14,494 research outputs found

    Mapping Subsets of Scholarly Information

    Full text link
    We illustrate the use of machine learning techniques to analyze, structure, maintain, and evolve a large online corpus of academic literature. An emerging field of research can be identified as part of an existing corpus, permitting the implementation of a more coherent community structure for its practitioners.Comment: 10 pages, 4 figures, presented at Arthur M. Sackler Colloquium on "Mapping Knowledge Domains", 9--11 May 2003, Beckman Center, Irvine, CA, proceedings to appear in PNA

    Text-mining and ontologies: new approaches to knowledge discovery of microbial diversity

    Full text link
    Microbiology research has access to a very large amount of public information on the habitats of microorganisms. Many areas of microbiology research uses this information, primarily in biodiversity studies. However the habitat information is expressed in unstructured natural language form, which hinders its exploitation at large-scale. It is very common for similar habitats to be described by different terms, which makes them hard to compare automatically, e.g. intestine and gut. The use of a common reference to standardize these habitat descriptions as claimed by (Ivana et al., 2010) is a necessity. We propose the ontology called OntoBiotope that we have been developing since 2010. The OntoBiotope ontology is in a formal machine-readable representation that enables indexing of information as well as conceptualization and reasoning.Comment: 5 page

    This Just In: Fake News Packs a Lot in Title, Uses Simpler, Repetitive Content in Text Body, More Similar to Satire than Real News

    Full text link
    The problem of fake news has gained a lot of attention as it is claimed to have had a significant impact on 2016 US Presidential Elections. Fake news is not a new problem and its spread in social networks is well-studied. Often an underlying assumption in fake news discussion is that it is written to look like real news, fooling the reader who does not check for reliability of the sources or the arguments in its content. Through a unique study of three data sets and features that capture the style and the language of articles, we show that this assumption is not true. Fake news in most cases is more similar to satire than to real news, leading us to conclude that persuasion in fake news is achieved through heuristics rather than the strength of arguments. We show overall title structure and the use of proper nouns in titles are very significant in differentiating fake from real. This leads us to conclude that fake news is targeted for audiences who are not likely to read beyond titles and is aimed at creating mental associations between entities and claims.Comment: Published at The 2nd International Workshop on News and Public Opinion at ICWS

    A Linear Classifier Based on Entity Recognition Tools and a Statistical Approach to Method Extraction in the Protein-Protein Interaction Literature

    Get PDF
    We participated, in the Article Classification and the Interaction Method subtasks (ACT and IMT, respectively) of the Protein-Protein Interaction task of the BioCreative III Challenge. For the ACT, we pursued an extensive testing of available Named Entity Recognition and dictionary tools, and used the most promising ones to extend our Variable Trigonometric Threshold linear classifier. For the IMT, we experimented with a primarily statistical approach, as opposed to employing a deeper natural language processing strategy. Finally, we also studied the benefits of integrating the method extraction approach that we have used for the IMT into the ACT pipeline. For the ACT, our linear article classifier leads to a ranking and classification performance significantly higher than all the reported submissions. For the IMT, our results are comparable to those of other systems, which took very different approaches. For the ACT, we show that the use of named entity recognition tools leads to a substantial improvement in the ranking and classification of articles relevant to protein-protein interaction. Thus, we show that our substantially expanded linear classifier is a very competitive classifier in this domain. Moreover, this classifier produces interpretable surfaces that can be understood as "rules" for human understanding of the classification. In terms of the IMT task, in contrast to other participants, our approach focused on identifying sentences that are likely to bear evidence for the application of a PPI detection method, rather than on classifying a document as relevant to a method. As BioCreative III did not perform an evaluation of the evidence provided by the system, we have conducted a separate assessment; the evaluators agree that our tool is indeed effective in detecting relevant evidence for PPI detection methods.Comment: BMC Bioinformatics. In Pres
    • …
    corecore