848 research outputs found

    Supervised Machine Learning Under Test-Time Resource Constraints: A Trade-off Between Accuracy and Cost

    Get PDF
    The past decade has witnessed how the field of machine learning has established itself as a necessary component in several multi-billion-dollar industries. The real-world industrial setting introduces an interesting new problem to machine learning research: computational resources must be budgeted and cost must be strictly accounted for during test-time. A typical problem is that if an application consumes x additional units of cost during test-time, but will improve accuracy by y percent, should the additional x resources be allocated? The core of this problem is a trade-off between accuracy and cost. In this thesis, we examine components of test-time cost, and develop different strategies to manage this trade-off. We first investigate test-time cost and discover that it typically consists of two parts: feature extraction cost and classifier evaluation cost. The former reflects the computational efforts of transforming data instances to feature vectors, and could be highly variable when features are heterogeneous. The latter reflects the effort of evaluating a classifier, which could be substantial, in particular nonparametric algorithms. We then propose three strategies to explicitly trade-off accuracy and the two components of test-time cost during classifier training. To budget the feature extraction cost, we first introduce two algorithms: GreedyMiser and Anytime Representation Learning (AFR). GreedyMiser employs a strategy that incorporates the extraction cost information during classifier training to explicitly minimize the test-time cost. AFR extends GreedyMiser to learn a cost-sensitive feature representation rather than a classifier, and turns traditional Support Vector Machines (SVM) into test- time cost-sensitive anytime classifiers. GreedyMiser and AFR are evaluated on two real-world data sets from two different application domains, and both achieve record performance. We then introduce Cost Sensitive Tree of Classifiers (CSTC) and Cost Sensitive Cascade of Classifiers (CSCC), which share a common strategy that trades-off the accuracy and the amortized test-time cost. CSTC introduces a tree structure and directs test inputs along different tree traversal paths, each is optimized for a specific sub-partition of the input space, extracting different, specialized subsets of features. CSCC extends CSTC and builds a linear cascade, instead of a tree, to cope with class-imbalanced binary classification tasks. Since both CSTC and CSCC extract different features for different inputs, the amortized test-time cost is greatly reduced while maintaining high accuracy. Both approaches out-perform the current state-of-the-art on real-world data sets. To trade-off accuracy and high classifier evaluation cost of nonparametric classifiers, we propose a model compression strategy and develop Compressed Vector Machines (CVM). CVM focuses on the nonparametric kernel Support Vector Machines (SVM), whose test-time evaluation cost is typically substantial when learned from large training sets. CVM is a post-processing algorithm which compresses the learned SVM model by reducing and optimizing support vectors. On several benchmark data sets, CVM maintains high test accuracy while reducing the test-time evaluation cost by several orders of magnitude

    Learning Dynamic Feature Selection for Fast Sequential Prediction

    Full text link
    We present paired learning and inference algorithms for significantly reducing computation and increasing speed of the vector dot products in the classifiers that are at the heart of many NLP components. This is accomplished by partitioning the features into a sequence of templates which are ordered such that high confidence can often be reached using only a small fraction of all features. Parameter estimation is arranged to maximize accuracy and early confidence in this sequence. Our approach is simpler and better suited to NLP than other related cascade methods. We present experiments in left-to-right part-of-speech tagging, named entity recognition, and transition-based dependency parsing. On the typical benchmarking datasets we can preserve POS tagging accuracy above 97% and parsing LAS above 88.5% both with over a five-fold reduction in run-time, and NER F1 above 88 with more than 2x increase in speed.Comment: Appears in The 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, China, July 201

    Learning Complexity-Aware Cascades for Deep Pedestrian Detection

    Full text link
    The design of complexity-aware cascaded detectors, combining features of very different complexities, is considered. A new cascade design procedure is introduced, by formulating cascade learning as the Lagrangian optimization of a risk that accounts for both accuracy and complexity. A boosting algorithm, denoted as complexity aware cascade training (CompACT), is then derived to solve this optimization. CompACT cascades are shown to seek an optimal trade-off between accuracy and complexity by pushing features of higher complexity to the later cascade stages, where only a few difficult candidate patches remain to be classified. This enables the use of features of vastly different complexities in a single detector. In result, the feature pool can be expanded to features previously impractical for cascade design, such as the responses of a deep convolutional neural network (CNN). This is demonstrated through the design of a pedestrian detector with a pool of features whose complexities span orders of magnitude. The resulting cascade generalizes the combination of a CNN with an object proposal mechanism: rather than a pre-processing stage, CompACT cascades seamlessly integrate CNNs in their stages. This enables state of the art performance on the Caltech and KITTI datasets, at fairly fast speeds

    Classification with Costly Features using Deep Reinforcement Learning

    Full text link
    We study a classification problem where each feature can be acquired for a cost and the goal is to optimize a trade-off between the expected classification error and the feature cost. We revisit a former approach that has framed the problem as a sequential decision-making problem and solved it by Q-learning with a linear approximation, where individual actions are either requests for feature values or terminate the episode by providing a classification decision. On a set of eight problems, we demonstrate that by replacing the linear approximation with neural networks the approach becomes comparable to the state-of-the-art algorithms developed specifically for this problem. The approach is flexible, as it can be improved with any new reinforcement learning enhancement, it allows inclusion of pre-trained high-performance classifier, and unlike prior art, its performance is robust across all evaluated datasets.Comment: AAAI 201

    Hierarchical Cascade of Classifiers for Efficient Poselet Evaluation

    Get PDF
    Poselets have been used in a variety of computer vision tasks, such as detection, segmentation, action classification, pose estimation and action recognition, often achieving state-of-the-art performance. Poselet evaluation, however, is computationally intensive as it involves running thousands of scanning window classifiers. We present an algorithm for training a hierarchical cascade of part-based detectors and apply it to speed up poselet evaluation. Our cascade hierarchy leverages common components shared across poselets. We generate a family of cascade hierarchies, including trees that grow logarithmically on the number of poselet classifiers. Our algorithm, under some reasonable assumptions, finds the optimal tree structure that maximizes speed for a given target detection rate. We test our system on the PASCAL dataset and show an order of magnitude speedup at less than 1% loss in AP

    Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing

    Full text link
    This work considers the trade-off between accuracy and test-time computational cost of deep neural networks (DNNs) via \emph{anytime} predictions from auxiliary predictions. Specifically, we optimize auxiliary losses jointly in an \emph{adaptive} weighted sum, where the weights are inversely proportional to average of each loss. Intuitively, this balances the losses to have the same scale. We demonstrate theoretical considerations that motivate this approach from multiple viewpoints, including connecting it to optimizing the geometric mean of the expectation of each loss, an objective that ignores the scale of losses. Experimentally, the adaptive weights induce more competitive anytime predictions on multiple recognition data-sets and models than non-adaptive approaches including weighing all losses equally. In particular, anytime neural networks (ANNs) can achieve the same accuracy faster using adaptive weights on a small network than using static constant weights on a large one. For problems with high performance saturation, we also show a sequence of exponentially deepening ANNscan achieve near-optimal anytime results at any budget, at the cost of a const fraction of extra computation
    • …
    corecore