658 research outputs found

    Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations

    Full text link
    Neural networks are among the most accurate supervised learning methods in use today, but their opacity makes them difficult to trust in critical applications, especially when conditions in training differ from those in test. Recent work on explanations for black-box models has produced tools (e.g. LIME) to show the implicit rules behind predictions, which can help us identify when models are right for the wrong reasons. However, these methods do not scale to explaining entire datasets and cannot correct the problems they reveal. We introduce a method for efficiently explaining and regularizing differentiable models by examining and selectively penalizing their input gradients, which provide a normal to the decision boundary. We apply these penalties both based on expert annotation and in an unsupervised fashion that encourages diverse models with qualitatively different decision boundaries for the same classification problem. On multiple datasets, we show our approach generates faithful explanations and models that generalize much better when conditions differ between training and test

    Using Sat solvers for synchronization issues in partial deterministic automata

    Full text link
    We approach the task of computing a carefully synchronizing word of minimum length for a given partial deterministic automaton, encoding the problem as an instance of SAT and invoking a SAT solver. Our experimental results demonstrate that this approach gives satisfactory results for automata with up to 100 states even if very modest computational resources are used.Comment: 15 pages, 3 figure

    A framework for dialogue detection in movies

    No full text
    In this paper, we investigate a novel framework for dialogue detection that is based on indicator functions. An indicator function defines that a particular actor is present at each time instant. Two dialogue detection rules are developed and assessed. The first rule relies on the value of the cross-correlation function at zero time lag that is compared to a threshold. The second rule is based on the cross-power in a particular frequency band that is also compared to a threshold. Experiments are carried out in order to validate the feasibility of the aforementioned dialogue detection rules by using ground-truth indicator functions determined by human observers from six different movies. A total of 25 dialogue scenes and another 8 non-dialogue scenes are employed. The probabilities of false alarm and detection are estimated by cross-validation, where 70% of the available scenes are used to learn the thresholds employed in the dialogue detection rules and the remaining 30% of the scenes are used for testing. An almost perfect dialogue detection is reported for every distinct threshold. © Springer-Verlag Berlin Heidelberg 2006

    Named Entity Extraction and Disambiguation: The Reinforcement Effect.

    Get PDF
    Named entity extraction and disambiguation have received much attention in recent years. Typical fields addressing these topics are information retrieval, natural language processing, and semantic web. Although these topics are highly dependent, almost no existing works examine this dependency. It is the aim of this paper to examine the dependency and show how one affects the other, and vice versa. We conducted experiments with a set of descriptions of holiday homes with the aim to extract and disambiguate toponyms as a representative example of named entities. We experimented with three approaches for disambiguation with the purpose to infer the country of the holiday home. We examined how the effectiveness of extraction influences the effectiveness of disambiguation, and reciprocally, how filtering out ambiguous names (an activity that depends on the disambiguation process) improves the effectiveness of extraction. Since this, in turn, may improve the effectiveness of disambiguation again, it shows that extraction and disambiguation may reinforce each other.\u

    A Theory of Formal Synthesis via Inductive Learning

    Full text link
    Formal synthesis is the process of generating a program satisfying a high-level formal specification. In recent times, effective formal synthesis methods have been proposed based on the use of inductive learning. We refer to this class of methods that learn programs from examples as formal inductive synthesis. In this paper, we present a theoretical framework for formal inductive synthesis. We discuss how formal inductive synthesis differs from traditional machine learning. We then describe oracle-guided inductive synthesis (OGIS), a framework that captures a family of synthesizers that operate by iteratively querying an oracle. An instance of OGIS that has had much practical impact is counterexample-guided inductive synthesis (CEGIS). We present a theoretical characterization of CEGIS for learning any program that computes a recursive language. In particular, we analyze the relative power of CEGIS variants where the types of counterexamples generated by the oracle varies. We also consider the impact of bounded versus unbounded memory available to the learning algorithm. In the special case where the universe of candidate programs is finite, we relate the speed of convergence to the notion of teaching dimension studied in machine learning theory. Altogether, the results of the paper take a first step towards a theoretical foundation for the emerging field of formal inductive synthesis

    Bounds on Depth of Decision Trees Derived from Decision Rule Systems

    Full text link
    Systems of decision rules and decision trees are widely used as a means for knowledge representation, as classifiers, and as algorithms. They are among the most interpretable models for classifying and representing knowledge. The study of relationships between these two models is an important task of computer science. It is easy to transform a decision tree into a decision rule system. The inverse transformation is a more difficult task. In this paper, we study unimprovable upper and lower bounds on the minimum depth of decision trees derived from decision rule systems depending on the various parameters of these systems

    Comparative Analysis of Deterministic and Nondeterministic Decision Trees for Decision Tables from Closed Classes

    Full text link
    In this paper, we consider classes of decision tables with many-valued decisions closed under operations of removal of columns, changing of decisions, permutation of columns, and duplication of columns. We study relationships among three parameters of these tables: the complexity of a decision table (if we consider the depth of decision trees, then the complexity of a decision table is the number of columns in it), the minimum complexity of a deterministic decision tree, and the minimum complexity of a nondeterministic decision tree. We consider rough classification of functions characterizing relationships and enumerate all possible seven types of the relationships
    corecore