radius of horizontal rotation.

rϕ = rθ sinθ (7.1)

At the bottom of the bowl, sinθ = 0 which implies rϕ = 0. Later we divide by this radius,
causing a potential division by zero in the formula:

aϕ =
~ae f f · ϕ̂

rϕ

rad/s (7.2)

This case is handled by setting rϕ = ε (some small constant) in this situation. All evidence points
towards this solution having the desired effect. After all, the ball starts at the exact bottom of the
bowl in every test case and there has never before been an issue with this.

Lastly, the problem may stem from the discrete time steps with which the physics simulation
works. The ball effectively jumps to its predicted location after each 16 millisecond interval. All
experimentation shows that fluid and visually realistic behaviour is achieved with re-computation
of the ball’s position at this frequency. So in the end, the cause of the energy spike remains
elusive.

160 CHAPTER 7. SIMULATIONS AND RESULTS

7.4 Interpretation of Results

The preceding section makes best efforts to describe and explain the phenomena observed
throughout the series of tests conducted. Given the multitude of factors at work, it is
acknowledged that not all interpretations and inferences are beyond doubt. There may also be
further issues not yet discovered due to the endless possible combinations of parameters involved
in setting up test cases. The following briefly summarises key insights gained based on the
present understanding of this complex system.

Combinations of pairs of tasks involving balance were most successfully coordinated. The robot
avoids unnecessary contentions between the tasks by driving slowly. While this may not have
been the expected solution, the controller cannot be faulted for taking advantage of the absence
of a deadline.

Initial experiments involving goal seeking in conjunction with obstacle navigation were
promising. Obstacles are engaged as needed and their contours left when safe to do so. Paths
are smooth but take on slightly more risk than desired by leaving only a small gap between the
vehicle and the obstacle. Symptoms could potentially be alleviated by modification of the HMI
formula.

The real problem is a lack of foresight and the discovery that the fourth hypothesis can no longer
be upheld. If an obstacle is encountered at speed, the contour joining task’s urgency does not
report a sufficiently large urgency to convey the need for initiating a turn. This is because doing
so would require a longer term plan to adjust the robot’s speed over multiple steps.

Only one of the experiments with all tasks competing at the same time was successful. The rest
were able to avoid obstacles and even started out on a good path towards the goal location but
then lost balance. Reasons for failure could only be speculated, but a lack of foresight is likely
responsible to some degree here as well.

The biggest concern is the increase in computational complexity that comes with the apparently
unavoidable switch to a multi-step planner. It was for this reason that the fourth hypothesis
about local search was made to begin with. Much effort was put into ensuring that each task
could succeed in its own goals when executing in isolation. Essentially, the idea was to make
sure that each task has optimal substructure or at least a weaker, non-optimal version of the
concept whereby local solutions are part of a global solution. It was naïvely hoped that the task
coordination system would then automatically inherit this property, provided all individual tasks
possessed it. This may have been the case if it were not for the restriction on acceleration and
deceleration, which seem to play a big part in dashing this hope.

7.4. INTERPRETATION OF RESULTS 161

On a more positive note, the homeostatic coordination mechanism itself was never implicated
in any of the failed experiments. Control samples associated with the lowest HMI rating were
consistently selected at every stage and that rating was faithfully calculated from the urgencies
reported by individual tasks. It is these task-specific urgency heuristics that were found to be at
fault as they did not reliably represent future ramifications of taking certain actions in the present.
Since the coordination mechanism depends on task urgencies to accurately reflect the danger a
task is in, it cannot be expected to produce good compromise controls when those urgencies are
under-reported due to lack of foresight. In other words, the issue lies with task solutions that
are plugged into the coordination framework rather than with the conflict resolution technique it
employs. This gives reason to hope that the system holds more potential that could be unlocked
with the resolution of the identified issues.

8CHAPTER EIGHT

CONCLUSION AND
FUTURE WORK

The final chapter concludes and evaluates the work undertaken as part of this thesis. A
brief summary reminds the reader of initial objectives and what was done to meet them by
discussing the contributions made. The research question is addressed separately, before the
thesis culminates in a section on future work and possible improvements.

8.1 Summary

This thesis has presented work within the field of action selection and some adjacent areas.
Specifically, the challenge of creating a general, task-agnostic coordination mechanism for
mobile robots was addressed. The development of such a system was motivated by prospects
of increasing robot autonomy and unlocking some of the still untapped hardware potential.
A plug and play architecture was designed for reusability and with the aim of shortening the
development cycle of robot software, thereby also cutting costs and making the final products
more economical.

Work towards this goal began with a literature review in the form of a new taxonomy of existing
action selection mechanisms. The taxonomy distinguishes between interleaved-, parallel- and
simultaneous multi-tasking. SMT is the most complex of these as it requires all tasks to be
considered in the selection of each action. Contentions inevitably arise between tasks competing
for control of the same actuators. Attempts at coordination so far struggle with the assignment of
relative priorities that accurately reflect how much attention each task warrants at a given time.

163

164 CHAPTER 8. CONCLUSION AND FUTURE WORK

The principle of homeostasis was appraised as a potential basis for defining a universal scale
on which the urgencies of all tasks can be fairly rated and compared. The main contribution
of this PhD is the design and implementation of a multi-tasking framework that incorporates
this idea. Each task submits an urgency value in a standard range, without having to consider
the needs of other tasks or even be aware of their presence. These urgencies are combined to
form the so-called homeostatic mortality index, an overall measure of coordination success. The
HMI is based on an exponential function that prevents individual tasks suffering in the pursuit
of higher average satisfaction. Homeostatic mortality reduction is the process by which actions
representing viable compromises are selected from a pool of realisable controls. The framework
does not prescribe a particular algorithm for searching control space, meaning that the sampling
approach taken here can be replaced by other methods as required.

In order to evaluate the developed system, demonstrator tasks were constructed to reach a goal
location, prevent collision, follow a contour around obstacles and balance a ball on top of a
differential drive robot.

The goal location task is guided by an urgency heuristic defined in terms of strain energy. Smooth,
goal-connecting paths are generated between (x,y,φ) start configurations and (x,y) goals. Biarcs
provide a means of strain estimation and can be constructed in O(1) time by choosing pairs of
arcs that approximate the turn-distribution of clothoids.

Obstacle navigation was decomposed into the two tasks of collision prevention and contour
joining. The urgency of the former is based solely on distance to the closest obstacle, while the
latter reuses the solution to the goal location task to smoothly align with a contour following the
course of the obstacle. Thanks to insights borrowed from Bug Algorithms, obstacles are engaged
as needed and can be left as soon as it is safe to do so.

Ball balancing was introduced as a novel task for mobile robots. A physics model was designed
from the ground up to simulate and predict the behaviour of a ball in a spherical bowl atop a
moving robot. Various forces act on the ball as the robot accelerates, decelerates and changes
direction. The ball is kept within its vessel by selecting actions that reduce its potential and
kinetic energies, on the basis of which the task’s urgency is defined.

Being able to solve these tasks in compliance with the structure prescribed by the task
coordination framework vindicates both the first and second hypotheses.

Having assembled a group of suitable tasks for demonstration, the coordination system was put
to the test with the aim of verifying the third hypothesis. Experiments were conducted using a
robot simulator programmed in Java, after having unsuccessfully tried to integrate the developed

8.2. ANSWERING THE RESEARCH QUESTION 165

physics model into the formerly commercial application, Webots.

Results were most encouraging for pairs of tasks, which were generally well coordinated. This
incites confidence in the third hypothesis, but the single-step planner’s lack of foresight quickly
led to the collapse of the fourth. Planning only one step ahead caused collision in some of the
experiments coordinating goal seeking with obstacle navigation. Only one test with all tasks
active at the same time was completed successfully, with the others struggling for reasons not
yet fully understood. The homeostatic mechanism appears not to be responsible for any of
the limitations discussed at length in Chapter 7. In addition to the planner’s lack of foresight,
urgency heuristics for individual tasks do not accurately reflect the future consequences of taking
certain actions, leading to decisions being made with imperfect information. Implications for the
research question are discussed below.

8.2 Answering the Research Question

The research goal of this thesis was to answer the question:

Can a general, task-agnostic framework be devised to coordinate multiple tasks being
simultaneously executed by a single robot through homeostatic conflict resolution?

Despite mixed results, the question can be tentatively answered in the affirmative. The
homeostatic task coordination mechanism fulfils the requirement for genericity and was not
found to be responsible for any of the failed experiments. On the contrary, it did succeed in the
absence of issues caused by other parts of the system. Evidence of sensible compromises being
struck was found when coordinating the balancing and goal location tasks together. Both speed
and curvature were adjusted to reduce the ball’s energy on the journey to the robot’s destination.
A similar strategy was successfully employed for balancing the ball while navigating obstacles.
In the combination of goal seeking and obstacle navigation, the robot did venture further into
the safety-zone around obstacles than desired. Nevertheless, the goal was attained in initial
experiments. Until problems concerning the single-step planner’s lack of foresight crystallised,
the empirical evidence was quite promising indeed. This suggests that if the identified problems
were removed, the homeostatic mechanism could be used to its full potential. The erroneous
assumption regarding the sufficiency of local search made by the fourth hypothesis appears to be
the main obstacle in the way of a satisfactory verification of the developed theory and a more
definitive answer to the research question. At the very least, further investigation is warranted.
Ideas for how to proceed are given in the following section.

166 CHAPTER 8. CONCLUSION AND FUTURE WORK

8.3 Future Work

The scope of this thesis was initially underestimated and proved hard to contain. Solving each of
the demonstrator tasks could have been a project in its own right, without even considering the
overarching coordination aspect that ties them all together. Time had to be spread thinly to cover
all areas, leaving room for improvement in each. The following identifies some aspects that are
deemed most worthy of further attention and improvement.

8.3.1 Improving Existing Tasks

The goal location task is the least developed of the demonstrators. Its ability to reach a goal
orientation was sacrificed for lower complexity. Even if it does require more computation,
regaining the capability to select (x,y,φ) goals is an attractive prospect. There are many existing
solutions that provide this feature. It would be interesting to measure their actual run-times and,
if necessary, explore the possibility of reducing their complexity, e.g. through an approximation.

Obstacle detection does not use a feature extraction technique and cannot distinguish between
different obstacles. In more cluttered environments, the ability to follow a specific obstacle may
be required. The merge point finding algorithm can also be refined, although this would also
come at the price of higher complexity.

The physics model developed for ball balancing does not account for rotational inertia or the
diameter of the ball. While adding these factors is unlikely to have a significant impact, it would
further improve the realism of the simulation. More importantly, the cause of the energy spike
in the last of the coordination tests has not yet been found. The error may or may not be in the
physics model, but it would be good to know either way.

8.3.2 Adding New Tasks

The possibility of adding new tasks to the pool of demonstrators is even more interesting than
improving on existing solutions.

The absence of one task in particular has already been noted. Without a time-sensitive task,
the robot is able to avoid conflict by moving slowly. The inclusion of a task to discourage this
strategy could put the system under more stress. This would allow the limits of the coordination
mechanism to be investigated and better understood. It would also remove the need for the
artificial motivation to accelerate that had to be built into the goal location task (see Section
4.4.5). Incrementing curvature to make the robot drive along a zero-strain line would no longer
be necessary as the motivation to reach the goal would be provided by the time-sensitive task.

8.3. FUTURE WORK 167

Moreover, the discount factor (DF = 0.97) could be removed from equation 4.26, thus simplifying
the location task’s strain based urgency function. The task would still rely on a heuristic, but that
heuristic would be purely defined in terms of path strain. Not mixing in factors relating to time,
which have nothing to do with the shape of the path, would make for a much cleaner solution.
Being able to reach the goal location in a given amount of time may also help demonstrate
that the system is capable of real-time planning. The implemented controller already operates
in real-time, as is evidenced by its ability to simulate ball physics accurately using very short
time intervals. Seeing a robot move fast might, however, be a more obvious or effective way of
showcasing this ability. The exact details of a time-sensitive task could prove quite difficult to
specify. It is not as simple as setting a deadline because the robot would have to be able to revise
the time needed as and when necessary. For example, the discovery of new obstructions en route
to the goal would call for an extension.

A resource management task would also be an interesting addition. Two different ways of
managing the robot’s battery life have already been used as examples in the taxonomy of tasks.
The first is a multi-phase task consisting of two single-phase task, namely driving to a charge
point (category 1) and connecting the robot to the power supply (category 2). The second way of
ensuring the robot will not run out of battery is to use an energy rationing task. In the context of
SMT, this category 3 task is of more interest since the above version is more of a task allocation
than a coordination problem. Energy rationing would involve defining an urgency mapping that
reflects which actions most effectively use the remaining energy before the next charge point
is reached. This may involve selecting shorter paths or driving at the speed resulting in best
fuel/energy economy. The robot simulator, which does not yet model resource constraints, would
have to be adapted to support this task.

The tasks implemented so far have used heuristics to map internal and external state variables
to urgency values. Further tasks, including those suggested, could showcase the ability to use
other methods. Alternatives include using a lookup table or training an artificial neural network
to perform the mapping instead of heuristics.

8.3.3 Improving the Coordination System

To really improve on the coordination mechanism, its single-step planner must be swapped for
one with the capacity to plan further ahead. This is likely a major project and could, in the end,
be thwarted by complexities outside the realm of real-time planning.

As already mentioned, it may be possible to improve coordination by further refinement of the
formula for the homeostatic mortality index. Proper analysis of the benefits of different formulae

168 CHAPTER 8. CONCLUSION AND FUTURE WORK

will likely not be possible without first overcoming the more severe issues of lacking foresight,
which will otherwise distort results.

Finally, the addition of a scheduler for breaking down multi-phase tasks into single-phase tasks
would open the door to exploring a broader range of tasks.

8.3.4 Further Testing

One can never be sure enough that such a complex system behaves as it should. With an endless
number of possible test cases to choose from, there are plenty left that could not be explored
within the scope of this thesis. To make better use of the coordination mechanism’s generic
design, it could also be evaluated using different types of robots. The realism of the system
could be put to the test by moving from simulations to tests with physical robot. The journey
from simulation to physical robotics is known to be treacherous, but a number of considerations
were already made at the outset to facilitate this transition. As per the requirements laid out
in Section 3.2, the framework was designed to make as few assumptions as possible, adapt to
sensor information and compute controls in real-time. The implementation also makes sure to
select realisable controls that obey the vehicle’s equations of motion. Together, these features
provide a basis for further exploration.

REFERENCES

[1] ARKIN, R. C. Motor schema based navigation for a mobile robot: An approach to
programming by behavior. In International Conference on Robotics and Automation

(New York, NY, USA, Mar 1987), vol. 4 of ICRA, IEEE, pp. 264–271.

[2] ARKIN, R. C. Dynamic replanning for a mobile robot based on internal sensing. In
International Conference on Robotics and Automation (New York, NY, USA, May 1989),
vol. 3 of ICRA, IEEE, pp. 1416–1421.

[3] ARKIN, R. C. Homeostatic Control For A Mobile Robot: Dynamic Replanning In
Hazardous Environments. In Mobile Robots III (Bellingham, WA, USA, Mar 1989), W. J.
Wolfe, Ed., vol. 1007, SPIE, pp. 407–413.

[4] ARKIN, R. C. Towards the Unification of Navigational Planning and Reactive Control. In
American Association for Artificial Intelligence Spring Symposium on Robot Navigation

(Stanford, CA, USA, Mar 1989), Stanford University, pp. 1–5.

[5] ARKIN, R. C. Behavior-based Robotics, 1 ed. MIT Press, Cambridge, MA, USA, 1998.

[6] ARKIN, R. C., AND MACKENZIE, D. Temporal coordination of perceptual algorithms
for mobile robot navigation. In Transactions on Robotics and Automation (New York, NY,
USA, Jun 1994), vol. 10, IEEE, pp. 276–286.

[7] ASHBY, W. R. Design for a Brain : The origin of adaptive behaviour, 2 ed. Chapman &
Hall, London, UK, 1960.

[8] BALLARD, D. H. Generalizing the Hough Transform to Detect Arbitrary Shapes. In
Pattern Recognition (Oxford, UK, 1981), vol. 13, Pergamon Press Ltd., pp. 111–122.

[9] BENJAMIN, M. Interval programming: A multi-objective optimization model for

autonomous vehicle control. PhD thesis, Brown University, Providence, RI, USA, Jan
2002.

169

170 REFERENCES

[10] BENJAMIN, M., GRUND, M., AND NEWMAN, P. Multi-objective optimization of sensor
quality with efficient marine vehicle task execution. In International Conference on

Robotics and Automation (New York, NY, USA, May 2006), ICRA, IEEE, pp. 3226–3232.

[11] BENJAMIN, M., LEONARD, J. J., SCHMIDT, H., AND NEWMAN, P. M. An Overview
of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software. Tech.
Rep. MIT-CSAIL-TR-2009-028, Computer Science and Artificial Intelligence Lab, MIT,
Cambridge, MA, USA, Jun 2009.

[12] BENNETT, A. A., AND LEONARD, J. J. A behavior-based approach to adaptive feature
detection and following with autonomous underwater vehicles. In Journal of Oceanic

Engineering (New York, NY, USA, Apr 2000), vol. 25, IEEE, pp. 213–226.

[13] BERTOLAZZI, E., AND FREGO, M. A Note on Robust Biarc Computation. In Computer-

Aided Design and Applications (Aurora, IL, USA, Nov 2017), vol. 16, CAD Solutions
LLC, pp. 822–835.

[14] BLOCH, V., DEGANI, A., AND BECHAR, A. Task characterization and classification

for robotic manipulator optimal design in precision agriculture. Wageningen Academic
Publishers, Wageningen, Netherlands, 2015, pp. 313–320.

[15] BOLTON, K. M. Biarc curves. In Computer-Aided Design (Amsterdam, Netherlands,
1975), vol. 7, Elsevier Inc., pp. 89–92.

[16] BOMEY, N. Uber self-driving car crash: Vehicle detected Arizona pedestrian 6
seconds before accident. https://eu.usatoday.com/story/money/cars/2018/

05/24/uber-self-driving-car-crash-ntsb-investigation/640123002/ , 2018.
Accessed Aug 2018.

[17] BOSTON DYNAMICS. Changing your idea of what robots can do. https://www.

bostondynamics.com/, 2018. Accessed Aug 2018.

[18] BROOKS, R. A. A Robust Layered Control System for a Mobile Robot. In Journal on

Robotics and Automation (New York, NY, USA, Mar 1986), vol. 2, IEEE, pp. 14–23.

[19] BROOKS, R. A. Intelligence Without Reason. In Proceedings of the 12th International

Joint Conference on Artificial Intelligence (San Francisco, CA, USA, 1991), vol. 1 of
IJCAI, Morgan Kaufmann Publishers Inc., pp. 569–595.

[20] BROOKS, R. A. Intelligence Without Representation. In Artificial Intelligence

(Amsterdam, Netherlands, Jan 1991), vol. 47, Elsevier Inc., pp. 139–159.

https://eu.usatoday.com/story/money/cars/2018/05/24/uber-self-driving-car-crash-ntsb-investigation/640123002/
https://eu.usatoday.com/story/money/cars/2018/05/24/uber-self-driving-car-crash-ntsb-investigation/640123002/
https://www.bostondynamics.com/
https://www.bostondynamics.com/

REFERENCES 171

[21] BROOKS, R. A. Cambrian Intelligence: The Early History of the New AI. MIT Press,
Cambridge, MA, USA, 1999.

[22] BROWNLEE, J. The pole balancing problem: a benchmark control theory problem. Tech.
rep., Swinburne University of Technology, Melbourne, Australia, Jul 2005.

[23] CANNON, W. B. The Wisdom of the Body. W.W. Norton & Company, Inc., New York,
NY, USA, 1932.

[24] CHOI, J.-W., CURRY, R., AND ELKAIM, G. Path Planning Based on Bézier Curve for
Autonomous Ground Vehicles. In Advances in Electrical and Electronics Engineering

– IAENG Special Edition of the World Congress on Engineering and Computer Science

(New York, NY, USA, Oct 2008), IEEE, pp. 158–166.

[25] CHOSET, H., M LYNCH, K., HUTCHINSON, S., KANTOR, G., BURGARD, W.,
KAVRAKI, L., AND THRUN, S. Principles of Robot Motion: Theory, Algorithms, and

Implementations. MIT Press, Cambridge, MA, USA, Jan 2005.

[26] CHRISTENSEN, H. I., AND PIRJANIAN, P. Theoretical methods for planning and control
in mobile robotics. In International Conference on Conventional and Knowledge Based

Intelligent Electronic Systems (New York, NY, USA, May 1997), vol. 1 of KES, IEEE,
pp. 81–86.

[27] CYBERBOTICS. Webots: robot simulator. https://cyberbotics.com/. Accessed Jul
2019.

[28] DECUGIS, V., AND FERBER, J. Action Selection in an Autonomous Agent with a
Hierarchical Distributed Reactive Planning Architecture. In International Conference on

Autonomous Agents (New York, NY, USA, 1998), vol. 2 of AGENTS, ACM, pp. 354–361.

[29] DENISCO-RAYOME, A. Dossier: The leaders in self-driving cars. https://www.zdnet.
com/article/dossier-the-leaders-in-self-driving-cars/ , 2018. Accessed
Aug 2018.

[30] DI PAOLO, E. A. Homeostatic adaptation to inversion of the visual field and other
sensorimotor disruptions. In From Animals to Animats (Cambridge, MA, USA, Jan 2000),
vol. 6 of SAB, MIT Press.

[31] DI PAOLO, E. A. Evolving Robust Robots Using Homeostatic Oscillators. In Cognitive

Science Research Paper 526 (Brighton, UK, Apr 2002), COGS, University of Sussex.

https://cyberbotics.com/
https://www.zdnet.com/article/dossier-the-leaders-in-self-driving-cars/
https://www.zdnet.com/article/dossier-the-leaders-in-self-driving-cars/

172 REFERENCES

[32] DI PAOLO, E. A. Organismically-inspired robotics: homeostatic adaptation and teleology
beyond the closed sensorimotor loop. In Dynamical Systems Approach to Embodiment

and Sociality (Adelaide, Australia, Jan 2003), K. Murase and T. Asakura, Eds., Advanced
Knowledge International, pp. 19–42.

[33] DRUMWRIGHT, E., HSU, J., KOENIG, N., AND SHELL, D. Extending Open Dynamics
Engine for Robotics Simulation. In Simulation, Modeling, and Programming for

Autonomous Robots (Berlin, Heidelberg, Nov 2010), N. Ando, S. Balakirsky, T. Hemker,
M. Reggiani, and O. von Stryk, Eds., no. 38–50, Springer.

[34] DUBINS, L. E. On Curves of Minimal Length with a Constraint on Average Curvature,
and with Prescribed Initial and Terminal Positions and Tangents. In American Journal

of Mathematics (Baltimore, MD, USA, 1957), vol. 79, Johns Hopkins University Press,
pp. 497–516.

[35] DUDEK, G., AND JENKIN, M. Computational Principles of Mobile Robotics, 2 ed.
Cambridge University Press, Cambridge, UK, Jan 2010.

[36] ERLHAGEN, W., MUKOVSKIY, A., BICHO, E., PANIN, G., KISS, C., KNOLL, A.,
SCHIE, H., AND BEKKERING, H. Goal-directed imitation for robots: A bio-inspired
approach to action understanding and skill learning. In Robotics and Autonomous Systems

(Amsterdam, Netherlands, May 2006), vol. 54, Elsevier, pp. 353–360.

[37] EUREKA! Smooth moves for service robotics. http://www.eurekamagazine.co.

uk/design-engineering-features/technology/smooth-moves-for-service-

robotics/143300/, 2016. Accessed Oct 2018.

[38] EVERAERE, P., AND GRISLIN-LE STRUGEON, E. Continuous Preferences for Action
Selection. In Proceedings of the 3rd International Conference on Agents and Artificial

Intelligence (Setúbal, Portugal, Jan 2011), vol. 2 of ICAART, SciTePress, pp. 54–63.

[39] FULL MOTION DYNAMICS. Ball and Plate PID control with 6 DOF Stewart platform.
https://www.youtube.com/watch?v=j4OmVLc_oDw , 2012. Accessed Sep 2018.

[40] GADANHO, S. C. Learning Behavior-Selection by Emotions and Cognition in a Multi-
Goal Robot Task. In Journal of Machine Learning Research (Jul 2003), vol. 4, JMLR.org,
pp. 385–412.

[41] GADANHO, S. C., AND CUSTÓDIO, L. M. M. Learning Behavior-selection in a Multi-
goal Robot Task. In Perception and Emotion Based Reasoning (Ljubljana, Slovenia, Jan
2003), vol. 27, The Slovene Society Informatica, pp. 175–183.

http://www.eurekamagazine.co.uk/design-engineering-features/technology/smooth-moves-for-service-robotics/143300/
http://www.eurekamagazine.co.uk/design-engineering-features/technology/smooth-moves-for-service-robotics/143300/
http://www.eurekamagazine.co.uk/design-engineering-features/technology/smooth-moves-for-service-robotics/143300/
https://www.youtube.com/watch?v=j4OmVLc_oDw

REFERENCES 173

[42] GARRIDO, S., MORENO, L., ABDERRAHIM, M., AND BLANCO, D. FM2: A Real-
Time Sensor-Based Feedback Controller For Mobile Robots. In International Journal of

Robotics and Automation (Calgary, Canada, Oct 2009), M. Kamel, Ed., vol. 24, ACTA
Press, pp. 3169–3192.

[43] GAT, E. Artificial intelligence and mobile robots. MIT Press, Cambridge, MA, USA,
1998, ch. Three-layer Architectures, pp. 195–210.

[44] GERKEY, B. P., AND MATARIĆ, M. J. A Formal Analysis and Taxonomy of Task
Allocation in Multi-Robot Systems. In The International Journal of Robotics Research

(London, UK, 2004), vol. 23, Sage Publications Ltd., pp. 939–954.

[45] GIM, S., ADOUANE, L., LEE, S., AND DÉRUTIN, J.-P. Clothoids Composition Method
for Smooth Path Generation of Car-Like Vehicle Navigation. In Journal of Intelligent &

Robotic Systems (Boston, MA, USA, Oct 2017), vol. 88, Springer US, pp. 129–146.

[46] GROSS, C. G. Claude Bernard and the Constancy of the Internal Environment. In The

Neuroscientist (Thousand Oaks, CA, USA, 1998), vol. 4, Sage Publications, pp. 380–385.

[47] GROTH, C., AND HENRICH, D. Multi-tasking of competing behaviors on a robot
manipulator. In International Conference on Intelligent Robots and Systems (New York,
NY, USA, Nov 2013), IEEE/RSJ, IEEE, pp. 3057–3064.

[48] HALLIDAY, D., RESNICK, R., AND WALKER, J. Fundamentals of Physics. Halliday &
Resnick Fundamentals of Physics. John Wiley & Sons Canada, Ltd., Hoboken, NJ, USA,
2010.

[49] HAMANN, H. Swarm Robotics: A Formal Approach, 1 ed. Springer International
Publishing, Basel, Switzerland, 2018.

[50] HAMEED, I. A. Coverage Path Planning Software for Autonomous Robotic Lawn Mower
using Dubins’ Curve. In International Conference on Real-Time Computing and Robotics

(New York, NY, USA, Jul 2017), RCAR, IEEE, pp. 517–522.

[51] HERNÁNDEZ-SOSA, D., LORENZO, J., DOMÍNGUEZ-BRITO, A. C., AND ISERN, J.
A Proposal of a Homeostatic-Adaptive Control for a Robotic System. In Workshop de

Agentes Físicos (Spain, Apr 2006), J. Cabrera-Gámez and V. M. Olivera, Eds., WAF,
Universidad de Las Palmas de Gran Canaria, pp. 75–82.

[52] HERTIG, L., SCHINDLER, D., BLOESCH, M., DAVID REMY, C., AND SIEGWART,
R. Unified state estimation for a ballbot. In International Conference on Robotics and

Automation (New York, NY, USA, May 2013), ICRA, IEEE, pp. 2471–2476.

174 REFERENCES

[53] HORN, B. K. P. The Curve of Least Energy. In ACM Transactions on Mathematical

Software (New York, NY, USA, Dec 1983), vol. 9, ACM, pp. 441–460.

[54] HOUGEN, D., FISCHER, J., AND JOHNAM, D. A neural network pole balancer that learns
and operates on a real robot in real time. In Proceedings of the MLC-COLT Workshop on

Robot Learning (New Brunswick, NJ, USA, Jul 1994), Rutgers University, pp. 73–80.

[55] HUMPHRYS, M. Action selection methods using reinforcement learning. PhD thesis,
University of Cambridge, Cambridge, UK, 1996.

[56] IIZUKA, H., AND DI PAOLO, E. Extended Homeostatic Adaptation: Improving the
Link between Internal and Behavioural Stability. In From Animals to Animats (Berlin,
Germany, Jul 2008), M. Asada, J. C. T. Hallam, J.-A. Meyer, and J. Tani, Eds., vol. 10 of
SAB, Springer, pp. 1–11.

[57] J. LUMELSKY, V., AND A. STEPANOV, A. Path-Planning Strategies for a Point Mobile
Automaton Moving Amidst Unknown Obstacles of Arbitrary Shape. In Algorithmica

(Basel, Switzerland, Nov 1987), vol. 2, Springer International Publishing, pp. 403–430.

[58] J. LUMELSKY, V., MUKHOPADHYAY, S., AND SUN, K. Dynamic path planning in
sensor-based terrain acquisition. In Transactions on Robotics and Automation (New York,
NY, USA, Aug 1990), vol. 6, IEEE, pp. 462–472.

[59] JAEGER, H., AND CHRISTALLER, T. Dual Dynamics: Designing Behavior Systems for
Autonomous Robots. In Artificial Life and Robotics (Berlin, Germany, Sep 1998), vol. 2,
Springer, pp. 108–112.

[60] JAKUBCZYK, K. Approximation of Smooth Planar Curves by Cir-
cular Arc Splines. https://pdfs.semanticscholar.org/f749/

b6faca7c4486f8ede7aa633c494f37b3e86e.pdf , 2012. Accessed Feb 2020.

[61] JONES, E., BROWNING, B., DIAS, M., ARGALL, B., VELOSO, M., AND STENTZ,
A. Dynamically Formed Heterogeneous Robot Teams Performing Tightly-coordinated
Tasks. In International Conference on Robotics and Automation (New York, NY, USA,
Feb 2006), ICRA, IEEE, pp. 570–575.

[62] JOYEUX, S., ALAMI, R., AND LACROIX, S. A Software component for simultaneous
plan execution and adaptation. In International Conference on Intelligent Robots and

Systems (New York, NY, USA, Oct 2007), IEEE/RSJ, IEEE, pp. 3038–3043.

[63] JUSTER, J. Speech and Gesture Understanding in a Homeostatic Control Framework for

a Robotic Chandelier. PhD thesis, MIT, Cambridge, MA, USA, Sep 2004.

https://pdfs.semanticscholar.org/f749/b6faca7c4486f8ede7aa633c494f37b3e86e.pdf
https://pdfs.semanticscholar.org/f749/b6faca7c4486f8ede7aa633c494f37b3e86e.pdf

REFERENCES 175

[64] KAMON, I., AND RIVLIN, E. Sensory-based motion planning with global proofs. In
Transactions on Robotics and Automation (New York, NY, USA, Jan 1998), vol. 13, IEEE,
pp. 814–822.

[65] KAWABATA, K., MA, L., XUE, J., ZHU, C., AND ZHENG, N. A path generation for
automated vehicle based on Bézier curve and via-points. In Robotics and Autonomous

Systems (Amsterdam, Netherlands, Aug 2015), vol. 74, Elsevier Inc., pp. 243–252.

[66] KHATIB, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In The

International Journal of Robotics Research (Cambridge, MA, USA, Mar 1986), vol. 5,
MIT, pp. 90–98.

[67] KIM, Y. H., PARK, J. B., SON, W. S., AND YOON, T. S. Modified Turn Algorithm for
Motion Planning Based on Clothoid Curve. In Electronics Letters (Stevenage, UK, Oct
2017), vol. 53, Institution of Engineering and Technology, pp. 1574–1576.

[68] KNIPS, G., ZIBNER, S. K. U., REIMANN, H., AND SCHÖNER, G. A Neural Dynamic
Architecture for Reaching and Grasping Integrates Perception and Movement Generation
and Enables On-Line Updating. In Frontiers in Neurorobotics (Lausanne, Switzerland,
Mar 2017), C. Tetzlaff, Ed., vol. 11, Frontiers Media S.A., pp. 9:1–14.

[69] KORSAH, G., STENTZ, A., AND DIAS, M. A comprehensive taxonomy for multi-robot
task allocation. In International Journal of Robotics Research (Cambridge, MA, USA,
Oct 2013), vol. 32, MIT, pp. 1495–1512.

[70] KOTOVSKY, K., HAYES, J. R., AND SIMON, H. A. Why are some problems hard?
Evidence from Tower of Hanoi. In Cognitive Psychology (Amsterdam, Netherlands,
1985), vol. 17, Elsevier Inc., pp. 248–294.

[71] KOŠECKÁ, J., AND BAJCSY, R. Discrete Event Systems for autonomous mobile agents.
In Robotics and Autonomous Systems (Amsterdam, Netherlands, Apr 1994), vol. 12,
Elsevier Inc., pp. 187–198.

[72] KUMAR, P. R., AND BANDYOPADHYAY, B. Variable Gain Super Twisting Controller for
the Position Stabilization of Stewart Platform. In IFAC Proceedings Volumes (Amsterdam,
Netherlands, Mar 2014), vol. 47, Elsevier Inc., pp. 115–121.

[73] LAUWERS, T., KANTOR, G., AND HOLLIS, R. A dynamically stable single-wheeled
mobile robot with inverse mouse-ball drive. In International Conference on Robotics and

Automation (New York, NY, USA, Jun 2006), ICRA, IEEE, pp. 2884–2889.

176 REFERENCES

[74] LAUWERS, T., KANTOR, G., AND HOLLIS, R. One is enough! In Robotics Research

(Berlin, Germany, May 2007), S. Thrun, R. Brooks, and H. Durrant-Whyte, Eds., vol. 28,
Springer, pp. 327–336.

[75] LEIDNER, D., BORST, C., DIETRICH, A., BEETZ, M., AND ALBU-SCHÄFFER,
A. Classifying compliant manipulation tasks for automated planning in robotics. In
International Conference on Intelligent Robots and Systems (New York, NY, USA, 2015),
IEEE/RSJ, IEEE, pp. 1769–1776.

[76] LENSER, S., BRUCE, J., AND VELOSO, M. A Modular Hierarchical Behavior-Based
Architecture. In RoboCup 2001: Robot Soccer World Cup V (Berlin, Germany, 2002),
A. Birk, S. Coradeschi, and S. Tadokoro, Eds., Springer, pp. 423–428.

[77] LIN, L. J. Scaling Up Reinforcement Learning for Robot Control. In International

Conference on International Conference on Machine Learning (San Francisco, CA, USA,
1993), vol. 10 of ICML, Morgan Kaufmann Publishers Inc., pp. 182–189.

[78] LIN, P. Relationships with Robots: Good or Bad for Humans? https:

//www.forbes.com/sites/patricklin/2016/02/01/relationships-with-

robots-good-or-bad-for-humans/#47f376407adc , 2016. Accessed Aug 2018.

[79] LISCANO, R., AND GREEN, D. Design And Implementation Of A Trajectory Generator
For An Indoor Mobile Robot. In International Conference on Intelligent Robots and

Systems (New York, NY, USA, Oct 1989), vol. 2 of IEEE/RSJ, IEEE, pp. 380–385.

[80] LOW, K. H., LEOW, W. K., AND JR, M. Integrated Planning and Control of Mobile
Robot with Self-Organizing Neural Network. In International Conference on Robotics

and Automation (New York, NY, USA, Jun 2003), vol. 4 of ICRA, IEEE.

[81] LU, L. Planar quintic G2 Hermite interpolation with minimum strain energy. In Journal of

Computational and Applied Mathematics (Amsterdam, Netherlands, Jan 2015), vol. 274,
Elsevier Inc., pp. 109–117.

[82] LUGO-CÁRDENAS, I., FLORES, G., SALAZAR, S., AND LOZANO, R. Dubins path
generation for a fixed wing UAV. In International Conference on Unmanned Aircraft

Systems (New York, NY, USA, May 2014), ICUAS, IEEE, pp. 339–346.

[83] MACKENZIE, D. C., ARKIN, R. C., AND CAMERON, J. M. Multiagent Mission
Specification and Execution. In Autonomous Robots (Hingham, MA, USA, Mar 1997),
vol. 4, Kluwer Academic Publishers, pp. 29–52.

https://www.forbes.com/sites/patricklin/2016/02/01/relationships-with-robots-good-or-bad-for-humans/#47f376407adc
https://www.forbes.com/sites/patricklin/2016/02/01/relationships-with-robots-good-or-bad-for-humans/#47f376407adc
https://www.forbes.com/sites/patricklin/2016/02/01/relationships-with-robots-good-or-bad-for-humans/#47f376407adc

REFERENCES 177

[84] MAES, P. The Dynamics of Action Selection. In Proceedings of the 11th International

Joint Conference on Artificial Intelligence (San Francisco, CA, USA, 1989), vol. 2 of
IJCAI, Morgan Kaufmann Publishers Inc., pp. 991–997.

[85] MAES, P. Situated Agents Can Have Goals. In Designing Autonomous Agents (Cambridge,
MA, USA, 1990), P. Maes, Ed., MIT Press, pp. 49–70.

[86] MOIOLI, R. C., VARGAS, P. A., VON ZUBEN, F. J., AND HUSBANDS, P. Evolving an
Artificial Homeostatic System. In Advances in Artificial Intelligence - SBIA 2008 (Berlin,
Germany, 2008), G. Zaverucha and A. L. da Costa, Eds., Springer, pp. 278–288.

[87] NEAL, M. J., AND TIMMIS, J. Timidity: A Useful Emotional Mechanism for Robot
Control? In Informatica - special issue on perception and emotion based control

(Ljubljana, Slovenia, Jan 2003), vol. 27, The Slovene Society Informatica, pp. 197–204.

[88] O’BRIEN, M. J., AND ARKIN, R. C. An Artificial Circadian System for a Slow and
Persistent Robot. In From Animals to Animats (Basel, Switzerland, 2018), P. Manoonpong,
J. C. Larsen, X. Xiong, J. Hallam, and J. Triesch, Eds., vol. 15 of SAB, Springer
International Publishing, pp. 149–161.

[89] PIEGL, L., AND TILLER, W. The NURBS Book, 2 ed. Springer, Berlin, Germany, 1997.

[90] PIRJANIAN, P. Behavior Coordination Mechanisms – State-of-the-art. Tech. rep.,
University of Southern California, Los Angeles, CA, USA, Oct 1999.

[91] PIRJANIAN, P., AND MATARIĆ, M. Multiple Objective vs. Fuzzy Behavior Coordination.
In Fuzzy Logic Techniques for Autonomous Vehicle Navigation (Heidelberg, Germany,
Nov 2001), D. Driankov and A. Saffiotti, Eds., Physica-Verlag HD, pp. 235–253.

[92] PIRJANIAN, P., AND PERRAM, P. J. Multiple Objective Action Selection & Behavior

Fusion using Voting. PhD thesis, Aalborg University, Aalborg, Denmark, Aug 1998.

[93] PRIDAY, R. What’s really going on in those Boston Dynamics robot
videos? https://www.wired.co.uk/article/boston-dynamics-robotics-

roboticist-how-to-watch, 2018. Accessed Aug 2018.

[94] QUARTERONI, A., SACCO, R., AND SALERI, F. Numerical Mathematics (Texts in

Applied Mathematics). Springer, Berlin, Germany, 2006.

[95] QUISPE, A. C. H., AMOR, H. B., AND CHRISTENSEN, H. I. A Taxonomy of Benchmark
Tasks for Robot Manipulation. In Robotics Research (Cham, Switzerland, Jan 2018),
vol. 1, Springer International Publishing, pp. 405–421.

https://www.wired.co.uk/article/boston-dynamics-robotics-roboticist-how-to-watch
https://www.wired.co.uk/article/boston-dynamics-robotics-roboticist-how-to-watch

178 REFERENCES

[96] RAO, A. S., AND GEORGEFF, M. P. Modeling Rational Agents within a BDI-Architecture.
In International Conference on Principles of Knowledge Representation and Reasoning

(San Mateo, CA, USA, 1991), J. Allen, R. Fikes, and E. Sandewall, Eds., vol. 2 of KR,
Morgan Kaufmann publishers Inc., pp. 473–484.

[97] RAVANKAR, A., RAVANKAR, A. A., KOBAYASHI, Y., HOSHINO, Y., AND PENG, C.-C.
Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future
Challenges. In Sensors (Basel, Switzerland, Sep 2018), vol. 18: 3170, MDPI.

[98] RIEKKI, J. Reactive Task Execution of a Mobile Robot. PhD thesis, Oulu University,
Oulu, Finnland, 1999.

[99] ROBOTICS BUSINESS REVIEW. Factory Robot Kills Worker in India. https://www.

roboticsbusinessreview.com/rbr/factory_robot_kills_worker_in_india/ ,
2015. Accessed Aug 2018.

[100] ROECKEL, M. W., RIVOIR, R. H., AND GIBSON, R. E. A behavior based controller
architecture and the transition to an industry application. In International Symposium on

Intelligent Control Intelligent Systems and Semiotics (New York, NY, USA, Sep 1999),
IEEE, pp. 320–325.

[101] ROSENBLATT, J. K. DAMN: A Distributed Architecture for Mobile Navigation. In
Lessons Learned from Implemented Software Architectures for Physical Agents : Papers

from the 1995 Spring Symposium (Palo Alto, CA, USA, Mar 1995), H. Hexmoor and
D. .Kortenkamp, Eds., AAAI Press, pp. 167–178.

[102] ROSENBLATT, J. K. DAMN: A Distributed Architecture For Mobile Navigation. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1997.

[103] ROSENBLATT, J. K. Optimal Selection of Uncertain Actions by Maximizing Expected
Utility. In Autonomous Robots (Hingham, MA, USA, Aug 2000), vol. 9, Kluwer Academic
Publishers, pp. 17–25.

[104] RUSS L. SMITH. Open Dynamics Engine. http://www.ode.org/, 2001. Accessed Dec
2019.

[105] SAFFIOTTI, A. The uses of fuzzy logic in autonomous robot navigation. In Soft Computing

(Berlin, Germany, Dec 1997), vol. 1, Springer, pp. 180–197.

[106] SAFFIOTTI, A., RUSPINI, E. H., AND KONOLIGE, K. Using Fuzzy Logic for Mobile
Robot Control. In Practical Applications of Fuzzy Technologies (Boston, MA, USA,
1999), H.-J. Zimmermann, Ed., Springer US, pp. 185–205.

https://www.roboticsbusinessreview.com/rbr/factory_robot_kills_worker_in_india/
https://www.roboticsbusinessreview.com/rbr/factory_robot_kills_worker_in_india/
http://www.ode.org/

REFERENCES 179

[107] SANCHEZ FIBLA, M., BERNARDET, U., AND VERSCHURE, P. F. M. J. Allostatic
control for robot behaviour regulation: An extension to path planning. In International

Conference on Intelligent Robots and Systems (New York, NY, USA, 2010), IEEE/RSJ,
IEEE, pp. 1935–1942.

[108] SCHMICKL, T., THENIUS, R., STRADNER, J., HAMANN, H., AND CRAILSHEIM, K.
Robotic Organisms: Artificial Homeostatic Hormone System and Virtual Embryoge-
nesis as Examples for Adaptive Reaction-Diffusion Controllers. In IROS Workshop–

Reconfigurable Modular Robotics: Challenges of Mechatronic and Bio-Chemo-Hybrid

Systems (New York, NY, USA, 2011), S. Kernbach and R. Fitch, Eds., IEEE.

[109] SCHÖNER, G., AND DOSE, M. A dynamical systems approach to task-level system
integration used to plan and control autonomous vehicle motion. In Robotics and

Autonomous Systems (Amsterdam, Netherlands, Dec 1992), vol. 10, Elsevier Inc., pp. 253–
267.

[110] SCHÖNER, G., AND SPENCER, J. Dynamic thinking: A primer on dynamic field theory.
Oxford Series in Developmental Cognitive Neuroscience. Oxford University Press, New
York, USA, 2015.

[111] SEARLE, J. R. Minds, brains, and programs. In The Behavioral and Brain Sciences

(Cambridge, UK, 1980), vol. 3, Cambridge University Press, pp. 417–424.

[112] SICILIANO, B., AND KHATIB, O. Springer Handbook of Robotics, 2 ed. Springer, Berlin,
Germany, 2016.

[113] SMITH, T. ROS.org | About ROS. http://www.ros.org/about-ros/. Accessed Jul
2019.

[114] SONG, B., TIAN, G., AND ZHOU, F. A comparison study on path smoothing algorithms
for laser robot navigated mobile robot path planning in intelligent space. In Journal of

Information & Computational Science (Thailand, Dec 2010), vol. 7, Binary Information
Press, pp. 2943–2950.

[115] STEWART, D. A Platform with Six Degrees of Freedom. In Proceedings of the Institution

of Mechanical Engineers (London, UK, Jun 1965), vol. 180, Institution of Mechanical
Engineers, pp. 371–386.

[116] STOVOLD, J. Distributed Cognition as the Basis for Adaptation and Homeostasis in

Robots. PhD thesis, University of York, York, UK, 2016.

http://www.ros.org/about-ros/

180 REFERENCES

[117] SWATMAN, R. Video: Watch 1,069 dancing robots break world record.
http://www.guinnessworldrecords.com/news/2017/8/video-watch-1-069-

dancing-robots-break-world-record-487675 , 2017. Accessed Aug 2018.

[118] TAIPALUS, T. ActionPool: A Novel Dynamic Task Scheduling Method for Service Robots.
PhD thesis, Aalto University School of Science and Technology, Helsinki, Finnland, Nov
2010.

[119] TAIPALUS, T., AND HALME, A. An action pool architecture for multi-tasking service
robots with interdependent resources. In International Symposium on Computational

Intelligence in Robotics and Automation (New York, NY, USA, Dec 2009), CIRA, IEEE,
pp. 228–233.

[120] TIMMIS, J., AND TYRRELL, A. On Homeostasis in Collective Robotic Systems. In
Artificial Immune Systems (Berlin, Germany, 2010), E. Hart, C. McEwan, J. Timmis, and
A. Hone, Eds., Springer, pp. 307–309.

[121] TOWLE, B. A., AND NICOLESCU, M. N. An Auction Behavior-based Robotic
Architecture for Service Robotics. In Intelligent Service Robotics (Berlin, Germany,
Jul 2014), vol. 7, Springer, pp. 157–174.

[122] UPADHYAY, S., AND RATNOO, A. Continuous-Curvature Path Planning With Obstacle
Avoidance Using Four Parameter Logistic Curves. In Robotics and Automation Letters

(New York, NY, USA, Jul 2016), vol. 1, IEEE, pp. 609–616.

[123] VARGAS, P., MOIOLI, R., VON ZUBEN, F., AND HUSBANDS, P. Homeostasis and
evolution together dealing with novelties and managing disruptions. In International

Journal of Intelligent Computing and Cybernetics (Bingley, UK, Aug 2009), vol. 2,
Emerald Publishing Limited, pp. 435–454.

[124] VARGAS, P. A., MOIOLI, R. C., DE CASTRO, L. N., TIMMIS, J., NEAL, M., AND

VON ZUBEN, F. J. Artificial Homeostatic System: A Novel Approach. In Advances in

Artificial Life (Berlin, Germany, Sep 2005), M. S. Capcarrère, A. A. Freitas, P. J. Bentley,
C. G. Johnson, and J. Timmis, Eds., Springer, pp. 754–764.

[125] VIG, L., AND ADAMS, J. Multi-robot coalition formation. In IEEE Transactions on

Robotics (New York, NY, USA, Sep 2006), vol. 22, IEEE, pp. 637–649.

[126] WEIR, M., BUCK, A., AND LEWIS, J. POTBUG: A Mind’s Eye Approach to Providing
BUG-Like Guarantees for Adaptive Obstacle Navigation Using Dynamic Potential Fields.

http://www.guinnessworldrecords.com/news/2017/8/video-watch-1-069-dancing-robots-break-world-record-487675
http://www.guinnessworldrecords.com/news/2017/8/video-watch-1-069-dancing-robots-break-world-record-487675

REFERENCES 181

In From Animals to Animats (Berlin, Germany, 2006), vol. 9 of SAB, Springer, pp. 239–
250.

[127] WIENER, N. Cybernetics: Or Control and Communication in the Animal and the Machine,
2 ed. MIT Press, Cambridge, MA, USA, May 1961.

[128] WILLIAMS, H. Homeostatic plasticity improves continuous-time recurrent neural
networks as a behavioural substrate. In International Symposium on Adaptive Motion in

Animals and Machines (Ilmenau, Germany, Jan 2005), vol. 3 of AMAM, ISLE.

[129] WOLINSKI, D., AND LIN, M. Generalized WarpDriver: Unified Collision Avoidance for
Multi-Robot Systems in Arbitrarily Complex Environments. In Robotics: Science and

Systems (Pittsburgh, PA, USA, Jun 2018), H. Kress-Gazit, S. Srinivasa, T. Howard, and
N. Atanasov, Eds., Carnegie Mellon University.

[130] YEN, J., AND PFLUGER, N. A Fuzzy Logic Based Robot Navigation System. In
Proceedings of the AAAI Symposium on Applications of Artificial Intelligence to Real-

World Autonomous Mobile Robots (Palo Alto, CA, USA, Jan 1992), AAAI Press, pp. 195–
199.

[131] YEN, J., AND PFLUGER, N. Fuzzy logic based extension to Payton and Rosenblatt’s
command fusion method for mobile robot navigation. In Transactions on Systems, Man,

and Cybernetics (New York, NY, USA, Jun 1995), vol. 25, IEEE, pp. 971–978.

[132] YOGESWARAN, M., AND S.G., P. An Extensive Review of Research in Swarm Robotics.
In Proceedings of the World Congress on Nature and Biologically Inspired Computing

(New York, NY, USA, Jan 2010), NABIC, IEEE, pp. 140–145.

[133] YONG, J.-H., AND CHENG, F. Geometric Hermite Curves with Minimum Strain Energy.
In Computer Aided Geometric Design (Amsterdam, Netherlands, Mar 2004), vol. 21,
Elsevier Science Publishers B. V., pp. 281–301.

[134] YOON, D.-Y., OH, S.-R., PARK, G.-T., AND YOU, B.-J. A biologically inspired
homeostatic motion controller for autonomous mobile robots. In International Conference

on Robotics and Automation (New York, NY, USA, Sep 2003), ICRA, IEEE, pp. 3158–
3163.

[135] ZHANG, Y., AND PARKER, L. IQ-ASyMTRe: Forming executable coalitions for tightly
coupled multirobot tasks. In IEEE Transactions on Robotics (New York, NY, USA, Jan
2013), vol. 29, IEEE, pp. 400–416.

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem Statement
	Unrealised Hardware Potential
	The Scripting Illusion
	The State of the Art
	Remaining Challenges
	Research Gap

	Motivation
	Research Question
	Scope
	What is Simultaneous Multi-tasking?
	What is a Task?
	Demonstrator Tasks
	Proof of Concept

	Hypotheses
	Outcomes and Contributions
	Thesis Structure

	Background and Action Selection Taxonomy
	Placement
	Action Selection Taxonomy
	Interleaved Multi-tasking
	Parallel Multi-tasking
	Simultaneous Multi-tasking

	Homeostasis
	The Attention to Threat Principle
	Homeostasis in Feedback Loops
	Homeostasis in Neural Networks
	Homeostasis in Artificial Life
	Homeostasis in Task Coordination

	Homeostatic Task Coordination
	Taxonomy of Tasks
	Multi-phase Tasks
	Single-phase Tasks
	Category 1: Configuration Transition Tasks
	Category 2: Environment Manipulation Tasks
	Category 3: Configuration Avoidance Tasks
	Category 4: Situation Avoidance Tasks
	Solution properties

	Requirements
	Generic Architecture
	Hardware Abstraction
	Realisable Controls
	Real-time Computation
	Autonomous Adaptation
	Unknown Environments

	A General Framework for SMT
	State Change
	Robot Sensor Update
	Abstract State Representation
	Robot Controller
	Task State Prediction Mechanism
	Task Potential Assessment
	Potential Combination Mechanism
	Vehicle Hardware Interface
	Computational Complexity

	Homeostatic Mortality Reduction
	Task Urgency Assessment
	Homeostatic Mortality Computation
	Example of Homeostatic Task Coordination

	Goal Location Task
	Task Specification
	Task Description
	Objectives
	Task Model
	Task Classification

	Background
	Task State Prediction
	Urgency Heuristics
	Biarc Strain Minimisation
	Biarc Clothoid Approximation
	Mapping Controls to Strain
	From Strain to Urgency
	Motivation to Accelerate

	Experiments and Results
	Summary and Evaluation

	Obstacle Navigation Task
	Task Specification
	Task Description
	Objectives
	Task Model
	Task Classification

	Background
	Task State Prediction
	Obstacle Detection
	Gap Occlusion
	Distance Measurement

	Urgency Heuristics
	Collision Prevention
	Contour Joining
	The Need for Two Tasks

	Experiments and Results
	Collision Prevention
	Individual Obstacles
	Gaps Between Obstacles

	Summary and Evaluation

	Ball Balancing Task
	Task Specification
	Task Description
	Objectives
	Task Model
	Task Classification

	Background
	Task State Prediction
	Known Information About the Robot's Position
	Known Information About the Ball's Position
	Acceleration due to Robot Translation
	Acceleration Due to Gravity
	Centrifugal Acceleration
	Effective Acceleration Component
	Linear Velocity to Angular Velocity
	Damping and Friction
	Predicted Theta Position
	Conservation of Angular Momentum
	Predicted Phi Position
	Additional Factors

	Urgency Heuristics
	Experiments and Results
	Physics Simulator
	Stationary Robot
	Straight Line Acceleration
	Acceleration Along a Curve

	Summary and Evaluation

	Simulations and Results
	Robot Simulator
	Available Simulators
	Design of a Custom Simulator
	Graphical User Interface
	Main Control Loop
	Robot Model
	AI Controller
	State Evolution
	Environment Model

	Controller Implementation
	Experiments and Results
	Goal location with ball balancing
	Obstacle navigation with ball balancing
	Goal location with obstacle navigation
	Coordinating all tasks simultaneously

	Interpretation of Results

	Conclusion and Future Work
	Summary
	Answering the Research Question
	Future Work
	Improving Existing Tasks
	Adding New Tasks
	Improving the Coordination System
	Further Testing

	References

