
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Knowledge-Level Domain Dynamics

Citation for published version:
Mourao, K & Petrick, R 2013, 'Learning Knowledge-Level Domain Dynamics'. in Proceedings of the ICAPS
2013 Workshop on Planning and Learning. pp. 23-31.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the ICAPS 2013 Workshop on Planning and Learning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/learning-knowledgelevel-domain-dynamics(6d0788c4-a195-4cb5-9338-b2522f938636).html


Learning knowledge-level domain dynamics

Kira Mourão
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
kmourao@inf.ed.ac.uk

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
rpetrick@inf.ed.ac.uk

Abstract
The ability to learn relational action models from noisy, in-
complete observations is essential to support planning and
decision-making in real-world environments. While some
methods exist to learn models of STRIPS domains in this set-
ting, these approaches do not support learning of actions at
the knowledge level. In contrast, planning at the knowledge
level has been explored and in some domains can be more
successful than planning at the world level. In this paper
we therefore present a method to learn knowledge-level ac-
tion models. We decompose the learning problem into multi-
ple classification problems, generalising previous decomposi-
tional approaches by using a graphical deictic representation.
We also develop a similarity measure based on deictic refer-
ence which generalises previous STRIPS-based approaches
to similarity comparisons of world states. Experiments in a
real robot domain demonstrate our approach is effective.

Introduction
The related problems of planning and learning domain dy-
namics in domains with incomplete knowledge and uncer-
tainty are both challenging. The planning problem has been
tackled using the possible worlds paradigm (Weld et al.,
1998; Bonet and Geffner, 2000; Bertoli et al., 2001), where
the planner reasons about actions across all possible worlds
in which the agent might be operating given its current
knowledge. An alternative is to use a knowledge-level rep-
resentation that describes the agent’s knowledge without
enumerating possible worlds. One such approach is to re-
strict the agent’s knowledge to simple relational and func-
tional properties using knowledge fluents, and then plan with
these structures either directly (Petrick and Bacchus, 2002,
2004) or indirectly through compilation techniques (Pala-
cios and Geffner, 2009), in an attempt to build plans more
efficiently. However, while a few approaches have tack-
led learning domain dynamics with incomplete knowledge
(Amir and Chang, 2008; Zhuo et al., 2010; Mourão et al.,
2012), none have considered learning knowledge-level ac-
tions, such as would be required by a planner operating di-
rectly at that level.

In this paper we present a method for learning action rules
in knowledge domains. We consider the problem of acquir-
ing domain models from the raw experiences of an agent
exploring the world, where the agent’s observations are in-
complete, and observations and actions are subject to noise.

The domains we consider are based on relational STRIPS
domains (Fikes and Nilsson, 1971) but also include func-
tions, run-time variables and knowledge fluents.

We tackle the problem of learning action models from
noisy and incomplete observations by decomposing the
problem into multiple classification problems, similar to the
work of Halbritter and Geibel (2007) and Mourão et al.
(2009; 2010; 2012). Our approach generalises these earlier
approaches by using a decomposition based on a deictic rep-
resentation. We represent world states as graphs and develop
a similarity measure, also based on deictic reference, to per-
form similarity comparisons between states. The features
used to measure similarity are closely related to the rules un-
derlying the true action models. We reuse the rule extraction
method of Mourão et al. (2012) to derive planning operators
from classifiers trained using our new representation.

We test our approach in a real robot domain. The robot
bartender (Petrick and Foster, 2013) serves drinks to cus-
tomers by generating plans based on input from its vision
and dialogue processing systems. State observations derived
from these systems can be incomplete or noisy, due to sens-
ing errors. Therefore states are modelled at the knowledge
level, with functions and run-time variables used to capture
customer requests. Our experiments show that the domain
models we learn for the robot bartender perform as well as a
“gold-standard” hand-written domain model used to gener-
ate the robot’s plans.

The Learning Problem
A domain D is defined as a tuple D = 〈O,P,F ,A〉, where
O is a finite set of world objects, P is a finite set of predicate
(relation) symbols, F is a finite set of function symbols, and
A is a finite set of actions. Each predicate, function, and
action also has an associated arity. A fluent expression of
arity n is a statement of the form:
(i) p(c1, c2, ..., cn), where p ∈ P , and each ci ∈ O, or
(ii)f(c1, c2, ..., cn) = cn+1, where f ∈ F , and each ci ∈ O.

A real-world state is any set of positive or negative fluent
expressions, and S is the set of all possible states. State ob-
servations may be incomplete, so we assume an open world
where unobserved fluents are deemed to be unknown. At the
world level, for any state s ∈ S, fluent φ is true at s iff φ ∈ s,
and false at s iff ¬φ ∈ s. A fluent and its negation cannot
both be in s. If φ /∈ s and ¬φ /∈ s then φ is unobserved.

ttotterd
Typewritten Text

ttotterd
Typewritten Text

ttotterd
Typewritten Text
Mourao, K., & Petrick, R. (2013). Learning Knowledge-Level Domain Dynamics. In Proceedings of the ICAPS 2013 Workshop on Planning and Learning. (pp. 23-31).



At the knowledge level we transform state observations
of the real world into knowledge states: statements about
the agent’s knowledge of the world. A knowledge fluent
Kφ denotes whether a real-world fluent φ is known to be
true in the world (Kφ), false in the world (K¬φ) or un-
known (¬Kφ and ¬K¬φ). Therefore at the knowledge
level the closed world assumption can be reinstated and
whenever both Kφ /∈ s and K¬φ /∈ s, we know that
¬Kφ ∈ s and ¬K¬φ ∈ s. Additionally we introduce
the operator Kv which indicates whether the value of a
function f(c1, c2, . . . , cn) is known (Kv(f(c1, c2, . . . , cn)))
or unknown (¬Kv(f(c1, c2, . . . , cn))), regardless of the ac-
tual value. Thus (∃d ∈ O)K(f(c1, . . . , cn) = d) ≡
Kv(f(c1, . . . , cn)). All states at the knowledge level are
written entirely in terms of these knowledge fluents.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. Prea can be any set of knowl-
edge fluent expressions. We consider two different kinds of
action effects. First, we allow STRIPS-like effects, where
each e ∈ Effa has the form add(φ), or del(φ), and φ is any
knowledge fluent expression. Second, we permit conditional
effects of the form Ce ⇒ add(φ) or Ce ⇒ del(φ). Here, Ce
is any set of knowledge fluent expressions, and is referred
to as the secondary preconditions of effect e. Action pre-
conditions and effects can also be parameterised. An action
with all of its parameters replaced with objects fromO is an
action instance.

In contrast to STRIPS domains, which assume that ob-
jects mentioned in the preconditions or the effects must be
listed in the action parameters (the STRIPS scope assump-
tion (SSA)), we make the more general deictic scope as-
sumption that objects mentioned in the preconditions or ef-
fects are either action parameters or are directly or indirectly
related to the action parameters, i.e., they have a deictic term
(see Deictic Reference section).

We restrict previous domain knowledge to the assump-
tion of a weak domain model where the agent knows how to
identify objects, has acquired predicates to describe object
attributes and relations, and knows what types of actions it
may perform, but not the appropriate contexts for the ac-
tions, or their effects. Experience in the world is then devel-
oped by observing changes to object attributes and relations
when “motor-babbling” with primitive actions.

The task of the learning mechanism is to learn the pre-
conditions and effects Prea and Effa for each a ∈ A, from
data generated by an agent performing a sequence of ran-
domly selected actions in the world and observing the re-
sulting states. The sequence of states and action instances
is denoted by s0, a1, s1, ..., an, sn where si ∈ S and ai
is an instance of some a ∈ A. Our data consists of ob-
servations of the sequence of states and action instances
s′0, a1, s

′
1, ..., an, s

′
n, where state observations may be noisy

(some φ ∈ si may be observed as K¬φ ∈ s′i) or incomplete
(some φ ∈ si are not in s′i). Action failures are allowed:
the agent may attempt to perform actions whose precondi-
tions are unsatisfied. In these cases the world state does not
change, but the observed state may still be noisy or incom-
plete. To make accurate predictions in domains where action
failures are permitted, the learning mechanism must learn

both preconditions and effects of actions.
Consider, for example, the dishwasher domain (shown in

Figure 1), a domain where an agent can load and unload a
dishwasher, switch it on, and check the status of the dish-
washer. In our examples we use a PDDL-like syntax to rep-
resent knowledge fluents and states. For a state where the
agent knows the dishwasher contains some dirty dishes, the
real world state could be:
(AND (status=dirty) (¬in washer dish1) (¬in washer dish2)

(in washer dish3) (isdirty dish1) (¬isdirty dish2)

(isdirty dish3) (in washer dish4) (isdirty dish4)).

From this the agent might observe the knowledge state:
(AND Kv(status) K(status=dirty) K(¬in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2)).

A sequence of knowledge states and actions could be:
s0:(AND Kv(status) K(status=dirty) K(¬in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a1:(load washer dish1)

s1:(AND Kv(status) K(status=dirty) K(in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a2:(switchon)

s2:(AND K(in washer dish1) K(in washer dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a3:(checkstatus)

s3:(AND K(in washer dish1) K(in washer dish3)

K(¬in washer dish2) K(¬isdirty dish2)

Kv(status) K(status=clean)).

Taking a sequence of such inputs, we learn action descrip-
tions for each action in the domain, such as in Figure 1.

Related Work
Knowledge-level reasoning is not a new idea (Newell,
1982), and the use of knowledge fluents like Kφ and K¬φ
has been explored as a means of restricting the syntac-
tic form of knowledge assertions in exchange for more
tractable reasoning, e.g., by avoiding the drawbacks of
possible-worlds models (Demolombe and Pozos Parra,
2000; Soutchanski, 2001; Petrick and Levesque, 2002).
Planners like PKS (Petrick and Bacchus, 2002, 2004) at-
tempt to work directly with knowledge-level models, sim-
ilar to those of knowledge fluents, while approaches like
(Palacios and Geffner, 2009) compile traditional open world
planning problems into a classical closed-world form, in the
process automatically generating knowledge fluents.

Only a few approaches to learning action models are capa-
ble of learning under either partial observability (Amir and
Chang, 2008; Yang et al., 2007; Zhuo et al., 2010), noise
in any form (Pasula et al., 2007; Rodrigues et al., 2010),
or both (Halbritter and Geibel, 2007; Mourão et al., 2010).
Some rely on prior knowledge of the action model, such as
using known successful plans (Yang et al., 2007; Zhuo et al.,
2010), or excluding action failures (Amir and Chang, 2008).
None explicitly support functions or knowledge fluents.

While the representation used in our previous work
(Mourão et al., 2012) does not support functions or the Kv



(define (domain dishwasher)

(:predicates (in ?washer ?dish) (isdirty ?dish))

(:functions (status ?washer) = ?washstatus)

(:constants clean dirty)

(:action checkstatus

:parameters (?washer)

:precondition ()

:effect (Kv(status(?washer))))

(:action switchon

:parameters (?washer)

:precondition ()

:effect (¬Kv(status(?washer))))

(:action unload

:parameters (?washer ?dish)

:precondition (and Kv(status(?washer)) K(status(?washer)=clean) K(in ?washer ?dish))

:effect (and K(¬in ?washer ?dish) K(¬isdirty ?dish)))

(:action load

:parameters (?washer ?dish)

:precondition (K¬(in ?washer ?dish) )

:effect (and K(in ?washer ?dish)

(when (K(isdirty ?dish)) (Kv(status(?washer)) K(status(?washer)=dirty)))

(when (and ¬K(isdirty ?dish) Kv(status(?washer)) K(status(?washer)=clean)) (¬Kv(status(?washer)))))))

= status load isdirty

clean statusv arg1 arg2

¬in in ¬in

¬isdirty [D2] [D3] isdirty

1 2

1

2

1 21

2

Figure 1: A description of the dishwasher domain (left), and (right) a graphical representation of state s0 when combined with
the load action. The node representing the result of the status(?washer) function is labelled statusv .

operator, it could support knowledge fluents of the formKφ.
In this earlier work, each fluent φ was assigned one of the
values 1, −1 or ∗ which correspond to the Kφ, K¬φ and
¬Kφ/¬K¬φ defined earlier. However, the learning method
depended on the SSA to generate vector representations of
states. With the introduction of functions the SSA no longer
applies and the vector representation can no longer be used.

Our new approach depends upon coding world states (and
correspondingly, preconditions and effects) in terms of de-
ictic reference (Agre and Chapman, 1987). A deictic rep-
resentation maintains pointers to objects of interest in the
world, with objects coded relative to the agent or current
action. Previous work in learning action models has also
used deictic reference (Benson, 1996; Pasula et al., 2007)
because there are benefits in doing so: it reduces the size
of the state representation, by limiting the observations to
a small number of objects, and also permits generalisation
across different instances of the same action, as the obser-
vations are described in terms of the action and the agent
instead of specific objects.

Method outline
Our approach to learning knowledge-level action models is
based on the work of Mourão et al. (2012), but differs signif-
icantly in terms of the representation used and in the details
of the learning process. Real-world states are observed by
an agent as a knowledge state where each fluent φ(¬φ) is
observed as Kφ(K¬φ) and when Kf(c1, . . . , cn) = cn+1,
also Kv(f(c1, . . . , cn)). We represent these observations as
graphs where objects, known fluents and actions are nodes
in the graph, and edges link fluents to their arguments. The
prediction problem is then to determine which nodes in a

graph change as the result of an action. Our strategy is to
decompose the prediction problem into many smaller classi-
fication problems, where each classifier predicts change to a
single fluent of the overall state, given an input situation and
an action. After training the classifiers we derive planning
operators from the learnt parameters, using the same process
described by Mourão et al. (2012).

Central to the classification process is a measure of sim-
ilarity between states. Commonly, similarity comparisons
between graphs are performed using graph kernels which
implicitly map into another feature space; here we define an
explicit mapping of state graphs into a feature space, where
the mapping is calculated via a simple relabelling scheme.

The remainder of this paper is structured as follows. We
define deictic reference and show how it is used to create
the graphical representation of world states. Then we ex-
plain how we calculate a similarity measure for two states
based on deictic reference. The structure and operation of
the classification learning model is described, followed by
an explanation of how rules are extracted from the classi-
fiers. Finally, we give some experimental results and discuss
conclusions and future work.

Deictic reference
Deictic reference underlies a number of aspects of the learn-
ing process. The structure of the state observation graphs is
determined by the deictic terms of the objects in the state.
In turn, this means that the feature space mapping relies on
deictic reference to map objects with the same roles in an
action to the same points in the feature space.

In the deictic representation we use, we code objects with
respect to the action. Every action parameter is referred to



by its own unique deictic term, corresponding to its position
in the parameter list. Constant values are also considered
to have their own deictic terms. Deictic terms referring to
other objects are their definitions in terms of their relations
with the action parameters and other objects.

Thus, similar to Pasula et al. (2007), a deictic term is a
variable Vi and a constraint ρi where ρi is a set of literals
defining Vi in terms of the arguments of the current action
and any previously defined Vj (j < i). Then an object has
a deictic term if it is an argument of the current action, or
it is related directly, or indirectly via other objects, to the
arguments of the action. For functions, every argument must
already have a deictic term in order for the function result to
have a deictic term.

Additionally, we add the constraint that for an object to
have a deictic term, it must be linked by a positive fluent
to either an action parameter, or another object which has
a deictic term (the positive link assumption). This addi-
tional restriction accounts for the open world representation
now in place (at the world level), avoiding deictic terms of
the form “the-object-not-under-the-object-I-am-picking-up-
and-not-on-the-floor”, which will not usually be unique and
seem counter-intuitive. Apart from the action parameters,
any object in a state may be referred to by several deictic
terms, and (unlike Pasula et al. (2007)) any deictic term may
refer to several objects in a state.

We say that an object has an n-th order deictic term when
n is the minimum number of relations relating the object to
an action parameter. Thus the parameters of the action have
zero-order deictic terms, while objects related to the action
parameters have first-order deictic terms.

For example, in the dishwasher domain (Figure 1), if the
action were (load washer dish1) in state s0, then
action parameters washer and dish1 would have deictic
terms arg1 and arg2, indicating their positions in the load
argument list. Relative to the (load washer dish1)
action, dish2 is referred to by deictic terms
x : ¬in(washer, dish2) and x : ¬in(washer, dish2) ∧
¬isdirty(x), but not x : ¬isdirty(x) alone. The dish2
node is labelled [dish2] to indicate that it represents all
objects with the same deictic terms as dish2.

State representation
We represent a knowledge state by a graph, where objects
(as deictic terms), known fluents, and the current action are
represented by nodes in the graph. Edges link fluents (or the
current action) and their arguments, and are labelled with the
argument position.

Both predicates and functions are represented by nodes
and are only present in the graph if known. However, for
functions additionally the result of a function f is repre-
sented by a special node fv , which denotes the deictic term
defined by the function. The actual value of the function
is linked to fv by an equality node. Thus, for example,
K(f(c1, c2) = c3) would be represented as in Figure 2.

The size of the graph is limited by restricting the deictic
terms to zero- or first-order terms only.1 Using only zero-

1Higher order terms are possible but are left to future work.

f

c1 c2 fv c3

=

1 2 3

Figure 2: Representation of K(f(c1, c2) = c3). c1,c2 and
c3 are represented by nodes labelled with their deictic terms
(here we assume they are constants). The function node f
has edges to nodes c1 and c2, indicating they are parameters,
and also an edge connecting to the result node fv . fv and c3
are linked by an equals node, indicating that the value of
f(c1, c2) is c3.

order terms would be equivalent to working with a STRIPS
representation, as we would only consider parameters of the
action during learning. Here, we require first-order deictic
terms to represent functions, as the result of a function will
not usually be an action parameter. Figure 1 shows a graph
encoding the state s0 in the context of the (load washer
dish1) action, after converting the objects to deictic terms.

Calculating changes

Our classification model operates by taking a knowledge
state (as a graph) as input, and predicting which knowledge
fluents will change. Each training example must therefore
consist of a prior state, an action, and the changes resulting
from performing the action on the state.

We denote changes by creating a change graph, cre-
ated by annotating the prior state graph with additional
marker nodes (similar to Halbritter and Geibel (2007)).
Marker nodes have an edge linking to the fluent node which
changed. Given a prior and successor state, a marker node
Mφ is added to the change graph for every fluent φ which
changes real-world value between the states. A marker node
MKφ is added for every fluent which changes knowledge
state between the states. During training, each classifier
will learn to predict the presence or absence of a single
marker node in the graph (i.e. whether the associated flu-
ent changes).

It is straightforward to determine the marker nodes to add
to the change graph, given prior and successor state graphs.
For any fluent φ in the prior state, if ¬φ is in the successor
state, we add Mφ. If neither φ nor ¬φ are present in the suc-
cessor state we addMKφ. Similarly, any fluent present in the
successor state but not the prior state is added to the change
graph, along with MKφ. For example, for the load action
in Figure 1, the changes to the state would be indicated by
a node M= linked to the (statusv = clean)node and a
node Min linked to the (¬in arg1 arg2)node.

Crucially, because the successor state immediately fol-
lows the prior state, matching fluents can be determined by
matching the actual objects which were arguments of the
fluents. In general such matching is not possible between
states. We return to this point when describing the structure
of the learning model.



arg1

¬isdirty in

[dish2]

1

2

(a)

¬isdirty

[dish2]

(b)

Figure 3: Valid (a) and invalid (b) subgraphs of the state
graph in Figure 1.

Comparing states using deictic reference
The classification process requires a measure of similarity
between states. In classification problems, graphical inputs
are usually mapped either implicitly — via graph kernels
— or explicitly into a feature space where the inner product
provides a similarity score.

A feature space where the features are all possible con-
junctions of fluents would seem to be ideal for learning ac-
tion preconditions which are arbitrary conjunctions of flu-
ents. However, similarity calculations in this space are un-
likely to be tractable as it is closely related to the subgraph
kernel (mapping graphs to the space of all possible sub-
graphs), known to be NP-hard (Gärtner et al., 2003), and
contains the feature space of the DNF kernel (Sadohara,
2001; Khardon and Servedio, 2005), which cannot be used
by a perceptron to PAC-learn DNF (Khardon et al., 2005).

Following Mourão et al. (2012) we therefore work with
the space of all possible conjunctions of fluents of length
≤ k for some fixed k. The space is further restricted so that
in every conjunction, every object must have a valid deictic
term depending only on fluents in the conjunction. This re-
striction avoids learning meaningless preconditions where
variables in the preconditions are undefined e.g., action
a(x, y) with precondition p(z). Also, it forces the similarity
comparison to account for the roles of objects (as defined by
their deictic terms) by mapping objects in different states,
but with similar deictic terms, to similar sets of features.

We define an explicit mapping into this space, creating a
(sparse) feature vector. Each element of the vector corre-
sponds to a conjunction of up to k fluents present in the state
graph, subject to the restriction that every object has a valid
deictic term depending only on fluents in the conjunction.
E.g. considering subgraphs of the dishwasher state shown in
Figure 1, Figure 3a would be valid but not Figure 3b. The
value of each element in the vector is the number of occur-
rences of the corresponding subgraph in the state graph.

The feature vector can be constructed via a labelling
scheme similar to the process used in some graph kernel cal-
culations (Shervashidze et al., 2011). First we label object
nodes with either their position in the action parameter list,
or their type if they are not listed in the action parameters.
Next we identify the set of core fluents, whose arguments
are contained within the set of action parameters. By defini-
tion, every argument of a core fluent has a deictic term, and
so any conjunction of core fluents will be valid.

For each conjunction C of i core fluents (1 ≤ i ≤ k),
we identify the set of supported fluents, whose arguments

are also arguments of either the action or a fluent in C. For
example, in Figure 3a, in is a core fluent and isdirty is a
supported fluent. Every argument of a supported fluent will
have a deictic term depending only on fluents in C. Now we
create all possible conjunctions of supported fluents of size
k − i or fewer, and combine each with C in turn to give C ′.

We convert each fluent in C ′ to a string encoding the flu-
ent, the argument positions and their ordering. E.g. (in
arg1 dish) could convert to “in1(arg1)2(dish)”. (Note
that here “dish” is a type.) Next we sort the fluent strings and
concatenate them to give a unique string representing C ′.
This string is looked up in a lookup table mapping strings
to feature vector locations. If the string is not found in the
lookup table, we add a new entry with value 1 to the feature
vector and a matching entry in the lookup table. Otherwise
we increment the existing entry in the feature vector.

Structure of the learning model
Using the state graphs defined above, the structure of the
learning model can be defined. Given a state s ∈ S and
an action a ∈ A, the model predicts the successor state s′.
Equivalently, the set of fluents which change between s and
s′ — the deltas — can be predicted. Our strategy is to use
multiple classifiers where each classifier predicts change to
one or a small set of fluents of the overall state, given an
input situation and an action.

Such a structure requires a classifier for each possible flu-
ent node in any state graph. Then given a state graph, we
predict the effect of an action by predicting whether each
fluent node in the graph changes or not. The conjunction of
all the predicted changes is the predicted effect of the action.
For example, in Figure 1, consider the following fluents:

1. (¬in arg1 arg2)
2. (¬in arg1 [dish2])

where [dish2] = {x : ¬in(arg1, x) ∧ ¬isdirty(x)}
3. (in arg1 [dish4])

where [dish4] = {x : in(arg1, x) ∧ ¬isdirty(x)}
4. (¬in arg1 [dish5])

where [dish5] = {x : ¬in(arg1, x)}
Fluents (1) and (2), present in the graph, and (3), not

present, but possible, would each have their own classifier.
Additionally we must consider fluents with more general de-
ictic terms, such as (4), which includes both (1) and (2). The
classifier associated with (4) predicts whether fluent (in
arg1 x) changes for any x not in arg1, whereas the classi-
fiers associated with (1) and (2) predict whether (in arg1

x) changes for x which is the second argument of the load
action (1), or for x which is not in arg1 and not dirty (2).
However, although there are many possible fluent nodes, in
practice most of the associated classifiers are not instanti-
ated by our algorithm, resulting in a default prediction of no
change for the corresponding fluents.

Our training algorithm therefore has two tasks. First, it
manages sets of classifiers, in terms of deciding which clas-
sifier to train on which data, and when to instantiate new
classifiers. Second, it trains the classifiers. Likewise, at pre-
diction our algorithm must select which classifiers to use,
and then generate a prediction from them.



As in the work of Mourão et al. (2012), we will use voted
perceptron classifiers (Freund and Schapire, 1999), since
they are known to be robust to noise and efficient to train.
We use the standard procedures for training of, and predic-
tion from, individual classifiers. In our algorithm descrip-
tions below, train(c, x, y) denotes updating classifier c with
training example (x, y), and predict(c, x) returns classifier
c’s prediction of the class of example x. We now describe
how classifiers are managed during training and prediction.

Initialisation
The algorithm is provided with the set of action labelsA, the
set of predicates P , the set of functions F , and the number
and types of their arguments. In the following description
we treat any function f(c1, . . . , cn) = cn+1 as two predi-
cates: f ′(c1, . . . , cn, fv) and equals(fv, cn+1), correspond-
ing to the graph structure defined earlier, and contained in
an extended set P ′. The learning algorithm maintains a set
of classifiers Ca,p for each action a and predicate p. Initially
eachCa,p is empty and is populated as training examples are
seen by the algorithm. Every member of Ca,p will be a clas-
sifier cm associated with a different tuple of deictic terms
m which are valid arguments of p. For example, in our
dishwasher domain, one of the sets of classifiers would be
C(load,in): the set of classifiers which predict changes to the
in predicate when the load action is performed. A mem-
ber of C(load,in) could be c(arg1,{x:in(arg1,x)∧¬isdirty(x)}).

Training
Each training example consists of a state description xi, an
action ai, and a successor state x′i. Both state descriptions
are converted into state graphs and a change graph δi, based
on the action ai as previously described. The marker nodes
from the change graphs will provide target values.

The training process is outlined in Algorithm 1. In
the main loop we identify all the fluent nodes p(m)
in a training example x (fluentNodes(x)) and determine
whether each fluent changed in the example, by checking
whether the node has a marker node in the change graph δ
(isFluentInDelta). If the fluent changed, the target value y
is set to 1, otherwise it is set to 0. Then updateClassifiers
is called for each fluent node.

In updateClassifiers , classifiers which match p(m) are
trained, and new classifiers may be instantiated if neces-
sary. Recall that in principle there is one classifier for ev-
ery possible fluent, each initially predicting no change to
the fluent. ’No-change’ classifiers are not actually instan-
tiated since no prediction function is needed. During train-
ing, updateClassifiers must decide which classifiers to up-
date, i.e., first, whether to instantiate a classifier, and second,
which classifier(s) to train. There is also a secondary goal of
minimising the number of instantiated classifiers to keep the
calculation tractable.

Thus given any p(m) we first seek classifiers which pre-
dict for p(m) and then update them with the training exam-
ple (x, y). A classifier predicts for p(m) if it is labelled with
p(m) (an exact match) or labelled with p(m′) where m′ is
equal to or more general than m (a subset match). For ex-
ample, if q({x : a(x) ∧ b(x)}) is a unary predicate then

Algorithm 1 Training

Require: training egs (x1, a1, δ1), ..., (xn, an, δn) ∈ X
Ensure: trained classifiers

1: Ca,p := ∅ ∀a ∈ A,∀p ∈ P
2: for all (x, a, δ) ∈ X do
3: for all p(m) ∈ fluentNodes(x) do
4: y := isFluentInDelta(p(m), δ)
5: Ca,p := updateClassifiers(x, y,m,Ca,p)

function updateClassifiers(state graph x, target y, deictic
terms m, set of classifiers C)

1: exactMatch := false; intersectMatches := ∅
2: for all c ∈ C do
3: if subsetMatch(c,m) then
4: call train(c, x, y)
5: call updateReliability(c)
6: if exactMatch(c,m) then
7: exactMatch := true
8: else if intersectMatch(c,m) then
9: intersectMatches := intersectMatches ∪ {c}

10: if (y 6= 0) ∧ (exactMatch = false) then
11: C := C∪createClassifiers(x, intersectMatches,m)
12: return C

q({x : a(x)}) is more general, and so whenever the for-
mer changes, so will the latter. Thus whenever we update
cq({x:a(x)∧b(x)}) we must also update cq({x:a(x)}). Formally,
we define that if classifier c predicts change for p(n):
• exactMatch(c,m) when n = m;
• subsetMatch(c,m) if the i-th term in n is a subset of the
i-th term in m ∀i;

Any classifier c ∈ Ca,p for which subsetMatch(c,m) holds
is trained on the training example (x, y), and a measure of
its reliability updated (see below).

Next we consider whether any classifiers should be instan-
tiated. There are two cases where instantiation is required.
If there was no exactly matching classifier for p(m) and
in our training example p(m) changed, then cp(m) should
be instantiated. If p(m) did not change then the original
‘no-change’ classifier is still correct. Additionally, the de-
ictic terms seen in training examples may be more specific
than the underlying rules. For example if a and b are de-
ictic terms we may only ever see changes to p(a, arg1) or
p(b, arg1) but the true change could be to p(a ∩ b, arg1).
To predict change to the correct set of fluents we therefore
need to consider more general deictic terms, and so when-
ever a new classifier is instantiated, classifiers for tuples of
more general deictic terms are also instantiated. However, it
is undesirable to add a classifier for every possible tuple, so
only those supported by the data are added. These are cases
where the deictic terms of p(m) intersect with deictic terms
of p(n) already seen in the data. Such p(n) can be found by
considering the terms of previously instantiated classifiers.

Formally, if classifier c predicts change for p(n):
intersectMatch(c,m) if the i-th term in n intersects the i-th
term in m ∀i. A tally is kept of exact matches and intersect
matches for p(m), and if cp(m) in instantiated, so are classi-
fiers for all the intersecting cases (createClassifiers).



Algorithm 2 Prediction

Require: Unlabelled instance (x, a), model parameters
Ca,p

Ensure: Prediction δ
1: δ = ∅
2: for all p(m) ∈ fluentNodes(x) do
3: if getPrediction(Ca,p, x,m) = 1 then
4: δ = δ ∪ {p(m)}

function getPrediction(set of classifiers C, state graph x,
deictic terms m)

1: r := 0, y := 0
2: for all c ∈ C do
3: if subsetMatch(c,m) and r < getReliability(c)

then
4: y := predict(c, x)
5: r := getReliability(c)
6: return y

Reliability and Prediction

The algorithm maintains a reliability score for each classi-
fier (updateReliability), used during prediction to select the
best classifier. The reliability of a classifier is calculated as
the fraction of predictions made which were correct during
training. We also maintain the null reliability, the reliability
which would have been achieved if this classifier had always
predicted no change. The null reliability score is thus the
fraction of training examples where there was no change.
In noisy situations, the null reliability may be higher than
the classifier reliability, indicating that many training exam-
ples were noisy. In this case, predicting no change gives
better results than using the classifier’s predictions (on the
training set). During prediction, getReliability returns ei-
ther the classifier reliability or the null reliability, whichever
is higher. If the null reliability is higher predict will always
predict no change, instead of the classifier’s prediction. (Ad-
ditionally, although not used here, low reliability classifiers
can be deleted if the number of classifiers grows too large.)

At prediction, given a test example x, each fluent node
p(m) of x is considered in turn and a search for matching
classifiers is performed. If no classifiers are found then the
model predicts no change for the fluent p(m). If exactly one
classifier is found then its prediction is used, and if there are
multiple matching classifiers, the classifier with the highest
reliability score is used.

Learning planning operators

Once the classifiers are trained, planning operators can be
derived using the approach of Mourão et al. (2012). First,
rules are extracted from individual classifiers. Since each
voted perceptron classifier predicts change to a single flu-
ent, this results in a set of candidate preconditions for each
candidate effect. Second, the candidate preconditions and
effects are combined via a heuristic merging process to pro-
duce planning operators. These steps are outlined below.

Algorithm 3 Rule extraction

Require: Positive support vectors SV +

Ensure: Rules R = {rulev : v ∈ SV +}
1: for v ∈ SV + do
2: child := v
3: while child only covers +ve training examples do
4: parent := child
5: for each fluent node in parent do
6: flip node to its negation and calculate weight
7: child := child whose parents have least weight dif-

ference
8: rulev := parent

Extracting rules from individual classifiers
Extracting rules from individual classifiers in the graphical
case is a straightforward reapplication of the approach used
for STRIPS vectors (Mourão et al., 2012). A key point is
that the decision function of the voted perceptron is a func-
tion of the set of support vectors identified during learning,
where the set of support vectors is some subset of the set of
training examples.2

Rules are extracted from a voted perceptron with kernelK
and support vectors SV = SV +∪SV −, where SV + (SV −)
is the set of support vectors whose predicted values are 1
(−1). Value 1 means the corresponding fluent changes, and
−1 means there is no change. The positive support vectors
are each instances of some rule learnt by the perceptron, and
so are used to “seed” the search for rules. The extraction
process aims to identify and remove all irrelevant nodes in
each support vector, using the voted perceptron’s prediction
calculation to determine which nodes to remove.

We define the weight of any possible state graph x to be
the value calculated by the voted perceptron’s prediction cal-
culation before thresholding. The basic intuition behind the
rule extraction process is that more discriminative features
will contribute more to the weight of an example. Thus the
rule extraction process operates by taking each positive sup-
port vector and repeatedly deleting the fluent node which
contributes least to the weight until some stopping criterion
is satisfied. This leaves the most discriminative features un-
derlying the example, which can be used to form a precon-
dition. This algorithm is detailed in Algorithm 3.

Combining rules into planning operators
Finally we combine the rule fragments ((precondition,effect)
pairs) resulting from the rule extraction process into
planning operators. For each action the process de-
rives a rule (grule, erule) from the set of rules R =
{(g1, e1), . . . , (gr, er)} produced by rule extraction, ordered
by decreasing weight. The process first initialises grule to
the highest weighted precondition in R and sets erule = ∅.
The rule is then refined by combining it with each of the re-
maining per-fluent rules in turn, in order of highest weight.

Combining rules involves merging the graphs encoding
the preconditions, as well as the markers encoding the ef-
fects, into a new candidate rule. After merging, a simplifica-

2Note that support vectors are therefore state graphs.



tion step removes unnecessary fluents in the preconditions
and effects by testing the coverage and weight of the can-
didate rule without each new fluent. Then the new rule is
accepted if its F-score on the training set is within some tol-
erance of the F-score of the previous rule on the training set.
Lastly the rule is translated into PDDL or some variant.

Experiments
We evaluate our approach by learning planning operators in
a real robot domain, whose underlying model is defined at
the knowledge level. We compare the F-scores for predic-
tions made by both the learnt planning operators and un-
derlying classification model with predictions made by the
“gold-standard” domain description: the original specifica-
tion of the behaviour of the robot.

The data used for training and testing was generated from
logs of the JAMES robot bartender system, recorded dur-
ing a drink ordering scenario in which human subjects were
asked to order drinks from the robot. State descriptions
were generated by the system’s state manager, based on real-
world sensor data (vision and automatic speech recognition),
interleaved with the names of planned actions generated for
the goal of serving all agents. In total, 93 interactions were
recorded for 31 human users. Each interaction involves ap-
proximately 5-10 robot actions.

The robot bartender domain description is at the
knowledge-level, and several actions require functions in
their definitions. One action is of particular interest:
ask-drink, where the robot asks a human customer for
their order. If successful, ask-drink has the effect that
the robot now knows the value of the customer’s requests
(Kv(request ?x)). Although ask-drink will also re-
sult in the robot knowing the actual drink requested (e.g.
K(request(?x) = water)) this is only useful at run-
time, whereas Kv(request ?x) is needed at plan-time.
Furthermore, because ask-drink involves accurately in-
terpreting the user’s chosen drink, it is particularly prone to
failure. Therefore it is of additional interest to investigate
how well this action is learnt.

Results
A ten-fold cross-validation procedure was used to test the
performance of the learning model, and was repeated across
different numbers of training examples to assess how many
examples would be needed to learn an adequate model. The
performance was measured by considering the fluents which
the model predicted would change versus the fluents which
did change, and calculating the F-score, the harmonic mean
of precision and recall (true positives/predicted changes and
true positives/actual changes, respectively).

The results were compared to the predictions made by
the gold-standard model. In Figure 4 we show F-scores for
action predictions made by the classifiers; by rules derived
from the classifiers; and by the gold-standard model on data
from the robot experiment. As can be seen in the graph,
the rules extracted from the classifiers perform similarly to
making predictions directly with the classifiers, but with the
added benefit of providing action descriptions which can

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of training examples

F-
sc

or
e

10-fold cross-validation results

Classifier predictions
Rule predictions
Gold standard predictions

Figure 4: Results from the robot experiment: Mean F-scores
from ten-fold cross-validation for predictions from the clas-
sifiers, extracted rules and gold-standard action descriptions.

be used for planning. The F-scores for the classifiers and
extracted rules are not significantly different from the F-
score of the gold standard rules (noise in the domain means
that even the gold-standard rules cannot always predict the
changes which will or will not occur).

An example of an action description learnt for
ask-drink with 200 training examples is given below.
Fluents marked in italic do not exist in the gold standard do-
main description. Some fluents are also missing, all relating
to preconditions involving other agents which we currently
do not represent. However, the crucial Kv(request ?x)
effect is learnt.
(:action ASK-DRINK

:parameters (?x)

:precondition (AND K(transHistory RobotAckAttention ?x)

K(¬transHistory AgentOrdered ?x)

¬Kv(request ?x) K(closeToBar ?x) K(faceseen ?x))

:effect (AND (Kv(request ?x)

K(transHistory AgentOrdered ?x))))

Conclusions and Future Work
Our results show that we can learn knowledge-level planning
operators in a noisy robot domain. The approach we use
depends on decomposing the learning problem into many
small classification problems, using the deictic scope as-
sumption to constrain the problem. Deictic reference also
plays an important role in defining the representation for
functions and in the similarity calculations made by the clas-
sifiers. In future work we plan to test our approach in other
real or simulated knowledge-level domains. Another step
will be to use the learnt planning operators in an automated
knowledge-level planning system such as PKS (Petrick and
Bacchus, 2002, 2004).

Acknowledgements This work was partially funded by the
European Commission through the EU Cognitive Systems and
Robotics projects Xperience (FP7-ICT-270273) and JAMES (FP7-
ICT-270435).



References
Agre, P. E. and Chapman, D. (1987). Pengi: An implemen-

tation of a theory of activity. In AAAI, pages 268–272.
Amir, E. and Chang, A. (2008). Learning partially observ-

able deterministic action models. JAIR, 33, 349–402.
Benson, S. S. (1996). Learning Action Models for Reactive

Autonomous Agents. Ph.D. thesis, Stanford University.
Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001).

Planning in nondeterministic domains under partial ob-
servability via symbolic model checking. In Proc. of IJ-
CAI 2001, pages 473–478.

Bonet, B. and Geffner, H. (2000). Planning with incomplete
information as heuristic search in belief space. In Proc. of
AIPS 2000, pages 52–61.

Demolombe, R. and Pozos Parra, M. P. (2000). A simple
and tractable extension of situation calculus to epistemic
logic. In Proc. of ISMIS 2000, pages 515–524.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artif. Intell., 2, 189–208.

Freund, Y. and Schapire, R. (1999). Large margin classifica-
tion using the perceptron algorithm. Machine Learning,
37, 277–96.

Gärtner, T., Flach, P., and Wrobel, S. (2003). On graph ker-
nels: Hardness results and efficient alternatives. In Proc.
of COLT 2003, pages 129–143.

Halbritter, F. and Geibel, P. (2007). Learning models of re-
lational MDPs using graph kernels. In Proc. of MICAI
2007, pages 409–419.

Khardon, R. and Servedio, R. A. (2005). Maximum margin
algorithms with Boolean kernels. JMLR, 6, 1405–1429.

Khardon, R., Roth, D., and Servedio, R. A. (2005). Effi-
ciency versus convergence of Boolean kernels for on-line
learning algorithms. JAIR, 24, 341–356.

Mourão, K., Petrick, R. P. A., and Steedman, M. (2009).
Learning action effects in partially observable domains
(1). In Proc. of ICAPS 2009 Workshop on Planning and
Learning, pages 15–22.

Mourão, K., Petrick, R. P. A., and Steedman, M. (2010).
Learning action effects in partially observable domains
(2). In Proc. of ECAI 2010, pages 973–974.

Mourão, K., Zettlemoyer, L., Petrick, R. P. A., and Steed-
man, M. (2012). Learning STRIPS operators from noisy
and incomplete observations. In Proc. of UAI 2012, pages
614–623.

Newell, A. (1982). The knowledge level. Artif. Intell., 18(1),
87–127.

Palacios, H. and Geffner, H. (2009). Compiling uncertainty
away in conformant planning problems with bounded
width. JAIR, 35(1), 623–675.

Pasula, H., Zettlemoyer, L. S., and Kaelbling, L. P. (2007).
Learning symbolic models of stochastic domains. JAIR,
29, 309–352.

Petrick, R. P. A. and Bacchus, F. (2002). A knowledge-
based approach to planning with incomplete information
and sensing. In Proc. of AIPS 2002, pages 212–221.

Petrick, R. P. A. and Bacchus, F. (2004). Extending the
knowledge-based approach to planning with incomplete
information and sensing. In Proc. of ICAPS 2004, pages
2–11.

Petrick, R. P. A. and Foster, M. E. (2013). Planning for
social interaction in a robot bartender domain. In Proc.
of ICAPS 2013, Special Track on Novel Applications. To
appear.

Petrick, R. P. A. and Levesque, H. (2002). Knowledge equiv-
alence in combined action theories. In Proc. of KR 2002,
pages 303–314.

Rodrigues, C., Gérard, P., and Rouveirol, C. (2010). Incre-
mental learning of relational action models in noisy envi-
ronments. In Proc. of ILP 2010, pages 206–213.

Sadohara, K. (2001). Learning of Boolean functions using
support vector machines. In Proc. of ALT , pages 106–118.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. (2011). Weisfeiler-
Lehman graph kernels. JMLR, 12, 2539–2561.

Soutchanski, M. (2001). A correspondence between two dif-
ferent solutions to the projection task with sensing. In
Commonsense 2001.

Weld, D. S., Anderson, C. R., and Smith, D. E. (1998). Ex-
tending graphplan to handle uncertainty and sensing ac-
tions. In Proc. of AAAI 1998, pages 897–904.

Yang, Q., Wu, K., and Jiang, Y. (2007). Learning action
models from plan examples using weighted MAX-SAT.
Artif. Intell., 171(2-3), 107–143.

Zhuo, H. H., Yang, Q., Hu, D. H., and Li, L. (2010). Learn-
ing complex action models with quantifiers and logical
implications. Artif. Intell., 174(18), 1540–1569.


