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ABSTRACT OF THE DISSERTATION

Supervised Machine Learning Under Test-Time Resource Constraints:

A Trade-off Between Accuracy and Cost

by

Zhixiang (Eddie) Xu

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2014

Research Advisor: Professor Kilian Q. Weinberger, Chair

The past decade has witnessed how the field of machine learning has established itself as

a necessary component in several multi-billion-dollar industries. The real-world industrial

setting introduces an interesting new problem to machine learning research: computational

resources must be budgeted and cost must be strictly accounted for during test-time. A

typical problem is that if an application consumes x additional units of cost during test-time,

but will improve accuracy by y percent, should the additional x resources be allocated? The

core of this problem is a trade-off between accuracy and cost. In this thesis, we examine

components of test-time cost, and develop different strategies to manage this trade-off.

We first investigate test-time cost and discover that it typically consists of two parts: feature

extraction cost and classifier evaluation cost. The former reflects the computational efforts

of transforming data instances to feature vectors, and could be highly variable when fea-

tures are heterogeneous. The latter reflects the effort of evaluating a classifier, which could

be substantial, in particular nonparametric algorithms. We then propose three strategies

ix



to explicitly trade-off accuracy and the two components of test-time cost during classifier

training.

To budget the feature extraction cost, we first introduce two algorithms: GreedyMiser [132]

and Anytime Representation Learning (AFR)[135]. GreedyMiser employs a strategy that

incorporates the extraction cost information during classifier training to explicitly minimize

the test-time cost. AFR extends GreedyMiser to learn a cost-sensitive feature representation

rather than a classifier, and turns traditional Support Vector Machines (SVM) [110] into test-

time cost-sensitive anytime classifiers. GreedyMiser and AFR are evaluated on two real-world

data sets from two different application domains, and both achieve record performance.

We then introduce Cost Sensitive Tree of Classifiers (CSTC)[134] and Cost Sensitive Cascade

of Classifiers (CSCC)[137], which share a common strategy that trades-off the accuracy and

the amortized test-time cost. CSTC introduces a tree structure and directs test inputs along

different tree traversal paths, each is optimized for a specific sub-partition of the input space,

extracting different, specialized subsets of features. CSCC extends CSTC and builds a linear

cascade, instead of a tree, to cope with class-imbalanced binary classification tasks. Since

both CSTC and CSCC extract different features for different inputs, the amortized test-time

cost is greatly reduced while maintaining high accuracy. Both approaches out-perform the

current state-of-the-art on real-world data sets.

To trade-off accuracy and high classifier evaluation cost of nonparametric classifiers, we

propose a model compression strategy and develop Compressed Vector Machines (CVM).

CVM focuses on the nonparametric kernel Support Vector Machines (SVM), whose test-

time evaluation cost is typically substantial when learned from large training sets. CVM

is a post-processing algorithm which compresses the learned SVM model by reducing and

x



optimizing support vectors. On several benchmark data sets, CVM maintains high test

accuracy while reducing the test-time evaluation cost by several orders of magnitude.

xi



Chapter 1

Introduction

Machine learning, a relatively new branch of artificial intelligence, studies systems that can

learn from past experience. The past experience is commonly in a form of large amount of

data, also referred to as training data. In a typical supervised learning scenario, training

data contains pairs of instances in the form of features and outcomes, such as historical stock

price and current stock price or clinical measurements and diabetes diagnostics. Using this

training data, we build a prediction system (classifier) which can predict the outcomes from

instance features, and we use the built prediction system to predict outcomes of previously

unseen instances. It is referred to as supervised learning because outcomes are provided to

guide the training process.

Consider an e-mail spam filtering application, where the goal is to build a classifier to predict

if a new incoming e-mail is spam or not before delivering it to users’ inboxes. To build such

a classifier, a large amount of training data is collected. In this example, the training data

include e-mails (instances) and their corresponding labels as spam or not spam (outcomes).

E-mail instances are formulated as quantitative feature vectors readable by computers. Fea-

tures may include words from the subject line and e-mail body, sending time, attachment

types, attachment sizes in bytes, sender I.P., and spamming reputation. Figure 1.1 shows

an example of the feature vector of one hypothetical e-mail instance.

A classifier is then learned to reproduce the outcome labels based on the instance features in

the training data. The classifier determines which features to use and how to use them. A

simple classifier might use the rule shown in Algorithm 1. This simple rule basically counts

the number of occurrences of the keyword “viagra”, and checks if the sender is in the user’s

1



feature vector features:

“viagra”

“hello”
“best”

“Google”

Sender is in address book?
Senders IP
E-mail size
Attachment size

Image attachment vision feature value
...

...

...

...

0
1
1

5
...

...

...

...

0
12825220191

38439
832888

0.3284

Figure 1.1: Features and the feature vector of one hypothetical e-mail instance.

address book. If the occurrence is greater than one and the sender is a stranger, the e-mail

is classified as spam.

After training, the learned classifier is applied to classify previously unseen e-mails, a process

called test-time evaluation or testing. To classify a new e-mail, one has to convert a data

instance (a new e-mail in raw input) to a quantitative feature vector like described above, in

the format required by the classifier. This stage is called feature extraction. Once features

are extracted and concatenated into a feature vector, the learned classifier performs some

computation to generate final predictions. This stage is called classifier evaluation. Another

simple example of classifier evaluation which executes a classifier prediction rule is shown in

Algorithm 2. The rule assigns a weight to each feature, where the weight is learned during

training. Then the rule sums the weighted features and if the sum exceeds a threshold, it is

classified as spam and otherwise as non-spam.

2



Algorithm 1 E-mail spam filtering rule 1

if (“viagra” ≥ 1) and (Sender is in address book == 0) then
return SPAM

else
return REGULAR

end if

Algorithm 2 E-mail spam filtering rule 2

if 0.9×“viagra” + 0.2×“hello” ≥ 3 then
return SPAM

else
return REGULAR

end if

Performing feature extraction and classifier evaluation during testing is not free and each

stage described above incurs some certain cost. Feature extraction cost reflects the computa-

tional efforts of converting data instances to readable feature vectors. For example, counting

the number of occurrences of keywords requires a full scan of the e-mail body, while extract-

ing vision features from attached images requires running some vision algorithms. Classifier

evaluation cost reflects the computation of generating predictions from feature vectors. For

example, in Algorithm 2, the prediction rule requires multiply and sum operations, which

consume CPU computation cost. These two costs combine to form test-time cost.

In the traditional machine learning setting, where data set sizes are small and classifiers

are usually only executed once, test-time cost is low, and the sole goal is high classification

accuracy. However, as machine learning enters into industry through applications such as

web-search engines [142], product recommendation [40], and e-mail and web spam filter-

ing [128], the setting becomes different. In all these applications, data set sizes are very

large and classifiers are executed millions of times everyday. The test-time cost becomes an

equally important concern as accuracy. Imagine a classifier that is executed 10 million times

per day. We would like to introduce a new feature that improves the accuracy by 3%, but

its extraction increases the running time by 1s per execution. 10 million executions would

require the project manager to purchase 58 days of additional CPU time per day. Imagine

another example where in order to classify a new e-mail, a classifier has to compare the

feature vector of the new e-mail against that of all training e-mails (e.g. 10 million e-mails).

Introducing additional 10 million training e-mails improves the accuracy of the classifier by

3



1%, but also significantly increases the test-time evaluation cost, as the classifier evalua-

tion cost is linear in the number of training inputs. From these two large-scale real-world

applications, it is clear that the real-world industrial setting introduces a new problem to

machine learning research: computational resources must be budgeted and costs must be

strictly accounted for during test-time. At its core, this problem is an inherent trade-off

between accuracy and test-time cost.

In this thesis, we systematically investigate the test-time cost, quantify it, and propose four

new approaches to explicitly control it under budget. To start, we first formally describe su-

pervised learning and learning under test-time resource constraints. We then introduce some

useful background in machine learning and give an overview of our four different approaches.

In Chapter 2, we introduce two related algorithms that employ a strategy trading-off accuracy

and test-time feature extraction cost. In Chapter 3 we describe another strategy, classifi-

cation with trees and cascades, aiming to budget the amortized test-time cost. Chapter 4

targets the classifier evaluation cost and introduces an algorithm that explicitly controls it.

Finally, Chapter 5 offers concluding remarks.

1.1 Learning and Learning Under Test-time Constraints

1.1.1 Supervised learning

Let xi ∈ X denote a training input in the form of a feature vector of dimension d, xi ∈
Rd, with label yi ∈ Y . In supervised learning, training data are i.i.d. (independent and

identical distributed) samples from a joint distribution D = X × Y of instance/label pairs,

i.e. {(x1, y1), . . . , (xn, yn)}. Labels Y can be binary, categorical or real numbered. E-mail

spam filtering for example has binary labels, where each e-mail is either labeled as positive

(regular) or negative (spam). Problems with binary, categorical and real number labels

are referred to as binary classification, multi-class classification and regression problems,

respectively.

Given the set of inputs and the corresponding labels, it is assumed that there is an underlying

function f that maps the inputs to labels, yi = f(xi). The core of supervised learning is
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to estimate this underlying function by learning an approximate hypothesis H ∈ H from a

large amount of training inputs and their labels, and this hypothesis H is called classifier.

Typical supervised learning methods include Logistic regression [53] and Support Vector

Machines (SVM) [110, 29] for classification problems, and Neural networks [55] and Kernel

regression [84] for regression problems.

1.1.2 Supervised learning under test-time resource constraints

When learning under test-time resource constraints, there are a test-time budget B and a

test-time cost c. The test-time cost can be divided into feature extraction cost cf and classifier

evaluation cost ce, corresponding to two stages during testing. A classifier’s intrinsic structure

(its prediction rule or algorithm) determines the evaluation cost, and thus the evaluation cost

is a function of a specific classifier H, ce(H). We also assume that during testing, features are

extracted on-demand, where features are only extracted from data instances when needed

by the classifier. Therefore, a classifier H determines which features to extract, and the

extraction cost is also a function of a specific classifier, cf (H).

This test-time cost and budget dramatically transform supervised learning. Instead of just

learning a classifier H to maximize classification accuracy, one should also take test-time

cost and budget into consideration during learning, making sure that the test-time cost of a

classifier will be within budget constraints, cf (H) + ce(H) ≤ B.

1.2 Types of Classifiers

Since a classifier’s intrinsic structure dramatically affects the test-time cost, we review dif-

ferent types of classifiers. In general, a classifier H is learned by minimizing a loss function

` w.r.t. the classifier,

H = min
H

`(H). (1.1)
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Figure 1.2: Decision boundaries of linear regression, linear SVM, kernel SVM and GBRT.

One example for ` is the squared-loss

`sq(H) =
1

2n

n∑

i=1

(H(xi)− yi)2, (1.2)

but other losses, for example log-loss [53], are equally suitable.

1.2.1 Linear classifier

Linear classifiers have long been a popular classifier in statistics and machine learning, and

still remain as an indispensable tool today. A linear classifier predicts an observed outcome

yi from a feature vector xi ∈ Rd using the model,

H(xi) = x>i w + b, (1.3)

where H(xi) is the prediction of the observed outcome yi, w ∈ Rd is the weight vector

assigning each feature a weight, and b is the bias. In the (d+1)-dimensional feature-prediction
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Figure 1.3: A schematic layout of Support Vector Machine (SVM). Blue and red dots are
training instances in a two dimensional feature space, and two colors indicate two classes.
The solid black line is the decision boundary learned from the training data. Dotted dark
lines are margins. Dots in light blue circles are support vectors.

space,
(
x, H(x)

)
represents a hyperplane. This hyperplane is called a decision boundary for

classification problems, as instances above the hyperplane are classified as positive and those

below are classified negative. This decision boundary is parameterized by the weight vector

w, and it is learned by minimizing a squared-loss function

min
w

`(w) =
n∑

i=1

(x>i w + b− yi)2. (1.4)

Figure 1.2 (black curve) shows a linear classifier and its decision boundary learned from a

2-dimensional Iris [2] data set. Commonly used linear classifiers include logistic regression

and linear regression. In terms of the test-time cost, a linear classifier just needs to perform

the inner product computation in (1.3), so the evaluation cost is very low.
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1.2.2 Large margin classifier

To improve the generalization performance to previously unseen test data, Cortes and Vapnik

[29] introduce Support Vector Machines (SVM). Compared to a regular linear model as

described above, SVM enforces a large margin, maximizing the margin between the decision

boundary and the closest training instances. Mathematically, the SVM decision boundary

can be learned by solving an optimization problem:

min
w,b
‖w‖ (1.5)

s.t. yi(x
>
i w + b) ≥ 1, i = 1, . . . , n,

where the objective function maximizes the margin, and the constraints enforce that the

decision boundary is at least one unit away from training instances. One key advantage of

the SVM is that its decision boundary is completely defined by training instances on the

margin, denoted support vectors. Since the number of support vectors is usually less than

training instances, SVM is also referred to as Sparse Vector Machine. Figure 1.3 illustrates

the margin, decision boundary and support vectors. Figure 1.2 (green curve) shows the

decision boundary of an SVM on the Iris data set. To make predictions, an SVM uses the

prediction rule:

H(xi) = sign(x>i w + b). (1.6)

The test-time evaluation cost is the inner product computation and is very low.

1.2.3 Kernel classifier

While the large margin enforcement provides better generalization on unseen test data, it is

still restricted by its linear decision boundary, and is unable to handle linearly un-separable

data. To overcome this, Guyon et al. [52] propose kernel SVM. Kernel SVM allows the

algorithm to find the maximum-margin hyperplane in a transformed feature space (x→ φ(x),

where φ(x) ∈ RD, and D � d). The transformation enlarges the feature space and may

be nonlinear. Therefore, while the resulting decision boundary is still a linear hyperplane in

the high-dimensional feature space, it may be nonlinear in the original input space. To learn
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such a hyperplane, kernel SVM optimizes the following problem:

min
α1,...,αn

1

2

n∑

i=1

n∑

j=1

αiαjyiyjKij −
n∑

i=1

αi, (1.7)

s.t.
n∑

i=1

αiyi = 0 and αi ≥ 0, i = 1, . . . , n,

where α are the Lagrange multipliers [6], and K is the kernel matrix whose entry Kij is the

inner product of the instances in the transformed space, Kij = φ(xi)
>φ(xj). Compared to

other non-linear transformation [27, 107] the key advantage of this formulation is that one

never needs to express φ(x) explicitly, instead using the kernel function Kij = k(xi,xj) to

implicitly transform the feature space. Note that the above optimization is equivalent to

(1.5), only expressed in dual form [6] with the implicit feature transformation φ(x).

The kernel SVM prediction function is different from linear SVM,

H(xi) =
n∑

j=1

αjyjKji + b, (1.8)

where Kji is one kernel entry, which is the value of a kernel function of a test input xi

and one support vector, Kji = k(xj,xi). Figure 1.2 (magenta curve) shows the non-linear

decision boundary of a kernel SVM. Since kernel SVM evaluation involves computing kernel

function of a test input and all its support vectors, its classifier evaluation cost is significantly

higher than linear classifiers. Other popular kernel classifiers include kernel regression [66]

and Gaussian processes [98].

1.2.4 Tree-based classifier

Another set of classifiers are tree-based classifiers. They all use decision trees to partition

the feature space into a set of rectangles, on which they train simple and weak classifiers.

These weak classifiers are also referred to as weak learners. While conceptually simple, tree-

based classifiers are powerful and produce non-linear decision boundaries. Popular tree-based

classifiers include random forest [8] and gradient boosted regression trees (GBRT)[44].
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Figure 1.4: A schematic layout of a classification decision tree. Blue and red shapes are
training instances in four classes (small red dot, large red dot, small blue dot and small blue
rectangle). The black circles are decision tree internal nodes, and rectangles are leaf nodes.
At each internal node, the decision tree partitions the input space by one of the features and
a corresponding splitting value (e.g. radius < 2). Leaf nodes make predictions based on the
instances in each leaf.

Figure 1.4 illustrates a schematic layout of a classification decision tree. Blue and red shapes

are training instances in four classes (small red dot, large red dot, small blue dot and small

blue rectangle). The black circles are decision tree internal nodes, and rectangles are leaf

nodes. At each internal node, the decision tree partitions the input space by one of the

features and a corresponding splitting value (e.g. radius < 2). Leaf nodes make predictions

based on the instances in each leaf.

In this thesis, we focus on GBRT, a tree-based ensemble classifier. Given a continuous and

differentiable function `, GBRT learns an additive classifier,

H(x) =
m∑

t=1

ηtht(x), (1.9)

where H(x) minimizes the loss function, ht∈H is one weak learner, and m is the total number

of weak learners. Specifically in GBRT, each ht is a limited depth regression tree [7] added

to the current classifier at iteration t, with learning rate ηt≥ 0. H is the set of all possible

regression trees of some limited depth b. Let Ht−1 denote the current predictor, the regression

tree ht is selected to minimize the function `(Ht−1 +ηtht). This is achieved by approximating
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the negative gradient of ` w.r.t. the current Ht−1, − ∂`
∂Ht−1(xi)

. The greedy classification

and regression tree (CART) algorithm [7] is often used to find the approximation. CART

generates a limited-depth regression tree ht ∈ H by greedily minimizing an impurity function,

g : H → R+
0 . Typical choices for g are the squared loss,

ht = argmin
ht∈H

∑

i

(
− ∂`

∂Ht−1(xi)
− ht(xi)

)2

, (1.10)

but other losses such as label entropy [53] are equally suitable. CART minimizes the impurity

function (1.10) by building a decision tree similar to Figure 1.4. Consequently, ht can be

obtained by supplying − ∂`
∂Ht−1(xi)

as the regression targets for all inputs xi to an off-the-shelf

CART implementation [120].

To generate predictions, GBRT uses prediction function (1.9). During testing, a test instance

traverses each decision tree. Because the decision trees are of limited depth, and each split

is a simple threshold on single feature, the evaluation cost is relatively low. Figure 1.2 shows

the decision boundary of GBRT. Red shaded area indicates positive prediction of GBRT and

blue shaded area indicates negative prediction. The decision boundary is also non-linear.

1.2.5 Parametric vs. nonparametric

Classifiers described above can also be divided into two groups: parametric classifier and

nonparametric classifier. Parametric classifiers have specific functional forms governed by a

small number of parameters whose value are to be learned from data. For example a linear

classifier is parameterized by the weight vector w. The important limitation of parametric

model is that the chosen function might be a poor approximation to the true function that

generates the observed data. In contrast, nonparametric classifiers make few assumptions

about the form of the function. Instead, they treat training data as parameters and use them

to make predictions. For example, a kernel regression classifier uses weighted outcomes of

a test instance’s training neighbors to generate the prediction. Another way to distinguish

parametric and nonparametric classifiers is by the relation of the number of parameters and

training instance size. Parametric classifiers have a fixed number of parameters, independent

to the training size, whereas the number of parameters of nonparametric classifiers grows

along with the size of training instances.
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Parametric classifiers include linear regression, linear SVM and GBRT, and nonparametric

classifiers include kernel regression, kernel SVM and random forest.

1.3 Motivation

Given that different classifiers have completely different intrinsic structures, their test-time

cost is also vastly different. Therefore, we employ various strategies to deal with different

learning scenarios. We first focus on the parametric classifiers, where the classifier evalua-

tion cost is relatively low compared to the feature extraction cost. Since features are often

heterogeneous, extraction time for different features is highly variable. Which features to

extract and how to balance the trade-off between accuracy and feature extraction cost be-

comes a crucial problem. In this scenario, we employ a strategy that aims to reduce feature

extraction cost.

GreedyMiser, described in Section 2.1, is a new algorithm that incorporates the feature

extraction cost during training to explicitly minimize the CPU cost during testing. The

algorithm proposes a novel impurity function to incorporate feature extraction cost and

builds a connection to stage-wise regression (GBRT). The resulting classifier cherry-picks

a few expensive expert features and many other good but inexpensive features to form a

classifier, and greatly reduces the test-time cost.

We extend this strategy for reducing feature extraction cost to anytime classification, first

introduced in [50]. Similar to the previous scenario, feature extraction cost dominates the

test-time cost. However, unlike the previous scenario, in anytime classification, the test-

time budget is explicitly unknown during training and testing. The classifier can be queried

at any point to return the current best prediction. This may happen when the test-time

budget is exhausted, the classifier is believed to be sufficiently accurate or the prediction is

needed urgently (e.g. in time-sensitive applications such as pedestrian detection [47]). This

unknown test-time budget introduces new problems, and we aim to learn a classifier that

has a capability to produce accurate classifications at any possible budget.

Anytime Feature Representation Learning (AFR) [135], introduced in Section 2.2, describes a

novel algorithm that explicitly addresses the problem of producing accurate classifications at
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any budget. The algorithm lowers test-time feature extraction cost in the data representation

rather than in the classifier. This enables us to turn conventional classifiers, in particular

robust and accurate support vector machines (SVM), into test-time cost-sensitive anytime

classifiers – combining the advantages of anytime learning and large-margin classification.

We also budget the feature extraction cost from a different perspective. Instead of limiting

the cost for all test inputs, we extract different features for different inputs, and aim to

constrain the amortized cost. We propose the second strategy, classification with trees and

cascades. Consider the e-mail spam filtering example. Some of the messages can be filtered

out just based on their sender-IP address in less than one millisecond (possibly without

even tokenizing the message content). Others can be detected by simple text features.

Still other spam e-mails can be detected only by examining image attachments using vision

features. Since different inputs can be correctly classified by a variety of features that are

most beneficial, expensive features are only extracted to classify a few inputs, and thus the

amortized test-time cost can be reduced. Therefore, the goal is to construct a structured

classifier directing different inputs to different paths, so the amortized test-time cost is within

the budget.

Cost-sensitive Tree of Classifiers (CSTC) [134] described in Chapter 3 covers a tree structured

classifier that focuses on trading-off accuracy and amortized test-time feature extraction cost.

It builds a tree of classifiers, through which test inputs traverse along individual paths. Each

path extracts different features and is optimized for a specific sub-partition of the input space.

By only computing features for inputs that benefit from them the most, the cost-sensitive

tree of classifiers can match the high accuracies of the current state-of-the-art classifiers at

a small fraction of the computational cost. It also has a natural extension, Cost-Sensitive

Cascade of Classifiers (CSCC), which is designed specifically for binary classification tasks

with high class imbalance.

Finally, we trade-off accuracy and nonparametric classifier evaluation cost using a model

compression strategy. We focus on the scenario where the classifier evaluation cost is no

longer trivial compared to feature extraction cost. For example, the learned model of a

nonparametric classifier could be very large when training set is large, and thus the test-

time evaluation cost is substantial. Note that this is very common in real-world applications,

as their training input size could scale to millions. Therefore the evaluation cost has to be
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budgeted and accounted for during test-time. The goal of model compression is to compress

very large nonparametric models with an explicit objective of constraining their evaluation

cost from running over the budget.

Compressed Vector Machines (CVM) introduced in Chapter 4 is a post-processing algorithm

that compresses the learned kernel support vector machine model by reducing and optimizing

support vectors. The algorithm cherry-picks a small subset of support vectors using least

angle regression (LARS) [38], and then moves this subset of support vectors to match the

decision boundary formed by the full model. Since computing the kernel function of testing

inputs and support vectors dominates the evaluation cost, reducing the number of support

vectors greatly reduces the cost. Moreover, the decision boundary formed by these moved

support vectors renders a relatively high prediction accuracy on testing inputs.

1.4 Some background in machine learning

In this section, we briefly discuss some useful background used throughout this thesis.

1.4.1 Boosting trick

Since the prediction function of gradient boosted regression trees (GBRT), H, is simply a

linear function of each regression tree as in (1.9), regression trees can be interpreted as a

non-linear transformation of the input data x→ h(x), where h(xi) = [h1(xi), . . . , hT (xi)]
>,

ht ∈ H. H is the set of all possible regression trees of some limited depth b (e.g. b = 4)

and T = |H|. We also denote β as the weight vector for transformed features, H(x) =

h(x)>β. The resulting feature space is extremely high dimensional and the weight-vector β

is always kept to be correspondingly sparse. The above non-linear transformation is called

the boosting-trick [44, 102, 22]. Because regression trees are negation closed (i.e. for each

h ∈ H we also have −h ∈ H) we assume throughout this thesis without loss of generality

that β ≥ 0. Finally, we define a binary matrix F ∈ {0, 1}d×T in which an entry Fαt = 1 if

and only if the regression tree ht∈H splits on feature α somewhere within its tree.
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1.4.2 Gradient descent

Gradient descent is a numerical optimization method to find a local minimum of a function.

It iteratively takes steps proportional to the negative of the gradient (or of the approximate

gradient) of the function at the current point. Specifically, given a continuous and differen-

tiable function f(x) and an initial guess x0 for a local minimum of f(·), gradient descent

method goes from x0 in a direction of the negative gradient, −∂f
∂x

∣∣
x0

to a new point x1,

x1 = x0 − η
∂f

∂x

∣∣
x0
, (1.11)

where η is the learning rate. Gradient descent repeats this procedure and generates a se-

quence of points such that

xd+1 = xd − ηd
∂f

∂x

∣∣
xd
, d ≥ 0. (1.12)

When ηd is small, the function value f(x) monotonically decreases along this sequence,

f(x0) ≥ f(x1) ≥ · · · ≥ f(xd) (1.13)

After certain iterations, the sequence (xd) converges to a local minimum. For convergence

proof, please see [6]. Note that the learning rate ηd can change at every iteration, and

searching for the optimal learning rate can be done through line search [6].

1.4.3 Conjugate gradient descent

We briefly discuss the Polack-Ribiere conjugate gradient descent method [95] used by several

of our algorithms. Similar to gradient descent, conjugate gradient descent is also a numerical

optimization method to find a local minimum of a function f(·).

Figure 1.5 illustrates gradient descent (steepest descent) and conjugate gradient descent

minimizing a quadratic function. The contours of the objective function are in gray scale,

and the minimum is at the center represented by the darkest dot. Steepest descent (green

arrows) takes many steps following the gradient direction. However, since it uses line search,
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Figure 1.5: A schematic comparison of conjugate gradient descent (red) and steepest descent
with line search (green).

two consecutive gradient directions are always perpendicular to each other. Therefore, even

when the function is a perfectly quadratic function, steepest descent repeatedly moves along

the same directions.

In contrast, conjugate gradient descent searches the descent direction based on a quadratic

approximation of the function,

f(x) ≈ 1

2
x>Ax− x>b + c. (1.14)

Given a positive definite matrix A, a pair of nonzero vectors pi,pj are conjugate if they are

orthogonal with respect to A,

p>i Apj = 0. (1.15)

Since every pair of conjugate directions are linearly independent, a set of d conjugate vectors

spans the space in which the local minimum x∗ lies. Using conjugate directions, we iteratively

compute the next point using the update rule

xd+1 = xd − ηdpd, (1.16)

where pd is conjugate to all previous directions p0, · · · ,pd−1, and learning rate ηd is found

by line search. To initialize this iterative procedure, we use the negative gradient of function
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f(·) at an initial guess point x0. In other words, p0 = ∂f
∂x

∣∣
x0

. Polak [95] proves that at

iteration d (the dimension of the space in which x∗ lies), the local minimum can be found by

conjugate gradient descent, xd = argminx∈Rd f(x). Figure 1.5 (red arrows) shows the steps

of conjugate gradient descent method. It finds the minimum with only two steps in this two

dimensional space.
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Chapter 2

Feature Extraction Cost Reduction

In this chapter, we focus on feature extraction cost and discuss two learning scenarios: low

feature extraction cost classification and anytime classification, which employ a common

strategy, reducing feature extraction cost. Section 2.1 discusses low feature extraction cost

classification scenario and the proposed algorithm Greedy Miser. Section 2.2 discusses the

second learning scenario, anytime classification and details Anytime Feature Representation

Learning (AFR).

2.1 Low Feature Extraction Cost Classification

Our proposed algorithm consists of many weak learners. Each weak learner is a limited

depth regression tree boosted by a loss function. Different from gradient boosted regression

trees (GBRT or stage-wise regression described in Section 1.2.4), our algorithm explicitly

considers the test-time cost while boosting each weak learner, encouraging weak learners

to cherry-pick good features and to re-use previously extracted features. We first state

the (non-continuous) global objective which explicitly trades off feature extraction cost and

accuracy, and relax it into a continuous loss function. Subsequently, we derive an update rule

that shows the resulting loss lends itself naturally to greedy optimization with stage-wise

regression [44]. Different from previous approaches [74, 105, 96, 24], our algorithm does not

build cascades of classifiers. Instead, the cost/accuracy trade-off is pushed into the training

and selection of the weak classifiers. The resulting learning algorithm is much simpler than

any prior work, as it is a variant of regular stage-wise regression, and yet leads to superior

test-time performance. We evaluate our algorithm’s efficacy on two real world data sets
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from very different application domains: scene recognition in images and ranking of web-

search documents. Its accuracy matches that of the unconstrained baseline (with unlimited

resources) while achieving an order of magnitude reduction of test-time cost.

2.1.1 Related work

Previous work on learning under test-time resource constraints appears in the context of

many different applications. Most prominently, Viola and Jones [125] greedily train a cas-

cade of weak classifiers with Adaboost [108] for visual object recognition. Cambazoglu et al.

[14] propose a cascade framework explicitly for web-search ranking. They learn a set of

additive weak classifiers using gradient boosting, and remove data points during test-time

using proximity scores. Although their algorithm requires almost no extra training cost, the

improvement is typically limited. Lefakis and Fleuret [74] and Dundar and Bi [37] learn a

soft-cascade, which re-weights inputs based on their probability of passing all stages. Differ-

ent from our method, they employ a global probabilistic model, do not explicitly incorporate

feature extraction costs and are restricted to binary classification problems. Saberian and

Vasconcelos [105] also learn classifier cascades. In contrast to prior work, they learn all cas-

cades levels simultaneously in a greedy fashion. Unlike our approach, all of these algorithms

focus on learning of cascades and none explicitly focus on individual feature costs.

To consider the feature extraction cost, Gao and Koller [45] publish an algorithm to dy-

namically extract features during test-time. Raykar et al. [99] learn classifier cascades, but

they group features by their costs and restrict classifiers at each stage to only use a small

subset. Pujara et al. [96] suggest the use of sampling to derive a cascade of classifiers with

increasing cost for email spam filtering. Most recently, Chen et al. [24] introduce Cronus,

which explicitly considers the feature extraction cost during training and constructs a cas-

cade to encourage removal of unpromising data points early-on. At each stage, they optimize

the coefficients of the weak classifiers to minimize the classification error and trees/features

extraction costs. We pursue a very different (orthogonal) approach and do not optimize

the cascade stages globally. Instead, we strictly incorporate the feature cost into the weak

learners. Moreover, as our algorithm is a variant of stage-wise regression, it can operate

naturally in both regression and multi-class classification scenarios.
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Figure 2.1: Gradient surface of a linear, a kernel and a GBRT classifier. (a) The linear
un-separable simulation data. Red dots and blue dots are from two different classes, and
the task is binary classification. (b) The gradient surface of a linear classifier, which is a
hyper-plane (c) The gradient surface of a kernel classifier. (d) The gradient surface of a
GBRT classifier.

2.1.2 Unique properties of stage-wise regression

In this subsection, we analyze the closely related algorithm of ours, stage-wise regression,

and specifically, gradient boosted regression trees (GBRT) in detail. We give insights of

some unique properties of GBRT that are desirable for learning under test-time resource

constraints. We compare GBRT with a linear classifier and a kernel classifier. Let θ denote

the parameters of a classifier H, and the goal of learning a classifier is to learn these param-

eters θ by minimizing a loss function `. These parameters are usually learned by gradient

descent, where at each iteration, we compute the gradient of the loss function ` w.r.t. the

parameters, ∂`
∂θ

. We apply the generalized chain rule, and decompose this gradient into two

parts:

∂`

∂θ
=

n∑

i=1

∂`

∂H(xi)

∂H(xi)

∂θ
, (2.1)

where H(xi) is the prediction of an input xi. Note that the first part ∂`
∂H(xi)

is the gradient of

the loss function ` w.r.t. predicting function in function space evaluated at an input xi, and

the second part is the gradient of the predicting function w.r.t. its parameter θ. Compared

to linear classifier and kernel classifier, there are two unique properties of GBRT: implicit

parameterization and non-linear feature combination.
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Implicit parameterization. Both linear classifier and kernel classifier have a predicting

function H that can be represented as an analytical function of its parameters (i.e. for linear

classifier, H(x) = x>θ, where θ ∈ Rd). Therefore, when optimizing a linear or a kernel clas-

sifier, one usually optimizes the classifier parameters directly through the gradient of the loss

w.r.t. classifier parameters (i.e. ∂`
∂θ

). In contrast, there is no such an analytical function to

model the predicting function H in GBRT. In other words, GBRT is parameterized implic-

itly, and one has to learn the parameters of GBRT predicting function in two steps. Firstly,

GBRT computes the negative gradient of the loss function w.r.t. predicting function in the

function space ∂`
∂H(xi)

evaluated at each input sample xi. Secondly, GBRT approximates this

negative gradient ∂`
∂H(xi)

at every input xi by building a limited depth regression tree h(·)
using CART algorithm.

As described in section 1.2.4, CART generates a limited-depth regression tree ht ∈ H by

greedily minimizing an impurity function (1.10). It minimizes the impurity function by

recursively splitting the data set on a single feature per tree-node. Note that features are

only used when approximating the negative gradient in the CART algorithm, and therefore

we can add constraints for feature extraction only in the CART algorithm. This provides

more flexibility to incorporate structured feature information commonly used in computer

vision, where the extraction of a feature from one vision descriptor (running one vision

algorithm) sets all other features from the same descriptor free.

Non-linear feature combination. Different from linear classifiers, GBRT is capable of

approximating a non-linear gradient surface. Shown in Figure 2.1 (a), we simulate a scenario

where sample inputs are not linearly separable. Figure 2.1 (b-d) show the gradient surface
∂`
∂H

of different classifiers. GBRT approximates the gradient surface through limited depth

decision trees. For a depth 4 tree, which has 24−1 = 8 leaf nodes, GBRT approximates the

gradient surface by partitioning the space into 8 blocks (shown in (d)). Kernel classifier can

also achieve non-linear approximation through kernel-trick, shown in (c). In contrast, a linear

classifier is just a hyperplane in the input space (i.e. x>( ∂`
∂θ

)), which is shown in (b). The

key advantage of GBRT is that while it can achieve non-linear feature combination, it is still

a parametric model. During test-time, parametric GBRT is much faster than nonparametric

methods such as kernel SVM, and therefore is very suitable for large scaled data sets and

test-time cost-sensitive applications.
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2.1.3 Greedy Miser

In this subsection, we formalize the optimization problem of test-time computational cost,

and then intuitively state our algorithm. We follow the setup introduced in [24], treating

stage-wise regression classifier H as a linear combination of transformed feature space h(x)

using boosting trick described in Section 1.4.1.

H(x) = h(x)>β, (2.2)

where β ∈ RT is the weight vector. We then formalize the test-time computational cost of

the classifier H for a given weight-vector β.

Test-time computational cost. There are two factors that contribute to this cost: The

function evaluation cost of all trees ht with βt>0 (β is non-negative because the set of trees

is negation closed) and the feature extraction cost for all features that are used in these trees.

Let e> 0 be the cost to evaluate one tree ht if all features were previously extracted. Note

that e is a constant independent of the number of training sample inputs, and is usually very

small if the tree depth is small. This is a key advantage of stage-wise regression over other

nonparametric non-linear classifiers, as stage-wise regression is a parametric classifier. With

this notation and the feature extraction cost cα and tree-feature indicator matrix F defined

in Section 1.4.1, both costs can be expressed in a single function as

c(β) = e‖β‖0 +
d∑

α=1

cα

∥∥∥∥∥
T∑

t=1

Fαtβt

∥∥∥∥∥
0

, (2.3)

where the l0-norm for scalars is defined as ‖a‖0 → {0, 1} with ‖a‖0 = 1 if and only if

a 6= 0. The first term captures the function-evaluation cost and the second term captures

the feature costs of all used features. If we combine a loss `(β) with (2.3) we obtain our

overall optimization problem:

min
β
`(β), subject to: c(β) ≤ B, (2.4)

where B≥0 denotes some pre-defined budget that cannot be exceeded during test-time.
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Algorithm. In the remainder of this section we derive an algorithm to approximately

minimize (2.4). For better clarity, we first give an intuitive overview of the resulting method

in this paragraph. Our algorithm is based on stage-wise regression, which learns an additive

classifier Hβ(x) =
∑m

t=1 βtht(x) that aims to minimize the loss function (2.4).1 During

iteration t, the CART algorithm is used to generate a new tree ht, which is added to the

classifier Hβ.

Specifically, instead of using the regular impurity function (1.10), we propose an impurity

function which on the one hand approximates the negative gradient of ` with the squared-

loss, such that adding the resulting tree ht minimizes `, and on the other hand penalizes

the initial extraction of features by their cost cα. To capture this initial extraction cost, we

define an auxiliary variable uα ∈ {0, 1} indicating if feature α has already been extracted

(uα = 0) in previous trees, or not (uα = 1). We update the vector u after generating each

tree, setting the corresponding entry for used features α to uα := 0. If we denote si as the

negative gradient, si = − ∂`
∂H(xi)

, our impurity function in iteration t becomes

g(ht)=
1

2

∑

i

(si−ht(xi))2+λ
d∑

α=1

uαcαFαt, (2.5)

where λ trades off the loss with the cost.

To combine the trees ht into a final classifier Hβ, our algorithm follows the steps of regular

stage-wise regression with a fixed step-size η > 0. As our algorithm is based on a greedy

optimiser, and is stingy with respect to feature-extraction, we refer to it as the Greedy

Miser. Algorithm (3) shows a pseudo-code implementation.

Algorithm Derivation

In this subsection, we derive a connection between (2.4) and our Greedy Miser algorithm

by showing that Greedy Miser approximately solves a relaxed version of the optimization

problem.

1Here, without loss of generality. the trees in H are conveniently re-ordered such that exactly the first m
trees have non-zero weight βt.
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Algorithm 3 Greedy Miser in pseudo-code

Require: D = {(xi, yi)}ni=1, step-size η, iterations m
H = 0
for t = 1 to m do
ht ← Use CART to greedily minimize (2.5).
H ← H + ηht.
For each feature α used in ht, set uα ← 0.

end for
Return H

Relaxation. The optimization as stated in eq. (2.4) is non-continuous, because of the l0-

norm in the cost term—and hard to optimize. We start by introducing minor relaxations to

both terms in (2.3) to make it better behaved.

Assumptions. Our optimization algorithm (for details see subsection Optimization on page

25) performs coordinate descent and — starting from β=0 — increments one dimension of

β by η>0 in each iteration. Because of the extremely high dimensionality (which is dictated

by the number of all possible regression trees that can be represented within the accuracy

of the computer) and the comparably tiny number of iterations (≤ 5000) it is reasonable to

assume that one dimension is never incremented twice. In other words, the weight vector β

is extremely sparse and (up to re-scaling by 1
η
) binary: 1

η
β ∈ {0, 1}T .

Tree-evaluation cost. The l0-norm is often relaxed into the convex and continuous l1-norm.

In our scenario, this is particularly attractive, because if 1
η
β is binary, then the re-scaled l1

norm is identical to the l0 norm—and the relaxation is exact. We use this approach for the

first term:

e‖β‖0 −→
e

η
‖β‖1. (2.6)

Feature extraction cost. In the case of the feature cost, l1-norm is not a good approxi-

mation of the original l0-norm, because features are re-used many times, in different trees.

Using l1-norm would imply that features that are used more often would be penalized more

than features that are only used once. This contradicts our assumption that features become

free after their initial extraction.
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We therefore define a new function ‖ · ‖d1, which is a re-scaled and amputated version of the

l1-norm:

‖x‖d1 =

{
|x
η
| for |x| ∈ [0, η)

1 for |x| ∈ [η,∞).
(2.7)

This penalty function ‖ · ‖d1 behaves like the regular l1 norm when |x| is small, but is

capped to a constant when |x| ≥ η. Note that while we use the notation ‖ · ‖d1 for the

amputated version of the l1-norm, it is not a well-defined norm, as it is not homogeneous

(‖tx‖d1 6= t‖x‖d1) With this definition, our relaxation of the feature-cost term becomes:

d∑

α=1

cα

∥∥∥∥∥
T∑

t=1

Fαtβt

∥∥∥∥∥
0

−→
d∑

α=1

cα

∥∥∥∥∥
T∑

t=1

Fαtβt

∥∥∥∥∥
d1

. (2.8)

Similar to the previous case, if 1
η
β is binary, this relaxation is exact. This holds because

in (2.8) all arguments of ‖·‖d1 are non-negative multiples of η (as Fαt∈{0, 1} and βt∈{0, η})
and it is easy to see from the definition of ‖ · ‖d1 that for all k = 0, 1, . . ., we have ‖kη‖d1 =

‖kη‖0.

Continuous cost-term. To simplify the optimization, we split the budget into two terms

B = Be + Bf—the tree-evaluation budget and the feature extraction budget—and re-write

(2.4) with the two penalties (2.6) and (2.8) as two individual constraints. If we use the

Lagrangian formulation [6], with Lagrange multiplier λ (up to re-scaling), for the feature

cost constraint and the explicit constraint formulation for the tree-evaluation cost, we obtain

our final optimization problem:

min
β

`(β) + λ

d∑

α=1

cα

∥∥∥∥∥
∑

t

Fαtβt

∥∥∥∥∥
d1

(2.9)

s.t.
e

η
‖β‖1 ≤ Be.

Optimization

In this subsection we describe how Greedy Miser, our adaptation of stage-wise regression [44],

finds a (local) solution to the optimization problem in (2.9).
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Solution path. We follow the approach from [102] and find a solution path for (2.9) for

evenly spaced tree-evaluation budgets, ranging from B′e = 0 to B′e =Be. Along the path we

iteratively increment B′e by η. We repeatedly solve the intermediate optimization problem

by warm-starting (2.9) with the previous solution and allowing the weight vector to change

by η,

min
δ≥0

L(β+δ)︷ ︸︸ ︷

`(β + δ) + λ

d∑

α=1

cα

∥∥∥∥∥
∑

t

Fαt(βt + δt)

∥∥∥∥∥
d1

, (2.10)

s.t. ‖δ‖1 ≤ η.

Each iteration, we update the weight vector β := β + δ.

Taylor approximation. The Taylor expansion of L is defined as

L(β + δ) = L(β) + 〈∇L(β), δ〉+O(δ2). (2.11)

If η is sufficiently small2, and because |δ| ≤ η, we can use the dominating linear term in

(2.11) to approximate the optimization in (2.10) as

min
δ≥0
〈∇L(β), δ〉, s.t. ‖δ‖1 ≤ η. (2.12)

Coordinate descent. The optimization (2.12) can be reduced to identifying the direction

of steepest descent. Let ∇L(β)t denote the gradient w.r.t. the tth dimension, and let us

define

t∗ = argmin
t
∇L(β)t, (2.13)

to be the gradient dimension of steepest descent. Because H is negation closed, we have

∇L(β)t∗ = −‖∇L(β)‖∞. (If ∇L(β)t∗ = 0 we are done, so we focus on the case when it is

<0). With Hölder’s inequality we can derive the following lower bound of the inner product

2Please note that we see this as a true approximation, and do not expect η to be infinitesimally small—
which would cause the number of steps (and therefore trees) to become too large for practical use.
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in (2.12),

〈∇`(β), δ〉 ≥ −|〈∇L(β), δ〉|
≥ −‖∇L(β)‖∞‖δ‖1

≥ η∇L(β)t∗ . (2.14)

We can now construct a vector δ∗ for which (2.14) holds as equality, which implies that

it must be the optimal solution to (2.12). This is the case if we set δ∗t∗ = η and δ∗6=t∗ = 0.

Consequently, we can find the solution path with steepest coordinate descent under step-size

η.

Gradient derivation. The gradient ∇L(β)t consists of two parts, the gradient of the

loss ` and the gradient of the feature-cost term. For the latter, we need the gradient of

‖∑t Fαtβt‖d1, which, according to its definition in (2.7), is not well-defined if
∑

t Fαtβt = η.

As our optimization algorithm can only increase βt, we derive this gradient from the right,

yielding

∇
∥∥∥∥∥
∑

t

Fαtβt

∥∥∥∥∥
d1

=

{
1
η
Fαt |

∑
t Fαtβt| < η

0 |∑t Fαtβt| ≥ η.
(2.15)

Note that the condition |∑t Fαtβt|<η is true if and only if feature α is not used in any trees

with βt > 0. Let us define uα = {0, 1} with uα = 1 if and only if |∑t Fαtβt|< η. We can

then express the gradient of L (with a slight abuse of notation) as

∇L(β)t :=
∂`

∂βt
+
λ

η

d∑

α=1

cαuαFαt. (2.16)

Applying the chain rule, we can decompose the first term in (2.16), ∂`
∂βt

, into two parts: the

derivatives w.r.t. the current prediction Hβ(xi), and the partial derivatives of Hβ(xi) w.r.t.

βt. This results in

∇L(β)t=
n∑

i=1

∂`

∂Hβ(xi)

∂Hβ(xi)

∂βt
+
λ

η

d∑

α=1

cαuαFαt. (2.17)
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As Hβ(xi) = h(xi)
>β is linear, we have

∂Hβ(xi)

∂βt
= ht(xi). If we define si = − ∂`

∂Hβ(xi)
, which

we can easily compute for every xi, we can re-phrase (2.17) as

∇L(β)t=
n∑

i=1

−siht(xi) +
λ

η

d∑

α=1

cαuαFαt. (2.18)

The Greedy Miser. For simplicity, we restrict H to only normalized regression-trees (i.e.∑
i h

2
t (xi) = 1), which allows us to add two constant terms 1

2

∑
i h

2
t (xi) and 1

2

∑
i s

2
i to (2.18)

without affecting the outcome of the minimization in (2.13), as both are independent of t.

This completes the binomial equation and we obtain a quadratic form:

ht=argmin
ht∈H

1

2

n∑

i

(si − ht(xi))2+λ′
d∑

α=1

cαuαFαt, (2.19)

with λ′ = λ
η
. Note that (2.19) is exactly what Greedy Miser minimizes in (2.5), which

concludes our derivation.

Meta-parameters. The meta-parameters of Greedy Miser are surprisingly intuitive. The

maximum number of iterations, m, is tightly linked to the tree-evaluation budget Be. The

optimal solution of (2.12) must satisfy the equality ‖δ∗‖1 =η (unless ∇L=0, in which case

a local minimum has been reached and the algorithm would terminate). As ‖β‖1 is exactly

increased by η in each iteration, it can be expressed in terms of the number of iterations m of

the algorithm, and we obtain 1
η
‖β‖1 = m. Consequently, in order to satisfy the l1 constraint

in (2.9), we must limit to the number of iterations to m ≤ Be
e

. The parameter λ′ corresponds

directly to the feature-budget Bf . The algorithm is not particularly sensitive to the exact

step-size η, and throughout the results section we set it to η=0.1.

2.1.4 Results

We conduct experiments on two learning under test-time resource constraints benchmark

tasks from very different domains: the Yahoo Learning to Rank Challenge data set [18] and

the scene recognition data set from [71].
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Figure 2.2: The NDCG@5 and the test-time cost of various classifier settings. Left: The
comparison of the original Stage-wise regression (λ = 0) and Greedy Miser under various
feature-cost/accuracy trade-off settings (λ) on the full Yahoo set. The dashed lines represent
the NDCG@5 as trees are added to the classifier. The red circles indicate the best scoring
iteration on the validation data set. Right: Comparisons with prior work on test-time
optimized cascades on the small Yahoo set. The cost-efficiency curve of Greedy Miser is
consistently above prior work, reducing the cost, at similar ranking accuracy, by a factor of
10.

Yahoo Learning to Rank. The Yahoo data set contains document/query pairs with label

values from {0, 1, 2, 3, 4}, where 0 means the document is irrelevant to the query, and 4 means

highly relevant. In total, it has 473134, 71083, 165660, training, validation, and testing pairs.

As this is a regression task, we use the squared-loss as our loss function `. Although the data

set is representative for a web-search ranking training data set, in a real world test setting,

there are many more irrelevant data points. Usually, for each query, only a few documents

are relevant, and the other hundreds of thousands are completely irrelevant. Therefore, we

follow the convention of [24] and replicate each irrelevant data point (label value is 0) 10

times.

Each feature in the data set has an acquisition cost. The feature costs are discrete values

in the set {1, 5, 10, 20, 50, 100, 150}. The unit of these costs is approximately the time to

evaluate a tree ht(·). The cheapest features (cost value is 1) are those that can be acquired

by looking up a table (such as the statistics of a given document), whereas the most expensive

ones (such as BM25F-SD described in [9]), typically involve term proximity scoring.
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To evaluate the performance on this task, we follow the typical convention and use Nor-

malized Discounted Cumulative Gain (NDCG@5) [58], as it places stronger emphasis on

retrieving relevant documents within a large set of irrelevant documents. Let π be an or-

dering of all inputs associated with a particular query (π(z) is the index of the zth ranked

document and yπ(r) is its relevance label), then the NDCG of π at position P is defined as

NDCG@P (π) =
DCG@P (π)

DCG@P (π∗)
with DCG@P (π) =

P∑

z=1

2yπ(z) − 1

log2(z + 1)
, (2.20)

where π∗ is an optimal ranking (i.e. documents are sorted in decreasing order of relevance).

Loss/cost trade-off. Figure 2.2 (left) shows the traces (dashed lines) of the NDCG@5/cost

generated by repeatedly adding trees to the predictor until 3000 trees in total — essentially

depicting the results under increasing tree-evaluation budgets Be. The different traces are

obtained under varying values of the feature-cost trade-off parameter λ. The baseline, stage-

wise regression [44], is equivalent to Greedy Miser with λ = 0 and is essentially building

trees without any cost consideration. The red circles indicate the iteration with the highest

NDCG@5 value on the validation data set. The graph shows, that under increased λ (the

solid red line), the NDCG@5 ranking accuracy of Greedy Miser drops very gradually, while

the test-time cost is reduced drastically (compared to λ=0).

Comparison with prior work. In addition to stage-wise regression, we also compare

against Stage-wise regression feature subsets, Early Exit [14] and Cronus [24]. Stage-wise

regression feature subsets is a natural extension to stage-wise regression. We group all

features according to the feature cost, and gradually use more expensive feature groups. The

curve is generated by only using features whose cost ≤ 1, 20, 100, 200. Early Exit, proposed

by [14], trains trees identical to stage-wise regression—however, it reduces the average test-

time cost by removing unpromising documents early-on during test-time. Among all methods

of early-exit the authors suggested, we plot the best performing one (Early Exit Using

Proximity Threshold). We introduce an early exit every 10 trees (300 in total), and at

the ith early-exit, we remove all test-inputs that have a score of at least (300−i)s
299

lower than

the fifth best input (where s is a parameter regulating the pruning aggressiveness). The

overall improvement over stage-wise regression is limited because the cost is dominated by

the feature acquisition, rather than tree computation. It is worth pointing out that the
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cascade-based approaches of Early-Exits and Cronus are actually complementary to Greedy

Miser.

Since Cronus does not scale to the full data set, we use the subset of the Yahoo data

from [24] of 141397, 146769, 184968, training, validation and testing points respectively. In

comparison to Cronus, which requires O(mn) memory, Greedy Miser requires no significant

operational memory besides the data and scales easily to millions of data points. Figure 2.2

(right) depicts the trade-off curves, of Greedy Miser and competing algorithms, between the

test-time cost and generalization error. We generate the curves by varying the feature-cost

trade-off λ (or the pruning parameter s for Early-Exits). For each setting we choose the

iteration that has the best validation NDCG@5 score. The graph shows that all algorithms

manage to match the unconstrained cost-results of stage-wise regression. However, the trade-

off curve of Greedy Miser stays consistently above that of Cronus and Early Exits, leading

to better ranking accuracy at lower test-time cost. In fact, Greedy Miser can almost match

the ranking accuracy of stage-wise regression with 1/10 of the cost, whereas Cronus reduces

the cost only to 1/4 and Early-Exits to 1/2.

Feature extraction. To investigate what effect the feature-cost trade-off parameter λ has

on the classifier’s feature choices, Figure 2.3 visualizes what type of features are extracted

by Greedy Miser as λ increases. For this visualization, we group features by cost and show
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Figure 2.4: Sample images of the Scene 15 classification task.

what fraction of features in each group are extracted. The legend in the right indicates the

cost of a feature group and the number of features that fall into it (in the parentheses). We

plot the feature fraction at the best performing iteration based on the validation set. With

λ=0, Greedy Miser does not consider the feature cost when building trees, and thus extracts

a variety of expensive features. As λ increases, it extracts fewer expensive features and re-

uses more cheap features (cα = 1). It is interesting to point out that across all different

Greedy Miser settings, a few expensive features (cost ≥ 150) are always extracted within

early iterations. This highlights a great advantage of Greedy Miser over some other cascade

algorithms [99], which learn cascades with pre-assigned feature costs and cannot extract

good but expensive features until the very end.

Scene Recognition. The Scene-15 data set [71] is from a very different data domain. It

contains 4485 images from 15 scene classes and the task is to classify images according to

scene. Figure 2.4 shows one example image for each scene category. We follow the procedure

used by [71, 76], randomly sampling 100 images from each class, resulting in 1500 training

images. From the remaining 2985 images, we randomly sample 20 images from each class as

validation, and leave the rest 2685 for test.

We use a diverse set of visual descriptors varying in computation time and accuracy: GIST,

spatial HOG, Local Binary Pattern, self-similarity, texton histogram, geometric texton, ge-

ometric color, and Object Bank [76]. The authors from Object Bank apply 177 object

detectors to each image, where each object detector works independently of each other. We

treat each object detector as an independent descriptor and end up with a total of 184

different visual descriptors.
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Figure 2.5: Accuracy as a function of CPU-cost during test-time. The curve is generated
by gradually increasing λ. Greedy Miser champions the accuracy/cost trade-off and obtains
similar accuracy as the SVM with multiple kernels with only half its test-time cost.

We split the training data 30/70 and use the smaller subset to construct a kernel and train

15 one-vs-all SVMs for each descriptor. We use the predictions of these SVMs on the larger

subset as the features of Greedy Miser (totaling d = 184× 15 = 2760 features.) As for

loss function `, we use the multi-class log-loss [53] and maintain 15 tree-ensemble classifiers

H1, . . . , H15, one for each class. During each iteration, we construct 15 regression trees (depth

3) and update all classifiers. For a given image, each classifier’s (normalized exponential)

output represents the probability of this data point belonging to one class.

We compute the feature-extraction-cost as the CPU-time required for the computation for

the visual descriptor, the kernel construction and the SVM evaluation. Each visual descriptor

is used by 15 one-vs-all features. The moment any one of these features is used, we set the

feature extraction cost of all other features that are based on the same visual descriptor to

only the SVM evaluation time (e.g. if the first HOG-based feature is used, the cost of all

other HOG-based features is reduced to the time required to evaluate the SVM). This is a

key advantage of Greedy Miser, which inherits the two-steps optimization procedure from

GBRT. The feature extraction is handled by CART algorithm and its impurity function

(2.5). Therefore, Greedy Miser can easily handle structured feature extraction information by

arbitrarily setting the feature cost identity variable uα at any iteration. In this example, by
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setting the uα = 0 for all HOG-based features after extracting the first HOG-based feature,

the CART algorithm is encouraged to build trees using HOG-based features exclusively until

starting to see diminishing rewards.

Figure 2.5 summarizes the results on the Scene-15 data set. As baseline we use stage-wise

regression [44] and an SVM with the averaged kernel of all descriptors. We also apply stage-

wise regression with Early Exits. As this is multi-class classification instead of regression

we introduce an early exit every 10 trees (300 in total), and we remove test-inputs whose

maximum class-likelihood is greater than a threshold s. We generate the curve of early exit

by gradually increasing the value for s. The last baseline is original vision features with l1

regularization, and we notice that its accuracy never exceeds 0.74, and therefore we do not

plot it. The Greedy Miser curve is generated by varying loss/feature-cost trade-off λ. For

each setting we choose the iteration that has the best validation accuracy, and all results are

obtained by averaging over 10 randomly generated training/testing splits.

Both multiple-kernel SVM and stage-wise regression achieve high accuracy, but their need to

extract all features significantly increases their cost. Early Exit has only limited improvement

due to the inability to select a few expensive but important features in early iterations. As

before, Greedy Miser champions the cost/accuracy trade-off and its accuracy drops gently

with increasing λ.

All experiments (on both data sets) were conducted on a desktop with dual 6-core Intel i7

cpus with 2.66GHz. The training time for Greedy Miser requires comparable amount of time

as stage-wise regression (about 80 minutes for the full Yahoo data set and 12 minutes for

Scene-15.)

2.1.5 Conclusion

Greedy Miser focuses on reducing the test-time feature extraction cost. It is closely connected

to stage-wise regression, and explicitly incorporates feature extraction cost. It is simple to

implement, naturally scales to large data sets and outperforms previously most cost-effective

classifiers. Greedy Miser can also be naturally extended to feature selection problems [136]

by setting a uniform cost for all features.
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2.2 Anytime Classification

In anytime classification setting [50], classifiers extract features on-demand during test-time

and can be queried at any point to return the current best prediction. This may happen

when the cost budget is exhausted, the classifier is believed to be sufficiently accurate or the

prediction is needed urgently (e.g. in time-sensitive applications such as pedestrian detec-

tion [47]). Different from previous settings in learning under test-time resource constraints,

the cost budget is explicitly unknown during test-time.

In this section, we address this setting with a novel approach to learning under test-time

resource constraints. In contrast to most previous work, we learn an additive anytime rep-

resentation. During test-time, an input is mapped into a feature space with multiple stages:

each stage refines the data representation and is accompanied by its own SVM classifier, but

adds extra cost in terms of feature extraction. We show that the SVM classifiers and the

cost-sensitive anytime representations can be learned jointly in a single optimization.

Our method, Anytime Feature Representation Learning (AFR), is the first to incorporate

anytime learning into large margin classifiers—combining the benefits of both learning frame-

works. On two real world benchmark data sets anytime AFR out-performs or matches the

performance of the current state-of-the-art learning under test-time resource constraints al-

gorithms which are trained with a known test-time budget.

2.2.1 Related work

Prior work addresses anytime classification primarily with additive ensembles, obtained

through boosted classifiers [125, 49]. Here, the prediction is refined through an increas-

ing number of weak learners and can naturally be interrupted at any time to obtain the

current classification estimate. Anytime adaptations of other classification algorithms where

early querying of the evaluation function is not as natural—such as the popular SVM—have

until now remained an open problem.

Grubb and Bagnell [49] combine gradient boosting and neural networks through back-

propagation. Their approach shares a similar structure with our algorithm, as AFR can
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be regarded as a two layer neural network, where the first layer is non-linear decision trees

and the second layer a large margin classifier. However, different from ours, their approach

focuses on avoiding local minima and does not aim to reduce test-time cost.

2.2.2 Background

Our algorithm consists of two jointly integrated parts, classification and representation learn-

ing. For the former we use support vector machines (SVM) [29] and for the latter we use the

Greedy Miser [132] described in Section 2.1. In the following, we re-cap these two algorithms.

Support vector machines (SVM). Let φ denote a mapping that transforms inputs xi

into feature vectors φ(xi). Further, we define a weight vector w and bias b. SVMs learn a

maximum margin separating hyperplane by solving a constrained optimization problem,

min
w,b

1

2
w>w +

1

2
C

n∑

i

[1− yi(w>φ(xi) + b)]2+, (2.21)

where constant C is the regularization trade-off hyper-parameter, and [a]+ =max(a, 0). The

squared hinge-loss penalty guarantees differentiability of (2.21), and simplifies the derivation

in Section 2.2.3. A test input is classified by the sign of the SVM predicting function

J [φ(xj)] = w>φ(xj) + b. (2.22)

Greedy Miser. Introduced in Section 2.1, Greedy Miser incorporates feature cost into

gradient boosting. Let cf (H) denote the test-time feature extraction cost of a gradient

boosted tree ensemble H and ce(H) denote the CPU time to evaluate all trees3. Let Bf , Be >

0 be corresponding finite cost budgets. The Greedy Miser solves the following optimization

problem:

min
H

`(H), s.t. ce(H) ≤ Be and cf (H) ≤ Bf , (2.23)

3Note that both costs can be in different units. Also, it is possible to set ce(H)=0 for all H. We set the
evaluation cost of a single tree to 1 cost unit.
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where ` is continuous and differentiable. To formalize the feature cost, an auxiliary function

uα(ht) ∈ {0, 1} is defined, indicating if feature α is used in tree ht for the first time, (i.e.

uα(ht) = 1). In Section 2.1, it has been shown that by incrementally selecting ht according

to

min
ht∈H

∑

i

(
− ∂`

∂Ht−1(xi)
−ht(xi)

)2

+λ
∑

α

uα(ht)cα, (2.24)

the constrained optimization problem in (2.23) is (approximately) minimized up to a local

minimum (stronger guarantees exist if ` is convex). Here, λ trades off the classification

loss with the feature extraction cost (enforcing budget Bf ) and the maximum number of

iterations limits the tree evaluation cost (enforcing budget Be).

2.2.3 Anytime feature representation

As a lead-up to anytime feature representations, we formulate the learning of the feature

representation mapping φ : Rd→RS and the SVM classifier (w, b) such that the costs of the

final classification cf (J [φ(x)]), ce(J [φ(x)]) are within cost budgets Bf , Be. In the following

section we extend this formulation to an anytime setting, where Bf and Be are unknown and

the user can interrupt the classifier at any time. As the SVM classifier is linear, we consider

its evaluation free during test-time and the cost ce originates entirely from the computation

of φ(x).

Boosted representation. We learn a representation with a variant of the boosting trick [118,

23]. To differentiate the original features x and the new feature representation φ(x), we refer

only to original features as “features”, and the components of the new representation as

“dimensions”. In particular, we learn a representation φ(x) ∈ RS through the mapping

function φ, where S is the total number of dimensions of our new representation. Each

dimension s of φ(x) (denoted [φ]s) is a gradient boosted classifier, i.e. [φ]s = η
∑T

t=0 h
s
t .

Specifically, each hst is a limited depth regression tree.

For each dimension s, we initialize [φ]s with the sth tree obtained from running the Greedy

Miser for S iterations with a very small feature budget Bf . Subsequent trees are learned as
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described in the following. During classification, the SVM weight vector w assigns a weight

ws to each dimension [φ]s.

Train/Validation Split. As we learn the feature representation φ and the classifier w, b

jointly, overfitting is a concern, and we carefully address it in our learning setup. Usually,

overfitting in SVMs can be overcome by setting the regularization trade-off parameter C

carefully with cross-validation. In our setting, however, the representation changes and the

hyper-parameter C needs to be adjusted correspondingly. We suggest a more principled

setup, inspired by Chapelle et al. [20], and also learn the hyper-parameter C. To avoid

trivial solutions, we divide our training data into two equally-sized parts, which we refer to

as training and validation sets, T and V . The representation is learned on both sets, whereas

the classifier w, b is trained only on T , and the hyper-parameter is tuned for V . We further

split the validation set into validation V and a held-out set O in a 80/20 split. The held-out

set O is used for early-stopping.

Nested optimization. We define a loss function that approximates the 0-1 loss on the

validation set V ,

`V(φ; w, b) =
∑

xi∈V

µyiσ
(
J(φ(xi))

)
, (2.25)

where σ(z) = 1
1+eaz

is a soft approximation of the sign(·) step function (we use a = 5

throughout, similar to [20, 133]) and µyi > 0 denotes a class specific weight to address

potential class imbalance. J(·) is the SVM predicting function defined in (2.22). The classifier

parameters (w, b) are assumed to be the optimal solution of (2.21) for the training set T . We

can express this relation as a nested optimization problem (in terms of the SVM parameters

w, b) and incorporate our test-time budgets Be, Bf :

min
φ,C

`V(φ,w, b), s.t. ce(φ) ≤ Be and cf (φ) ≤ Bf (2.26)

min
w,b

1

2
‖w‖2+

1

2
C

n∑

i

µyi [1− yi(w>φ(xi) + b)]2+.

According to Theorem 4.1 in [5], `V is continuous and differentiable based on the uniqueness

of the optimal solution w∗, b∗. This is a sufficient prerequisite for being able to solve `V via

the Greedy Miser (2.24), and since the constraints in (2.26) are analogous to (2.23), we can

optimize it accordingly.
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Algorithm 4 AFR in pseudo-code.
1: Initialize λ=λ0, s0 = 1
2: while λ > ε do
3: Initialize φ = [hs00 (·), . . . , hs0+S

0 (·)]> with (2.24).
4: for s = s0 to s0 + S do
5: for t = 1 to T do
6: Train an SVM using φ to obtain w and b.
7: If accuracy on O has increased, continue.
8: Compute gradients ∂`V

∂[φ]s and ∂`V
∂C

9: Update C = C − γ ∂`V∂C
10: Call CART with impurity (2.27) to obtain hst
11: Stop if

∑
i h

s
t (xi)

∂`V
∂[φ]s(xi)

< 0

12: Update [φ]s = [φ]s + ηhst .
13: end for
14: end for
15: λ := λ/2 and s0+ = S.
16: end while

Tree building. The optimization (2.26) is essentially solved by a modified version of gradi-

ent descent, updating φ and C. Specifically, for fast computation, we update one dimension

[φ]s at a time, as we can utilize the previous learned tree in the same dimension to speed up

computation for the next tree [120]. The computation of ∂`V
∂[φ]s

and ∂`V
∂C

is described in detail

in subsection Optimization in page 41. At each iteration, the tree hst is selected to trade-off

the gradient fit of the loss function `V with the feature cost of the tree,

min
hst

∑

i

(
− ∂`V
∂[φ]s(xi)

− hst(xi)
)2

+λ
∑

α

uα(hst)cα. (2.27)

We use the learned tree hst to update the representation [φ]s = [φ]s + ηhst . At the same time,

the variable C is updated with small gradient steps.

Anytime feature representations

Minimizing (2.26) results in a cost-sensitive SVM (w, b) that uses a feature representation

φ(x) to make classifications within test-time budgets Bf , Be. In the anytime learning set-

ting, however, the test-time budgets are unknown. Instead, the user can interrupt the test

evaluation at any time.

39



[�]1 = h1
0(x) + h1

1(x) + · · · + · · · + h1
T�1(x) + h1

T (x)
[�]2 = h2

0(x) + h2
1(x) + · · · + h2

t (x) + · · · + h2
T (x)

...
...

...
...

...
...

...
[�]s = hs

0(x) + hs
1(x) + · · · + hs

t (x) + · · · + hs
T (x)

...
...

...
...

...
...

...
[�]S = hS

0 (x) + hS
1 (x) + hS

2 (x) + · · · + · · · + hS
T (x)

weak
learner

Anytime Representation

f1 f2 fi
fF

Features f1 [ f2 f1 [ f2 [ · · · [ fi f1 [ · · · [ fFf1

Cost

new
feature

Figure 2.6: A schematic layout of Anytime Feature Representation Learning. Different
shaded areas indicate representations of different costs, the darker the costlier. During
training time, SVM parameters w, b are saved every time a new feature fi is extracted.
During test-time, under budgets Be, Bf , we use the most expensive triplet (φk,wk, bk) with
cost ce(φk) ≤ Be and cf (φk) ≤ Bf .

Anytime parameters. We refer to our approach to anytime setting as Anytime Feature

Representations (AFR) and Algorithm 4 summarizes the individual steps of AFR in pseudo-

code. We obtain an anytime setting by steadily increasing Be and Bf until the cost constraint

has no effect on the optimal solution. In practice, the tree budget (Be) increase is enforced

by adding one tree hst at a time (where t ranges from 1 to T ). The feature budget Bf is

enforced by the parameter λ in (2.27). As the feature cost is dominant, we slowly decrease λ

(starting from some high value λ0). For each intermediate value of λ we learn S dimensions

of φ(x) (each dimension consisting of T trees). Whenever all S dimensions are learned, λ is

divided by a factor of 2 and an additional S dimensions of φ(x) are learned and concatenated

to the existing representation.

Whenever a new feature is extracted by a tree hst , the cost increases substantially. Therefore

we store the learned representation mapping function and the learned SVM parameters

whenever a new feature is extracted. We overload φα to denote the representation learned

with feature αth extracted, and wα, bα as the corresponding SVM parameters. Storing these
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parameters results in a series of triplets (φ1,w1, b1) . . . (φF ,wF , bF ) of increasing cost, i.e.

c(φ1) ≤ . . . ≤ c(φF ) (where F is the total number of extracted features). Note that we save

the mapping function φ, rather than the representation of each training input φ(x).

Evaluation. During test time, the classifier may be stopped during the extraction of the

α + 1th feature, because the feature budget Bf (unknown during training time) has been

reached. In this case, to make a prediction, we sum the previously-learned representations

generated by the first α features w>α
∑α

k=1 φk(x)+bα. This approach is schematically depicted

in Figure 2.6.

Early-stopping. Updating each dimension with a fixed number of T trees may lead to over-

fitting. We apply early-stopping by evaluating the prediction accuracy on the hold-out set

O. We stop adding trees to each dimension whenever this accuracy decreases. Algorithm (4)

details all steps of our algorithm.

Optimization

Updating feature representation φ(x) requires computing the gradient of the loss function `V

w.r.t. φ(x) as stated in (2.27). In this subsection we explain how to compute the necessary

gradients efficiently.

Gradient w.r.t. φ(x). We use the chain rule to compute the derivative of `V w.r.t. each

dimension [φ]s,

∂`V
∂[φ]s

=
∂`V
∂J

∂J

∂[φ]s
, (2.28)

where J is the prediction function in (2.22). As changing [φ]s not only affects the validation

data, but also the representation of the training set, w and b are also functions of [φ]s. The

derivative of J w.r.t. the representation of the training inputs, [φ]s ∈ T is

∂J

∂[φ]s
=
( ∂w

∂[φ]s

)>
φV +

∂b

∂[φ]s
, (2.29)
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where we denote all validation inputs by φV . For validation inputs, the derivative w.r.t.

[φ]s ∈ V is

∂J

∂[φ]s
= w>

∂φV
∂[φ]s

. (2.30)

Note that with |T | training inputs and |V| validation inputs, the gradient consists of |T |+|V|
components.

In order to compute the remaining derivatives ∂w
∂[φ]s

and ∂b
∂[φ]s

, we will express w and b in

closed-form w.r.t. [φ]s. First, let us define the contribution to the loss of input xi as ξi =

[1−yi(w∗>φ(xi)+b∗)]+. The optimal value w∗, b∗ is only affected by support vectors (inputs

with ξi > 0). Without loss of generality, let us assume that those inputs are the first sv in our

ordering, x1, . . . ,xsv. We remove all non-support vectors, and let Φ̂ = [y1φ1, . . . , ynsvφnsv ],

and ξ = [ξ1, . . . , ξnsv ]>. We also define a diagonal matrix Λ ∈ Rnsv×nsv whose diagonal

elements are class weight Λii = µyi . We can then rewrite the nested SVM optimization

problem within (2.26) in matrix form:

min
w,b

L =
1

2
wTw +

C

2
(1−w>Φ̂− by)>Λ(1−w>Φ̂− by).

As this objective is convex, we can obtain the optimal solution of w, b by setting ∂L
∂w

and ∂L
∂b

to zero:

∂L

∂w
= 0 =⇒ w − CΦ̂Λ(1− Φ̂>w − by>) = 0.

∂L

∂b
= 0 =⇒ −yΛ(1− Φ̂>w − by>) = 0.

By re-arranging the above equations, we can express them as a matrix equality,

[
I
C

+ Φ̂ΛΦ̂> Φ̂Λy>

yΛΦ̂> yΛy>

]

︸ ︷︷ ︸
M

[
w

b

]
=

[
Φ̂Λ1

yΛ1

]

︸ ︷︷ ︸
z

.

We absorb the coefficients on the left-hand side into a design matrix M ∈ Rd+1×d+1, and

right-hand side into a vector z ∈ Rd+1. Consequently, we can express w and b as a function
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of M−1 and z, and derive their derivatives w.r.t. [φ]s from the matrix inverse rule [92],

leading to

∂[w>, b]>

∂[φi]s
= M−1

(
∂z

∂[φi]s
− ∂M

∂[φi]s

[
w

b

])
(2.31)

To compute the derivatives ∂M
∂[φ]s

, we note that the upper left block of M is a d × d inner

product matrix scaled by Λ and translated by I
C

, and we obtain the derivative w.r.t. each

element (row r, column s) of the upper left block,

∂( I
C

+ Φ̂ΛΦ̂>)rs

∂[φ]s(xi)
=




µyi [φ]r(xi) if r 6= s,

2µyi [φ]s(xi) if r = s.

The remaining derivatives are ∂Φ̂Λy>

∂[φ]s(xi)
= µyi and ∂z

[φ]s(xi)
= [0, . . . , yiµyi , . . . , 0]> ∈ Rd+1. To

complete the chain rule in eq. (2.28), we also need

∂`V
∂J

= −yiσ(yiJ [φ(xi)])(1− σ(yiJ [φ(xi)])). (2.32)

Combining eqs. (2.29), (2.30), (2.31) and (2.32) completes the gradient ∂`V
∂[φ]s

.

Gradient w.r.t. C. The derivative ∂J
∂C

is very similar to ∂J
∂[φ]s

, the difference being in ∂M
∂C

,

which only has non-zero value on diagonal elements,

∂Mrs

∂C
=




− 1
C2 if s = r ∧ r 6= m+ 1,

0 otherwise.
(2.33)

Although computing the derivative requires the inversion of matrix M, M is only a (d+1)×
(d+1) matrix. Because our algorithm converges after generating a few (d ≈ 100) dimensions,

the inverse operation is not computationally intensive.
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Figure 2.7: A demonstration of our method on a synthetic data set (shown at left). As the
feature representation is allowed to use more expensive features, AFR can better distinguish
the test data of the two classes. At the bottom of each representation is the classification
accuracies of the training/validation/testing data and the cost of the representation. The
rightmost plot shows the values of SVM parameters w, b and hyper-parameter C at each
iteration.

2.2.4 Results

We evaluate our algorithm on a synthetic data set in order to demonstrate the AFR learning

approach, as well as two benchmark data sets from very different domains: the Yahoo!

Learning to Rank Challenge data set [18] and the Scene 15 recognition data set from [71].

Synthetic data. To visualize the learned anytime feature representation, we construct a

synthetic data set as follows. We generate n= 1000 points (640 for training/validation and

360 for testing) uniformly sampled from four different regions of two-dimensional space (as

shown in Figure 2.7, left). Each point is labeled to be in class 1 or class 2 according to

the XOR rule. These points are then randomly-projected into a ten-dimensional feature

space (not shown). Each of these ten features is assigned an extraction cost: {1, 1, 1, 2,

5, 15, 25, 70, 100, 1000}. Correspondingly, each feature f has zero-mean Gaussian noise

added to it, with variance 1
cf

(where cf is the cost of feature f). As such, cheap features are

poorly representative of the classes while more expensive features more accurately distinguish

the two classes. To highlight the feature-selection capabilities of our technique we set the

evaluation cost ce to 0. Using this data, we constrain the algorithm to learn a two-dimensional

anytime representation (i.e. φ(x) ∈ R2).
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The center portion of Figure 2.7 shows the anytime representations of testing points for

various test-time budgets, as well as the learned hyperplane (black line), margins (gray

lines) and classification accuracies. As the allowed feature cost budget is increased, AFR

steadily adjusts the representation and classifier to better distinguish the two classes. Using

a small set of features (cost = 95) AFR can achieve nearly perfect test accuracy and using

all features AFR fully separates the test data.

The rightmost part of Figure 2.7 shows how the learned SVM classifier changes as the

representation changes. The coefficients of the hyperplane w = [w1, w2]> initially change

drastically to appropriately weight the AFR features, then decrease gradually as more weak

learners are added to φ. Throughout, the hyper-parameter C is also optimized.

Yahoo Learning to Rank. The Yahoo! Learning to Rank Challenge data set consists of

query-document instance pairs, with labels having values from {0, 1, 2, 3, 4}, where 4 means

the document is perfectly relevant to the query and 0 means it is irrelevant. Following

the steps of Chen et al. [24], we transform the data into a binary classification problem

by distinguishing purely between relevant (yi ≥ 3) and irrelevant (yi < 3) documents. The

resulting labels are yi ∈ {+1,−1}. The total binarized data set contains 2000, 2002, and 2001

training, validation and testing queries and 20258, 20258, 26256 query-document instances

respectively. As in [24] we replicate each negative, irrelevant instance 10 times to simulate the

scenario where only a few documents out of hundreds of thousands of candidate documents

are highly relevant. Indeed in real world applications, the distribution of the two classes is

often very skewed, with vastly more negative examples presented.

Each input contains 519 features, and the feature extraction costs are in the set {1, 5, 10,

20, 50, 100, 150, 200}. The unit of cost is the time required to evaluate one limited-depth

regression tree ht(·), thus the evaluation cost ce is set to 1. To evaluate the cost-accuracy

performance, we follow the typical convention for a binary ranking data set and use the

Precision@5 metric. This counts how many documents are relevant in the top 5 retrieved

documents for each query.

In order to address the label imbalance, we add a multiplicative weight to the loss of all

positive examples, β+, which is set by cross validation (β+ = 2). We set the hyper-parameters

to T = 10, S = 20 and λ0 = 10. As the algorithm is by design fairly insensitive to hyper-

parameters, this setting is determined without needing to search through (T, S, λ0) space.
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Figure 2.8: The accuracy/cost trade-off curves for a number of state-of-the-art algorithms
on the Yahoo! Learning to Rank Challenge data set. The cost is measured in units of the
time required to evaluate one weak learner.

Comparison. The most basic baseline is GBRT without cost consideration. We apply

GBRT using two different loss functions: the squared loss and the un-regularized squared

hinge loss. In total we train 2000 trees. We plot the cost and accuracy curves of GBRT by

adding 10 trees at a time. In addition to this additive classifier, we show the results of a

linear SVM applied to the original features as well.

We also compare against current state-of-the-art competing algorithms. We include Early-

Exit [14], which is based on GBRT. It short-circuits the evaluation of lower ranked and

unpromising documents at test-time, based on some threshold s (we show s = 0.1, 0.3),

reducing the overall test-time cost. Cronus [24] improves over Early-Exit by reweighing

and re-ordering the learned trees into a feature-cost sensitive cascade structure. We show

results of a cascade with a maximum of 10 nodes. All of its hyper-parameters (cascade

length, keep ratio, discount, early-stopping) are set based on the validation set. We generate

the cost/accuracy curve by varying the trade-off parameter λ, in their paper. Finally, we

compare against Greedy Miser described in Section 2.1 trained using the un-regularized

squared hinge loss. The cost/accuracy curve is generated by re-training the algorithm with

different cost/accuracy trade-off parameters λ. We also use the validation set to select the

best number of trees needed for each λ.
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Figure 2.8 shows the performance of all algorithms. Although the linear SVM uses all features

to make cost-insensitive predictions, it achieves a relatively poor result on this ranking data

set, due to the limited power of a linear decision boundary on the original feature space. This

trend has previously been observed in [18]. GBRT with un-regularized squared hinge loss and

squared loss achieve peak accuracy after using a significant amount of the feature set. Early-

Exit only provides limited improvement over GBRT when the budget is low. This is primarily

because, in this case, the test-time cost is dominated by feature extraction rather than the

evaluation cost. Cronus improves over Early-Exit significantly due to its automatic stage

reweighing and re-ordering. However, its power is still limited by its feature representation,

which is not cost-sensitive. AFR out-performs the best performance of Greedy Miser for a

variety of cost budgets. Different from Greedy Miser, which must be re-trained for different

budgets along the cost/accuracy trade-off curve (each resulting in a different model), AFR

consists of a single model which can be halted at any point along its curve—providing a

state-of-the-art anytime classifier. It is noteworthy that AFR obtains the highest test-scores

overall, which might be attributed to the better generalization of large-margin classifiers.

Scene recognition. The second data set we experiment with is from the image domain.

The scene 15 [71] data set contains 4485 images from 15 scene classes. The task is to classify

the scene in each image. Following the procedure used by Li et al. [76] and Lazebnik et al.

[71], we construct the training set by selecting 100 images from each class, and leave the

remaining 2865 images for testing. We extract a variety of vision features from Xiao et al.

[130] with very different computational costs: GIST, spatial HOG, Local Binary Pattern

(LBP), self-similarity, texton histogram, geometric texton, geometric color, and Object Bank

[76]. As mentioned by the authors of Object Bank, each object detector works independently.

Therefore we apply 177 object detectors to each image, and treat each of them as independent

descriptors. In total, we have 184 different image descriptors, and the total number of

resulting raw features is 76187. Note that we do not use the SVM features for this data set

as we do in Section 2.1.4, because we would like to evaluate how well our algorithm performs

on raw inputs. The feature extraction cost is the actual CPU time to compute each feature

on a desktop with dual 6-core Intel i7 CPUs with 2.66GHz, ranging from 0.037s (Object

Bank) to 9.282s (geometric texton). Since computing each type of image descriptor results

in a group of features, as long as any of the features in a descriptor is requested, we extract

the entire descriptor. Thus, subsequent requests for features in that descriptor are free.

47



0 5 10 15 20 25 30 35
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

 

 

GBRT squared hinge loss (Friedman, 2001)
GBRT logistic loss (Friedman, 2001)
SVM linear kernel
Early−Exit
Greedy Miser (Xu et. al. 2012)
AFR

Scene 15

Ac
cu
ra
cy

Cost

Figure 2.9: The accuracy/cost performance trade-off for different algorithms on the Scene
15 multi-class scene recognition problem. The cost is in units of CPU time.

We train 15 one-vs-all classifiers, and learn the feature representation mapping φ, the SVM

parameters (w,b,C) for each classifier separately. Since each descriptor is free once extracted,

we also set the descriptor cost to zero whenever it is used by one of the 15 classifiers.

To overcome the problem of different decision value scales resulting from different one-vs-

all classifiers, we use the scaling method proposed by Platt [93] to re-scale each classifier

prediction within [0, 1].4 We use the same hyper-parameters as the Yahoo! data set, except

we set λ0 = 210, as the unit of cost in scene15 is much smaller.

Figure 2.9 demonstrates the cost/accuracy performance of several current state-of-the-art

techniques and our algorithm. The GBRT-based algorithms include GBRT using the logistic

loss and the squared loss, where we use the scaling method described above for the hinge loss

variant to cope with the scaling problem. We generate the curve by adding 10 trees at a time.

Although these two methods achieve high accuracy, their costs are also significantly higher

due to their cost-insensitive nature. We also evaluate a linear SVM. Because it is only able to

learn a linear decision boundary on the original feature space, it has a lower accuracy than

the GBRT-based techniques for a given cost. For cost-sensitive methods, we first evaluate

4The scaling method makes SVM predictions interpretable as probabilities. This can also be use to
monitor the confidence threshold of the anytime classifiers to stop evaluation when a confidence threshold is
met (e.g. in medical applications to avoid further costly feature extraction).
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Early-Exit. As this is a multi-class classification problem, we introduce an early-exit every

10 trees, and we remove test inputs after scaling results in a score greater than a threshold

s. We plot the curve by varying s. Since Early-Exit lacks the capability to automatically

pick expensive and accurate features early-on, its improvement is very limited. For Greedy

Miser, we split the training data into 75/25 and use the smaller subset as validation to set

the number of trees. We use un-regularized squared hinge-loss with different values of the

cost/accuracy trade-off parameter λ ∈ {40, 41, 42, 43, 44, 45}. Greedy Miser performs better

than the previous baselines, and AFR consistently matches it, save one setting. Moreover,

AFR generates a smoother budget curve, and can be stopped anytime to provide predictions

at test-time.

2.2.5 Conclusion

To our knowledge, we provide the first learning algorithm for cost-sensitive anytime feature

representations. Our results are highly encouraging, in particular Anytime Feature Represen-

tation Learning matches or even outperforms the results of the previously discussed classifiers

learned under test-time resource constraints, which must be provided with knowledge about

the exact test-time budget during training. Moreover, learning anytime representations adds

new flexibility towards the choice of classifier and the learning setting and may enable new

use cases and application areas.
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Chapter 3

Classification with Trees and Cascades

In face detection applications, the majority of all image regions do not contain faces and

can often be easily rejected based on the response of a few simple Haar features [125]. In

some other applications, where data is not class-imbalanced like face detection, many inputs

could be classified correctly based on a small subset of all available features, and this subset

can vary across inputs. Applications like these two naturally inspire a different goal in

controlling test-time cost and a different strategy: Controlling the amortized test-time cost

and classification with trees and cascades.

3.1 Introduction

In the face detection example described above, different inputs require a variety of features to

classify. Most inputs can be correctly classified by just Haar features, and only a few inputs

need more complex vision features. Therefore, setting the same budget for every input will

cause either a huge waste on easy-to-classify inputs or a too tight budget on hard-to-classify

inputs. Instead, one should allocate different budgets for different inputs, giving hard-to-

classify inputs more budget and giving easier ones less, and thus on-average, the test-time

cost is within the budget. In other words, the amortized cost should be within the budget.

In this chapter, we propose a new algorithm, Cost-Sensitive Tree of Classifiers (CSTC) that

aims to control the amortized test-time cost. CSTC minimizes an approximation of the exact

expected test-time cost required to predict an instance. An illustration of a CSTC tree is

shown in the right plot of Figure 3.1. As shown in the figure, because the input space is
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Figure 3.1: An illustration of two different techniques for learning under a test-time resource
constraints. Circular nodes represent classifiers (with parameters β) and black squares pre-
dictions. The color of a classifier node indicates the number of inputs passing through it
(darker means more). Left: CSCC, a classifier cascade that optimizes the average cost by re-
jecting easier inputs early. Right: CSTC, a tree that trains expert leaf classifiers specialized
on subsets of the input space.

partitioned by the tree, different features are only extracted where they are most beneficial.

As a result, the amortized test-time cost is reduced. Unlike prior approaches, which reduce

the total cost for every input [38] or which combine feature cost with mutual information to

select features [34], a CSTC tree incorporates input-dependent feature selection into training

and dynamically allocates higher feature budgets for infrequently traveled tree-paths. In

data scenarios with highly skewed class imbalance, cascades might be a better model by

rejecting many instances using a small number of features. We therefore apply the same

test-time cost derivation to a stage-wise classifier for cascades. The resulting algorithm,

Cost-Sensitive Cascade of Classifiers (CSCC), is shown in the left plot of Figure 3.1.

3.2 Related Work

There is much previous work that addresses amortized test-time cost by building classifier

cascades (mostly for binary classification) [125, 37, 74, 105, 96, 24, 100, 117]. They chain

several classifiers into a sequence of stages. Each classifier can either “early-exit” inputs

(making a final prediction), or pass them on to the next stage. This decision is made based

on the prediction of each instance. Different from CSCC, these algorithms typically do not
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take into account feature cost and implement more ad-hoc rules to trade-off accuracy and

cost.

For learning tasks with balanced classes and specialized features, the linear cascade model is

less well-suited. Because all inputs follow exactly the same linear path, it cannot capture

the scenario in which different subsets of inputs require different expert features. Chai

et al. [15] introduce the value of un-extracted features, where the value of a feature is the

increase (gain) in expected classification accuracy minus the cost of including that feature.

During test-time, at each iteration, their algorithm picks the feature that has the highest

value and retrains a classifier with the new feature. The algorithm stops when there is no

increase in expected accuracy, or all features are included. Because they employ a naive

Bayes classifier, retraining incurs very little cost. Similarly, Gao and Koller [45] use locally

weighted regression during test-time to predict the information gain of unknown features.

Most recently, Karayev et al. [61] use reinforcement learning during test-time to dynamically

select object detectors for a particular image. Our approach shares the same idea that

different inputs require different features. However, instead of learning the best feature for

each input during test-time, which introduces an additional cost, we learn and fix a tree

structure in training. Each branch of the tree only handles a subset of the input space and,

as such, the classifiers in a given branch become specialized for those inputs. Moreover,

because we learn a fixed tree structure, it has a test-time complexity that is constant with

respect to the training set size.

Concurrently, there has been work proposed by Deng et al. [33] to speed up the training

and evaluation of tree-structured classifiers (specifically label trees [4]), by avoiding many

binary one-vs-all classifier evaluations. However, in many real world datasets the test-time

cost is largely composed of feature extraction time and our aim is different from their work.

Possibly most similar to our work is by Busa-Fekete et al. [13], who apply a Markov decision

process to learn a directed acyclic graph. At each step, they select features for different

instances. Although similar in motivation, their algorithmic framework is very different and

can be regarded as complementary to ours.

It is worth mentioning that, although Hierarchical Mixture of Experts (HME) [60] also builds

tree-structured classifiers, it does not consider reducing the test-time cost and thus results in

fundamentally different models. In contrast, we train each classifier with the test-time cost
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in mind and each test input only traverses a single path from the root down to a terminal

element, accumulating path-specific costs. In HME, all test inputs traverse all paths and all

leaf-classifiers contribute to the final prediction, incurring the same cost for all test inputs.

3.3 Background

We learn a classifier H : Rd → Y , parameterized by β, to minimize a continuous, non-

negative loss function `,

min
β

1

n

n∑

i=1

`(H(xi;β), yi).

We assume that H is a linear classifier, H(x;β) = x>β. To avoid overfitting, we deploy a

standard l1 regularization term, |β| to control model complexity. This regularization term

has the known side-effect of keeping β sparse ([116]), which requires us to only evaluate a

subset of all features. In addition, to balance the test-time cost incurred by the classifier,

we also incorporate the cost term c(β) described in the following section. The combined

test-time cost-sensitive optimization becomes

min
β

1

n

∑

i

`(x>i β, yi) + ρ|β|
︸ ︷︷ ︸

regularized loss

+ λ c(β)︸︷︷︸
test-cost

, (3.1)

where λ is the accuracy/cost trade-off parameter, and ρ controls the strength of the regu-

larization.

The test-time cost of H is regulated by the features extracted for that classifier. We denote

the extraction cost for feature α as cα. The cost cα ≥ 0 is suffered at most once, only for

the initial extraction, as feature values can be cached for future use. For a classifier H,

parameterized by β, we can record the features used:

‖βα‖0 =

{
1 if feature α is used in H

0 otherwise.
(3.2)
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Here, ‖ · ‖0 denotes the l0 norm with ‖x‖0 = 1 if x 6= 0 and ‖x‖0 = 0 otherwise. With this

notation, we can formulate the total test-time cost required to evaluate a test input xi with

classifier H (and parameters β) as

d∑

α=1

cα‖βα‖0. (3.3)

Note that for now we assume all inputs have the same feature extraction cost, and the

amortized test-time cost equals to the cost of each input,

c(β) =
1

n

n∑

i=1

1
d∑

α=1

cα‖βα‖0 =
d∑

α=1

cα‖βα‖0. (3.4)

3.4 Cost-sensitive tree of classifiers

We introduce an algorithm that aims to reduce amortized test-time cost by giving differ-

ent inputs different budgets. Our algorithm employs a tree structure to extract particular

features for particular inputs, and we refer to it as the Cost-Sensitive Tree of Classifiers

(CSTC ). We begin by introducing foundational concepts regarding the CSTC tree and de-

rive a global cost term that extends eq. (3.4) to trees of classifiers. Then we relax the

resulting loss function into a well-behaved optimization problem.

CSTC nodes. The fundamental building block of the CSTC tree is a CSTC node—a linear

classifier as described in Section 3.3. Our classifier design is based on the assumption that

instances with similar labels tend to have similar relevant features. Thus, we design our tree

algorithm to partition the input space based on classifier predictions. Intermediate classifiers

determine the path of instances through the tree and leaf classifiers become experts for a

small subset of the input space.

Correspondingly, there are two different nodes in a CSTC tree (depicted in Figure 3.2):

classifier nodes (white circles) and terminal elements (black squares). Each classifier node

vk is associated with a weight vector βk and a threshold θk. These classifier nodes branch

inputs by their threshold θk, sending inputs to their upper child if x>i β
k>θk, and to their

lower child otherwise. Terminal elements are “dummy” structures and are not real classifiers.
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Figure 3.2: A schematic layout of a CSTC tree. Each node vk is associated with a weight
vector βk for prediction and a threshold θk to send instances to different parts of the tree.
We solve for βk and θk that best balance the accuracy/cost trade-off for the whole tree.
Each path in the CSTC tree is shown in a different color.

They return the predictions of their direct parent classifier nodes—essentially functioning as

a placeholder for an exit out of the tree. The tree structure may be a full balanced binary tree

of some depth (e.g. Figure 3.2), or can be pruned based on a validation set. For simplicity,

we assume at this point that nodes with terminal element children must be leaf nodes (as

depicted in the figure)—an assumption that we will relax later on.

During test-time, inputs traverse through the tree, starting from the root node v0. The root

node produces predictions x>i β
0 and sends the input xi along one of two different paths,

depending on whether x>i β
0>θ0. By repeatedly branching the test inputs, classifier nodes

sitting deeper in the tree only handle a small subset of all inputs and become specialized

towards that subset of the input space.
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3.4.1 CSTC Loss

In this subsection, we discuss the loss and test-time cost of a CSTC tree. We then derive a

single global loss function over all nodes in the CSTC tree.

Soft tree traversal. As we described before, inputs are partitioned at each node during

test-time, and we use a hard threshold to achieve this partitioning. However, modeling a

CSTC tree with hard thresholds leads to a combinatorial optimization problem that is NP-

hard [68, Chapter 15]. As a remedy, during training, we softly partition the inputs and

assign traversal probabilities p(vk|xi) to denote the likelihood of input xi traversing through

node vk. Every input xi traverses through the root, so we define p(v0|xi) = 1 for all i. We

define a “sigmoidal” soft belief that an input xi will transition from classifier node vk with

threshold θk to its upper child vu as

p(vu|xi, vk) =
1

1 + exp(−(x>i β
k−θk)) . (3.5)

Let vk be a node with upper child vu and lower child vl. We can express the probabilities

of reaching nodes vu and vl recursively as p(vu|xi) = p(vu|xi, vk)p(vk|xi) and p(vl|xi) =[
1− p(vu|xi, vk)

]
p(vk|xi) respectively. Note that it follows immediately, that if Vd contains

all nodes at tree-depth d, we have

∑

v∈Vd
p(v|x) = 1. (3.6)

In the following paragraphs we incorporate this probabilistic framework into the loss and

cost terms of (3.1) to obtain the corresponding expected tree loss and expected tree cost.

Expected tree loss. To obtain the expected tree loss, we sum over all nodes V in a CSTC

tree and all inputs and weigh the loss `(·) of input xi at node vk by the probability that the

input reaches vk, pki =p(vk|xi),

1

n

n∑

i=1

∑

vk∈V

pki `(x
>
i β

k, yi). (3.7)
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This has two effects: 1. the local loss for each node focuses more on likely inputs; 2. the

global objective attributes more weight to classifiers that serve many inputs. Technically,

the prediction of the CSTC tree is made entirely by the terminal nodes (i.e. the leaves),

and an obvious suggestion may be to only minimize their classification loss and leave the

interior nodes as “gates” without any predictive abilities. However, such a setup creates local

minima that send all inputs to the terminal node with the lowest initial error rate. These

local minima are hard to escape and therefore we found it to be important to minimize the

loss for all nodes. Effectively, this forces a structure onto the tree that similarly labeled

inputs leave through similar leaves and achieves robustness by assigning high loss to such

pathological solutions.

Expected tree costs. The cost of a test input is the cumulative cost across all classifiers

along its path through the CSTC tree. Figure 3.2 illustrates an example of a CSTC tree with

all paths highlighted in different colors. Every test input must follow along exactly one of

the paths from the root to a terminal element. Let L denote the set of all terminal elements

(e.g., in Figure 3.2 we have L={v7, v8, v9, v10}), and for any vl∈L, let πl denote the set of

all classifier nodes along the unique path from the root v0 before terminal element vl (e.g.,

π9 ={v0, v2, v5}).

For an input xi, exiting through terminal node vl, a feature α needs to be extracted if and

only if at least one classifier along the path πl uses this feature. We extend the indicator

function defined in (3.2) accordingly:

∥∥∥∥∥
∑

vj∈πl

∣∣βjα
∣∣
∥∥∥∥∥

0

=

{
1 if feature α is used along path to terminal node vl

0 otherwise.
(3.8)

We can extend the cost term in eq. (3.4) to capture the traversal cost from root to node vl

as

cl=
∑

α

cα

∥∥∥∥∥
∑

vj∈πl
|βjα|

∥∥∥∥∥
0

. (3.9)

Given an input xi, the expected cost is then E[cl|xi] =
∑

l∈L p(v
l|xi)cl. To approximate

the data distribution, we sample uniformly at random from our training set, i.e. we set
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p(xi) ≈ 1
n
, and obtain the unconditional expected cost

E[cost] =
n∑

i=1

p(xi)
∑

l∈L

p(vl|xi)cl ≈
∑

l∈L

cl
n∑

i=1

p(vl|xi)
1

n
︸ ︷︷ ︸

:=pl

=
∑

l∈L

clpl. (3.10)

Here, pl denotes the probability that a randomly picked training input exits the CSTC tree

through terminal node vl. We can combine (3.9), (3.10) with (3.7) and obtain the objective

function,

∑

vk∈V

(
1

n

n∑

i=1

pki `
k
i +ρ|βk|

)

︸ ︷︷ ︸
regularized loss

+λ
∑

vl∈L

pl

[∑

α

cα

∥∥∥∥∥
∑

vj∈πl
|βjα|

∥∥∥∥∥
0

]

︸ ︷︷ ︸
test-time cost

, (3.11)

where we use the abbreviations pki = p(vk|xi) and `ki = `(x>i β
k, yi).

3.4.2 Test-cost Relaxation

The cost penalties in (3.11) are exact but difficult to optimize due to the discontinuity

and non-differentiability of the l0 norm. As a solution, throughout this section we use the

mixed-norm relaxation of the l0 norm over sums,

∑

j

∥∥∥∥∥
∑

i

|Aij|
∥∥∥∥∥

0

→
∑

j

√∑

i

(Aij)2, (3.12)

described by Kowalski [69]. Note that for a vector, this relaxes the l0 norm to the l1 norm, i.e.∑
j ‖aj‖0→

∑
j

√
(aj)2 =

∑
j |aj|, recovering the commonly used approximation to encourage

sparsity. For matrices A, the mixed norm applies the l1 norm over rows and the l2 norm

over columns, thus encouraging a whole row to be all-zero or non-sparse. In our case this has

the natural interpretation to encourage re-use of features that are already extracted along

a path. Using the relaxation in (3.12) on the l0 norm in (3.11) gives the final optimization

58



problem:

min
β0,θ0,...,β|V |,θ|V |

∑

vk∈V

(
1

n

n∑

i=1

pki `
k
i +ρ|βk|

)

︸ ︷︷ ︸
regularized loss

+λ
∑

vl∈L

pl

[∑

α

cα

√∑

vj∈πl
(βjα)2

]

︸ ︷︷ ︸
test-time cost penalty

(3.13)

We can illustrate the fact that the mixed-norm encourages re-use of features with a simple

example. If two classifiers vk 6= vk
′

along a path πl use different features with identical

weight, i.e. βkt = ε = βk
′
s and t 6= s, the test-time cost penalty along πl is

√
ε2 +

√
ε2 = 2ε.

However, if the two classifiers re-use the same feature, i.e. t = s, the test-time cost penalty

reduces to
√
ε2 + ε2 =

√
2ε.

3.4.3 Optimization

There are many techniques to minimize the objective function (3.13). We use block coor-

dinate descent, optimizing with respect to the parameters of a single classifier node vk at a

time, keeping all other parameters fixed. To minimize (3.13) (up to a local minimum) with

respect to parameters βk, θk we use the lemma below to overcome the non-differentiability

of the square-root term (and l1 norm, which we can rewrite as |a| =
√
a2) resulting from the

l0-relaxation (3.12).

Lemma 1. Given a positive function g(x), the following holds:

√
g(x) = inf

z>0

1

2

[
g(x)

z
+ z

]
. (3.14)

It is straight-forward to see that z =
√
g(x) minimizes the function on the right hand side

and satisfies the equality, which leads to the proof of the lemma.

For each square-root or l1 term we 1) introduce an auxiliary variable (i.e. z above), 2)

substitute in (3.14), and 3) alternate between minimizing the objective in (3.13) with respect

to βk, θk and solving for the auxiliary variables. The former minimization is performed with

conjugate gradient descent and the latter can be computed efficiently in closed form. This

pattern of block-coordinate descent followed by a closed form minimization is repeated until
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convergence. Note that the objective is guaranteed to converge to a fixed point because each

iteration decreases the objective function, which is bounded below by zero. In the following

subsection, we detail the block coordinate descent optimization technique. Lemma 1 is only

defined for strictly positive functions g(x). As we are performing function minimization, we

can reach cases where g(x) = 0 and Lemma 1 is ill defined. Thus, as a practical work-around,

we clamp values to zero once they are below a small threshold (10−4).

Optimization details. As terminal nodes are only placeholders and do not have their

own parameters, we only focus on classifier nodes, which are depicted as round circles in

Figure 3.2.

Leaf nodes. The optimization of leaf nodes (e.g. v3, v4, v5, v6 in Figure 3.2) is simpler

because there are no downstream dependencies. Let vk be such a classifier node with only a

single “dummy” terminal node vk
′
. During optimization of (3.13), we fix all other parameters

βj, θj of other nodes vj and the respective terms become constants. Therefore, we remove

all other paths, and only minimize over the path πk
′

from the root to terminal node vk
′
.

Even along the path πk
′

most terms become constant and the only non-constant parameter

is βk (the branching parameter θk can be set to −∞ because vk has only one child). We

color non-constant terms in the remaining function in blue below,

1

n

n∑

i=1

pki `(x
>
i β

k, yi)+ρ|βk|+ λ pk
′


∑

α

cα

√
(βkα)2 +

∑

vj∈πk′\vk
(βjα)2


 , (3.15)

where the notation S \ b denotes a set containing all of the elements in S except b. After

identifying the non-constant terms, we can apply Lemma 1, making (3.15) differentiable

with respect to βkα. Let us define auxiliary variables γα and ηα for 1 ≤ α ≤ d for the l1-

regularization term and the test-time cost term. Further, let us collect the constants in the

test-time cost term stest-time =
∑

vj∈πk′\vk(β
j
α)2. Applying Lemma 1 results in the following

substitutions:

∑

α

ρ|βkα| =
∑

α

ρ
√

(βkα)2 −→
∑

α

ρ
1

2

(
(βkα)2

γα
+ γα

)
,

∑

α

cα
√

(βkα)2 + stest-time −→
∑

α

cα
1

2

(
(βkα)2 + stest-time

ηα
+ ηα

)
. (3.16)
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As a result, we obtain a differentiable objective function after making the above substitutions.

We can solve βk by alternately minimizing the obtained differentiable function w.r.t. βk with

γα, ηα fixed, and minimizing γα, ηα with βk fixed (i.e. minimizing ηα is equivalent to setting

ηα =
√

(βkα)2+stest-time ). Recall that θk does not require optimization as vk does not further

branch inputs.

It is straight-forward to show [6, page 72], that the right hand side of Lemma 1 is jointly

convex in x and z, so as long as g(x) is a quadratic function of x. Thus, if `(x>i β
k, yi) is

the squared loss, the substituted objective function is jointly convex in βk and in γα, ηα, and

therefore we can obtain a globally-optimal solution. Moreover, we can solve βk in closed

form. Let us define three design matrices

Xiα= [xi]α, Ωii= pki , Γαα=
ρ

γα
+ λ
(pkcα
ηα

)
,

where Ω and Γ are both diagonal and [xi]α is the α feature of instance xi. The closed-form

solution for βk is as follows,

βk = (X>ΩX + Γ)−1X>Ωy. (3.17)

Intermediate nodes. We further generalize this approach to all classifier nodes. As before,

we optimize one node at a time, fixing the parameters of all other nodes. However, optimizing

the parameters βk, θk of an internal node vk, which has two children affects the parameters

of descendant nodes. This affects the optimization of the regularized classifier loss and the

test-time cost separately. We state how these terms in the global objective (3.13) are affected,

and then show how to minimize it.

Let S be the set containing all descendant nodes of vk. Changes to the parameters βk, θk will

affect the traversal probabilities pji for all vj ∈ S and therefore enter the downstream loss

functions. We first state the regularized loss part of (3.13) and once again color non-constant

parameters in blue,

1

n

∑

i

pki `(x
>
i β

k, yi) +
1

n

∑

vj∈S

∑

i

pji `(x
>
i β

j, yi) + ρ|βk|. (3.18)
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Algorithm 5 CSTC global optimization

Input: data {xi, yi} ∈ Rd ×R, initialized CSTC tree
repeat

for k = 1 to N = # CSTC nodes do
repeat

Solve for γ, η (fix βk, θk) using left hand side of (3.16)
Solve for βk, θk (fix γ, η) with conjugate gradient descent, or in closed-form

until objective changes less than ε
end for

until objective changes less than ε

For the cost terms in (3.13), recall that the cost of each path πl is weighted by the probability

pl of traversing that path. Changes to βk, θk affect the probability of any path that passes

through vk and its corresponding probability pl. Let P be the terminal elements associated

with paths passing through vk. We state the cost function with non-constant parameters in

blue,

∑

vl∈P

pl


∑

α

cα

√√√√
( ∑

vj∈πl\vk
(βjα)2 + (βkα)2

)


︸ ︷︷ ︸
test-time cost

(3.19)

Adding (3.18) and (3.19), with the latter weighted by λ, gives the internal node loss. To make

the combined objective function differentiable we apply Lemma 1 to the l1-regularization,

and test-time cost terms and introduce auxiliary variables γα, ηα as in (3.16). Similar to

the leaf node case, we solve βk, θk by alternately minimizing the new objective w.r.t. βk, θk

with γα, ηα fixed, and minimizing γα, ηα with fixed βk, θk. Unlike leaf nodes, optimizing the

objective function w.r.t. βk, θk cannot be expressed in closed form even with squared loss.

Therefore, we optimize it with conjugate gradient descent. Algorithm 5 describes how the

entire CSTC tree is optimized.

Node initialization. The minimization of (3.13) is non-convex and is therefore initialization

dependent. However, minimizing (3.13) with respect to the parameters of leaf classifiers is

convex. We therefore initialize the tree top-to-bottom, starting at v0, and optimizing over

βk by minimizing (3.13) while considering all descendant nodes of vk as “cut-off” (thus
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pretending node vk is a leaf). This initialization is also very fast in the case of a quadratic

loss, as it can be solved for in closed form.

3.4.4 Fine-tuning

The original test-time cost term in (3.4) sums over the cost of all features that are extracted

during test-time. The relaxation in eq. (3.12) makes the exact l0 cost differentiable and

is still well suited to select which features to extract. However, the mixed-norm does also

impact the performance of the classifiers, because (different from the l0 norm) larger weights

in β incur larger cost penalties. We therefore introduce a post-processing step to correct

the classifiers from this unwanted regularization effect. We re-optimize the loss of all leaf

classifiers (i.e. classifiers that make final predictions), while clamping all features with zero-

weight to strictly remain zero.

min
β̄k

∑

i

pki `(x
>
i β̄

k, yi) + ρ|β̄k|

s.t. β̄kt = 0 if βkt = 0.

Here, we do not include the cost-term, because the decision regarding which features to use

is already made. The final CSTC tree uses these re-optimized weight vectors β̄k for all leaf

classifier nodes vk.

3.4.5 Determining the tree structure

As the CSTC tree does not need to be balanced, its structure is an implicit parameter of the

algorithm. We discuss a approach to determine the structure of the tree in the absence of

prior knowledge. We build a full (balanced) CSTC tree of depth d and initialize all nodes. To

obtain a more compact model and to avoid over-fitting, the CSTC tree can be pruned with

the help of a validation set. We compute the validation error of the initialized CSTC tree

at each node. Starting with the leaf nodes, we then prune away nodes that, upon removal,

do not decrease the validation performance (in the case of ranking data, we even can use
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validation NDCG as our pruning criterion). After pruning, the tree structure is fixed and

all nodes are optimized with the procedure described above.

3.5 Cost-sensitive Cascade of Classifiers

Many real world applications have data distributions with high class imbalance. One example

is face detection, where the vast majority of all image patches do not contain faces; another

example is web-search ranking, where almost all web-pages are irrelevant to a given query.

Often, a few features may suffice to detect that an image does not contain a face or that a

web-page is irrelevant. Further, in applications such as web-search ranking, the accuracy on

low relevance instances is less important as long as they are not mistakenly predicted to be

highly relevant (and therefore are not displayed to the end user).

In these settings, the entire focus of the algorithm should be on the most confident positive

samples. Sub-trees that lead to only negative predictions, can be pruned effectively as

there is no value in providing fine-grained differentiation between negative samples. This

further reduces the average feature cost, as negative inputs traverse through shorter paths

and require fewer features to be extracted. Previous work obtains these unbalanced trees

by explicitly learning cascade structured classifiers [125, 37, 74, 105, 24, 117]. CSTC can

incorporate cascades naturally as a special case, in which the tree of classifiers has only a

single node per level of depth. However, further modifications can be made to accommodate

the specifics of these settings. We introduce two changes to the learning algorithm:

• Inputs of different classes are re-weighted to account for the severe class imbalance.

• Every classifier node vk has a terminal element as child and is weighted by the proba-

bility of exiting rather than the probability of reaching node vk.

We refer to the modified algorithm as Cost-Sensitive Cascade of Classifiers (CSCC). An

example cascade is illustrated in Figure 3.3. A CSCC with K-stages is defined by a set

of weight vectors βk and thresholds θk, C = {(β1, θ1), (β2, θ2), · · · , (βK ,−)}. An input is

early-exited from the cascade at node vk if x>βk<θk and is sent to its terminal element vk+1.
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Cost-sensitive Cascade (CSCC)

terminal elements
early-exit

classifier
nodes

v1 v3 v5

v7

terminal element

v2 v4 v6v0

(β0, θ0) (β2, θ2) (β4, θ4) (β6, θ6)

x�β0 ≤ θ0

x�β0 > θ0

Figure 3.3: Schematic layout of our classifier cascade with four classifier nodes. All paths
are colored in different colors.

Otherwise, the input is sent to the next classifier node. At the final node vK a prediction is

made for all remaining inputs via x>βK .

In CSTC, most classifier nodes are internal and branch inputs. As such, the predictions need

to be similarly accurate for all inputs to ensure that they are passed on to the correct part

of the tree. In CSCC, each classifier node early-exits a fraction of its inputs, providing their

final prediction. As mistakes of such exiting inputs are irreversible, the classifier needs to

ensure particularly low error rates for this fraction of inputs. All other inputs are passed

down the chain to later nodes. This key insight inspires us to modify the loss function of

CSCC from the original CSTC formulation in (3.7). Instead of weighting the contribution

of classifier loss `(x>i β
k, yi) by pki , the probability of input xi reaching node vk, we weight it

with pk+1
i , the probability of exiting through terminal node vk+1. As a second modification,

we introduce an optional class-weight µyi > 0 which absorbs some of the impact of the class

imbalance. The resulting loss becomes:

1

n

n∑

i=1

∑

vk∈V

µyip
k+1
i `(x>i β

k, yi). (3.20)
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The cost term is unchanged and the combined cost-sensitive loss function of CSCC becomes

∑

vk∈V

(
1

n

n∑

i=1

µyip
k+1
i `ki + ρ|βk|

)

︸ ︷︷ ︸
regularized loss

+λ
∑

vl∈L

pl




d∑

α=1

cα

√∑

vj∈πl
(βjα)2




︸ ︷︷ ︸
feature cost penalty

. (3.21)

We optimize (3.21) using the same block coordinate descent optimization described in Section

3.4.3. As before, we initialize the cascade from left to right, while assuming the currently

initialized node is the last node.

3.6 Extension to non-linear classifiers

Although CSTC’s decision boundary may be non-linear, each individual node classifier is

linear. For many problems this may be too restrictive and insufficient to divide the input

space effectively. In order to allow non-linear decision boundaries we map the input into a

more expressive feature space with the “boosting trick” [44, 23], prior to our optimization.

In particular, we first train gradient boosted regression trees with a squared loss penalty

for T iterations and obtain a classifier H ′(xi) =
∑T

t=1 ht(xi), where each function ht(·) is

a limited-depth CART tree [7]. We then define the mapping h(xi) = [h1(xi), . . . , hT (xi)]
>

and apply it to all inputs. The boosting trick is particularly well suited for our feature cost

sensitive setting, as each CART tree only uses a small number of features. Nevertheless, this

pre-processing step does affect the loss function in two ways: 1. the feature extraction now

happens within the CART trees; and 2. the evaluation time of the CART trees needs to be

taken into account.

Feature cost after the boosting trick. After the transformation xi→h(xi), each input

is T−dimensional and consequently, we have the weight vectors β ∈ RT . To incorporate the

feature extraction cost into our loss, we define an auxiliary matrix F∈{0, 1}d×T with Fαt=1

if and only if the CART tree ht uses feature α. With this notation, we can incorporate the

CART-trees into the original feature extraction cost term for a weight vector β, as stated in

(3.4). The new formulation and its relaxed version (following the mixed-norm relaxation as
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stated in (3.12)) are then:

d∑

α=1

cα

∥∥∥∥∥
T∑

t=1

|Fαtβt|
∥∥∥∥∥

0

−→
d∑

α=1

cα

√√√√
T∑

t=1

(Fαtβt)2.

The non-negative sum inside the l0 norm is non-zero if and only if feature α is used by at

least one tree with non-zero weight, i.e. |βt| > 0. Similar to a single classifier, we can also

adapt the feature extraction cost of the path through a CSTC tree, originally defined in

(3.9), which becomes:

d∑

α=1

cα

∥∥∥∥∥
∑

vj∈πl

T∑

t=1

|Fαtβjt |
∥∥∥∥∥

0

−→
d∑

α=1

cα

√√√√∑

vj∈πl

T∑

t=1

(Fαtβ
j
t )

2. (3.22)

CART evaluation cost. The evaluation of a CART tree may be non-trivial or comparable

to the cost of feature extraction and its cost must be accounted for. We define a constant

et ≥ 0, which captures the cost of the evaluation of the tth CART tree. We can express this

evaluation cost for a single classifier with weight vector β in terms of the l0 norm and again

apply the mixed norm relaxation (3.12). The exact (left term) and relaxed evaluation cost

penalty (right term) can be stated as follows:

T∑

t=1

et‖βt‖0 −→
T∑

t=1

et|βt|

The left term incurs a cost of et for each tree ht if and only if it is assigned a non-zero

weight by the classifier, i.e. βt 6= 0. Similar to feature values, we assume that CART tree

evaluations can be cached and only incur a cost once (the first time they are computed).

With this assumption, we can express the exact and relaxed CART evaluation cost along a

path πl in a CSTC tree as

T∑

t=1

et

∥∥∥∥
∑

vj∈πl
|βjt |
∥∥∥∥

0

−→
T∑

t=1

et

√∑

vj∈πl
(βjt )

2. (3.23)

It is worth pointing out, that (3.23) is analogous to the feature extraction cost with linear

classifiers (3.9) and its relaxation, as stated in (3.13).
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CSTC and CSCC with non-linear classifiers. We can integrate the two CART tree

aware cost terms (3.22) and (3.23) into the optimization problem in (3.13). The final objec-

tive of the CSTC tree after the “boosting trick” becomes then

∑

vk∈V

(
1

n

n∑

i=1

pki `
k
i +ρ|βk|

)

︸ ︷︷ ︸
regularized loss

+λ
∑

vl∈L

pl

[∑

t

et

√∑

vj∈πl
(βjt )

2

︸ ︷︷ ︸
CART evaluation cost

+
d∑

α=1

cα

√√√√∑

vj∈πl

T∑

t=1

(Fαtβ
j
t )

2

︸ ︷︷ ︸
feature cost

]
. (3.24)

The objective in (3.24) can be optimized with the same block coordinate descent algorithm,

as described in Section 3.4.3. Similarly, the CSCC loss function with non-linear classifiers

becomes

∑

vk∈V

(
1

n

n∑

i=1

µyip
k+1
i `ki + ρ|βk|

)

︸ ︷︷ ︸
regularized loss

+λ
∑

vl∈L

pl

[∑

t

et

√∑

vj∈πl
(βjt )

2

︸ ︷︷ ︸
CART evaluation cost

+
d∑

α=1

cα

√√√√∑

vj∈πl

T∑

t=1

(Fαtβ
j
t )

2

︸ ︷︷ ︸
feature cost

]
.

(3.25)

3.7 Results

In this section, we evaluate CSTC on a synthetic cost-sensitive learning task and compare it

with competing algorithms on a large-scale, real world benchmark problem. Additionally, we

discuss the differences between our models for several learning settings. We provide further

insight by analyzing the features extracted on this dataset and looking at how CSTC tree

partitions the input space.

3.7.1 Synthetic data

We construct a synthetic regression data set consisting of points sampled from the four

quadrants of the X,Z-plane, where X=Z ∈ [−1, 1]. The features belong to two categories:

cheap features: sign(x), sign(z) with cost c=1, which can be used to identify the quadrant of

an input; and expensive features: z++, z+−, z−+, z−− with cost c=10, which equal the exact

label of an input if it is from the corresponding quadrant (or a random number otherwise).
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Since in this synthetic data set we do not transform the feature space, we have h(x) = x,

and F (the weak learner feature-usage variable) is the 6×6 identity matrix. By design, a

perfect classifier can use the two cheap features to identify the sub-region of an instance

and then extract the correct expensive feature to make a perfect prediction. The minimum

feature cost of such a perfect classifier is exactly c = 12 per instance. We construct the

data set to be a regression problem, with labels sampled from Gaussian distributions with

quadrant-specific means µ++, µ−+, µ+−, µ−− and variance 1. The individual values for the

label means are picked to satisfy the CSTC assumption, i.e. that the prediction of similar

labels requires similar features. In particular, as can be seen in Figure 3.4 (bottom left),

label means from quadrants with negative z−coordinates (µ+−, µ−−) are higher than those

with positive z−coordinates (µ++, µ−+).

Figure 3.4 shows the raw data (bottom left) and a CSTC tree trained on this data with its

predictions of test inputs made by each node. In general, in every path along the tree, the

first two classifiers split on the two cheap features and identify the correct sub-region of the

input. The leaf classifiers extract a single expensive feature to predict the labels. As such,

the mean squared error of the training and testing data both approach zero at optimal cost

c = 12.

3.7.2 Yahoo! Learning to Rank

To evaluate the performance of CSTC on real-world tasks, we test it on the Yahoo! Learning

to Rank Challenge (LTR) data set. The set contains 19,944 queries and 473,134 documents.

Each query-document pair xi consists of 519 features. An extraction cost, which takes on a

value in the set {1, 5, 20, 50, 100, 150, 200}, is associated with each feature5. The unit of these

values turns out to be approximately the number of weak learner evaluations ht(·) that can

be performed while the feature is being extracted. The label yi ∈ {4, 3, 2, 1, 0} denotes the

relevance of a document to its corresponding query, with 4 indicating a perfect match. We

measure the performance using normalized discounted cumulative gain at the 5th position

(NDCG@5) [58], a preferred ranking metric when multiple levels of relevance are available.

To introduce non-linearity, we transform the input features into a non-linear feature space

x→ h(x) with the boosting trick (see Section 1.4.1 and Section 3.6) with T = 3000 iterations

5The extraction costs were provided by a Yahoo! employee.
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Figure 3.4: CSTC on synthetic data. The box at left describes the data set. The rest of the
figure shows the trained CSTC tree. At each node we show a plot of the predictions made
by that classifier and the feature weight vector. The tree obtains a perfect (0%) test-error
at the optimal cost of 12 units.

of gradient boosting and CART trees of maximum depth 4. Unless otherwise stated, we

determine the CSTC depth by validation performance (with a maximum depth of 10).

Figure 3.5 shows a comparison of CSTC with several recent algorithms for learning under

test-time resource constraints. We show NDCG versus cost (in units of weak learner eval-

uations). We obtain the curves of CSTC by varying the accuracy/cost trade-off parameter

λ (and perform early stopping based on the validation data, for fine-tuning). For CSTC we

evaluate eight settings, λ= {1
3
, 1

2
, 1, 2, 3, 4, 5, 6}. In the case of stage-wise regression, which

is not cost-sensitive, the curve is simply a function of the number of boosting iterations. We

include CSTC with and without fine-tuning. The comparison shows that there is a small

but consistent benefit to fine-tuning the weights as described in Section 3.4 (Fine-tuning).

For competing algorithms, we include Early exit [14] which improves upon stage-wise re-

gression by short-circuiting the evaluation of unpromising documents at test-time, reducing

the overall test-time cost. The authors propose several criteria for rejecting inputs early and

we use the best-performing method “early exits using proximity threshold”, where at the
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Figure 3.5: The test ranking accuracy (NDCG@5) and cost of various cost-sensitive classi-
fiers. CSTC maintains its high retrieval accuracy significantly longer as the cost-budget is
reduced.

ith early-exit, we remove all test-inputs that have a score that is at least 300−i
299

s lower than

the fifth best input, and s determines the power of the early-exit. The single cost-sensitive

classifier is a trivial CSTC tree consisting of only the root node i.e. a cost-sensitive classifier

without the tree structure. We also include Cronus [24]. Setting the maximum number

of Cronus nodes to 10 and setting all other parameters (eg. keep ratio, discount, early-

stopping) based on a validation set. As shown in the graph, both Cronus and CSTC im-

prove the cost/accuracy trade-off curve over all other algorithms. The power of Early exit

is limited in this case as the test-time cost is dominated by feature extraction, rather than

the evaluation cost. Compared with Cronus, CSTC has the ability to identify features that

are most beneficial to different groups of inputs. It is this ability which allows CSTC to

maintain the high NDCG significantly longer as the cost-budget is reduced. It is interesting

to observe that the single cost-sensitive classifier outperforms stage-wise regression (due to

the cost sensitive regularization) but obtains much worse cost/accuracy trade-offs than the

full CSTC tree. This demonstrates that the tree structure is indeed an important part of

the high cost effectiveness of CSTC.
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Figure 3.6: The test ranking accuracy (Precision@5) and cost of various cascade classifiers on
the LTR-Skewed data set with high class imbalance. CSCC outperforms similar techniques,
requiring less cost to achieve the same performance.

3.7.3 Yahoo! Learning to Rank: Skewed, Binary

To evaluate the performance of our cascade approach CSCC, we construct a highly class-

skewed binary data set using the Yahoo! LTR data set. We binarize the data by defining

inputs having labels yi ≥ 3 as “relevant” and label the rest as “irrelevant”. We also replicate

each negative, irrelevant example 10 times to simulate the scenario where only a few doc-

uments are highly relevant, out of many candidate documents. After these modifications,

the inputs have one of two labels {−1, 1}, and the ratio of +1 to −1 is 1/100. We call this

data set LTR-Skewed. This simulates an important setting, as in many time-sensitive real

life applications the class distributions are often very skewed.

For the binary case, we use the ranking metric Precision@5 (the fraction of top 5 documents

retrieved that are relevant to a query). It best reflects the capability of a classifier to precisely

retrieve a small number of relevant instances within a large set of irrelevant documents.

Figure 3.6 compares CSCC and CSTC with several recent algorithms for learning under

test-time resource constraints, and specifically for binary classification. We show Precision@5

versus cost (in units of weak learner evaluations). Similar to CSTC, we obtain the curves
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of CSCC by varying the accuracy/cost trade-off parameter λ. For CSCC we evaluate eight

settings, λ={1
3
, 1

2
, 1, 2, 3, 4, 5, 6}.

For competing algorithms, in addition to Early exit [14] and Cronus [24] described above,

we also include AND-OR proposed by Dundar and Bi [37], which is designed specifically for

binary classification. They formulate a global optimization of a cascade of classifiers and

employ an AND-OR scheme with the loss function that treats negative inputs and positive

inputs separately. This setup is based on the insight that positive inputs are carried all

the way through the cascade (i.e. each classifier must classify them as positive), whereas

negative inputs can be rejected at any time (i.e. it is sufficient if a single classifier classifies

them as negative). The loss for positive inputs is the maximum loss across all stages, which

corresponds to the AND operation, and encourages all classifiers to make correct predictions.

For negative inputs the loss is the minimum loss of all classifiers, which corresponds to the

OR operation, and which enforces that at least one classifier makes a correct prediction.

Different from our approach, their algorithm requires pre-assigning features to each node.

We therefore use five nodes in total, assigning features of cost ≤ 5,≤ 20,≤ 50,≤ 150,≤ 200.

The curve is generated by varying a loss/cost trade-off parameter (similar to λ). Finally, we

also compare with the cost sensitive version of AdaboostRS [100]. This algorithm resamples

decision trees, learned with AdaBoost [42], inversely proportional to a tree’s feature cost. As

this algorithm involves random sampling, we averaged over 10 runs and show the standard

deviations in both precision and cost.

As shown in the graph, AdaBoostRS obtains lower precision than other algorithms. This may

be due to the known sensitivity of AdaBoost towards noisy data [82]. AND-OR also under-

performs. It requires pre-assigning features prior to training, which makes it impossible to

obtain high precision at a low cost. On the other hand, Cronus, CSCC, and CSTC have

the ability to cherry pick good but expensive features at an early node, which in turn can

reduce the overall cost while improving performance over other algorithms. We take a closer

look at this effect in the following section. Cronus and CSCC in general outperform CSTC

because they can exit a large portion of the dataset early on. As mentioned before, CSCC

slightly outperforms Cronus, which we attribute to the more principled optimization.
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Figure 3.7: Left: The pruned CSTC tree, trained on the Yahoo! LTR data set. The ratio of
features, grouped by cost, are shown for CSTC (center) and Cronus (right). The number of
features in each cost group is indicated in parentheses in the legend. More expensive features
(c ≥ 20) are gradually extracted deeper in the structure of each algorithm.

3.7.4 Feature extraction

Based on the LTR and LTR-Skewed data sets, we investigate the features extracted by

various algorithms in each scenario. We first show the features retrieved in the regular

balanced class data set (LTR). Figure 3.7 (left) shows the pruned CSTC tree learned on the

LTR data set. The plot in the center demonstrates the fraction of features, with a particular

cost, extracted at different depths of the CSTC tree. The rightmost plot shows the features

extracted at different nodes of Cronus. We observe a general trend that for both CSTC and

Cronus, as depth increases, more features are being used. However, cheap features (c ≤ 5)

are all extracted early-on, whereas expensive features (c ≥ 20) are extracted by classifiers

sitting deeper in the tree. Here, individual classifiers only cope with a small subset of inputs

and the expensive features are used to classify these subsets more precisely. The only feature

that has cost 200 is extracted at all depths—which seems essential to obtain high NDCG [24].

Although Cronus has larger depth than CSTC (10 vs 4), most nodes in Cronus are basically

dummy nodes (as can be seen by the flat parts of the feature usage curve). For these nodes

all weights are zeros, and the threshold is a very small negative number, allowing all inputs

to pass through.

In the second scenario, where the class-labels are binarized and are highly skewed (LTR-

Skewed), we compare the features extracted by CSCC, Cronus and AND-OR. For a fair

comparison, we set the trade-off parameter λ for each algorithm to achieve similar precision
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Figure 3.8: The ratio of features, grouped by cost, that are extracted at different depths of
CSCC (left), AND-OR (center) and Cronus (right). The number of features in each cost
group is indicated in parentheses in the legend.

0.135 ± 0.001. We also set the maximum number of nodes of CSCC and Cronus to 10.

Figure 3.8 (left) shows the fraction of features, with a particular cost, extracted at different

nodes of the CSCC. The center plot illustrates the features used by AND-OR, and the right

plot shows the features extracted at different nodes of Cronus. Note that while the features

are pre-assigned in the AND-OR algorithm, it still has the ability to only use some of the

assigned features at each node. In general, all algorithms use more features as the depth

increases. However, compared to AND-OR, both Cronus and CSCC can cherry pick some

good but expensive features early-on to achieve high accuracy at a low cost. Some of the

expensive features (e.g., c = 100, 150) are extracted from the very first node in CSCC and

Cronus, whereas in AND-OR they are only available at the fourth node. This ability is

one of the reasons that CSCC and Cronus achieve better performance over existing cascade

algorithms.

3.7.5 Input space partition

CSTC has the ability to split the input space and learn more specialized classifiers sitting

deeper in the tree. Figure 3.9 (left) shows a pruned CSTC tree (λ= 4) for the LTR data

set. The number above each node indicates the average label of the testing inputs passing

through that node. We can observe that different branches aim at different parts of the

input domain. In general, the upper branches focus on correctly classifying higher-ranked

documents, while the lower branches target low-ranked documents. Figure 3.9 (right) shows
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Figure 3.9: (Left) The pruned CSTC-tree generated from the Yahoo! Learning to Rank
data set. (Right) Jaccard similarity coefficient between classifiers within the learned CSTC
tree.

the Jaccard matrix of the leaf classifiers (v3, v4, v5, v6, v14) from this CSTC tree. The number

in field i, j indicates the fraction of shared features between vi and vj. The matrix shows a

clear trend that the Jaccard coefficients decrease monotonically away from the diagonal. This

indicates that classifiers share fewer features in common if their average labels are further

apart—the most different classifiers v3 and v14 have only 64% of their features in common—

and validates that classifiers in the CSTC tree extract different features in different regions

of the tree.

3.8 Conclusion

In this chapter, we propose a novel algorithm that aims to reduce amortized test-time cost.

We formulate the test-time cost and accuracy trade-off systematically into a tree of classi-

fiers and relax it into a well-behaved optimization problem. The resulting algorithm, Cost-

Sensitive Tree of Classifiers (CSTC), partitions the input space into sub-regions and identifies

the most cost-effective features for each one of these regions—allowing it to match the high
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accuracy of the state-of-the-art at a small fraction of the cost. We further extend the algo-

rithm into a Cost-sensitive Cascade of Classifiers (CSCC) to deal with binary imbalanced

data sets and achieve the state-of-the-art test-time cost/accuracy performance.
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Chapter 4

Model Compression

In this chapter, we switch our attention from feature extraction cost to classifier evaluation

cost. In previous chapters, we assume that classifier evaluation cost is very low compared to

feature extraction cost. However, if the classifier is nonparametric, its model (i.e. support

vectors) could be very large when data size is large, and as a result, its evaluation cost

could be substantial. To reduce classifier evaluation cost of nonparametric classifiers, we

introduce a new strategy: model compression. Based on this strategy, we propose a novel

algorithm, Compressed Vector Machine (CVM). CVM focuses specifically on kernel support

vector machines (SVM) and compresses the learned kernel SVM model by re-solving the exact

SVM optimization problem to cherry-pick a small subset of support vectors and optimize

them. By moving these selected support vectors to approximate the decision boundary

learned from the full model, CVM achieves a relatively high classification accuracy with

much fewer support vectors, and greatly reduces the classifier evaluation cost.

4.1 Introduction

Support Vector Machines (SVM) are arguably one of the great success stories of machine

learning and have been used in many real world applications, including email spam classifi-

cation [35], face recognition [54] and gene selection [52]. SVM can classify data sets along

highly non-linear decision boundaries because of the kernel-trick [110]. However, different

from the classifiers we discussed in previous chapters, the expressiveness of SVMs comes at a

price: kernel SVM is a nonparametric model, and during test-time, the SVM needs to com-

pute the kernel function of a test sample and its model parameters (i.e. support vectors).
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This computation is very expensive: First, it is linear in the number of support vectors, and

second, it often requires expensive exponentiation (e.g. for the radial basis or χ2 kernels).

This expensive evaluation cost is particularly prominent in settings with strong resource

constraints (e.g. embedded devices, cell phones or tablets) or frequently repeated tasks (e.g.

webmail spam classification, web-search ranking, face detection in uploaded images), which

can be performed billions of times per day.

To budget the test-time evaluation cost, we describe an approach that does not select support

vectors from the training set, but instead learns them to match a pre-defined SVM decision

boundary. Given an existing SVM model with r support vectors, it learns m� r “artificial

support vectors”, which are not originally part of the training set. The resulting model is a

standard SVM classifier (thus can be saved, for example, in a LibSVM [16] compatible file).

Relative to the original model, it has comparable accuracy, but it is up to several orders of

magnitudes smaller and faster to evaluate. We refer to our algorithm as Compressed Vector

Machine (CVM) and demonstrate on six real-world data sets of various size and complexity

that it achieves unmatched accuracy vs. test-time cost trade offs.

4.2 Related Work

Reducing test-time cost has recently attracted much attention. A lot of work [13, 24, 50,

74, 96, 105, 126, 134] focus on scenarios where features are extracted on-demand and the

extraction cost dominates the overall test-time cost. Their objective is to minimize the

feature extraction cost.

Model compression was pioneered by Bucilu et al. [10]. Our work was inspired by their vision,

however it differs substantially, as we do not focus on ensembles of classifiers and instead

learn a model compressor explicitly for SVMs. More recently, Xu et al. [135] introduces an

algorithm to reduce the test-time cost specifically for the SVM classifier. However, they focus

on learning a new representations consisting of cheap non-linear features for linear SVMs.

Dekel et al. [32] propose an algorithm to limit the memory usage for kernel based online

classification. Different from our approach, their algorithm is not a post-process procedure,

and instead they modify the kernel function directly to limit the amount of memory the
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algorithm uses. Similar to [32], Wang et al. [127] also focuses on online kernel SVM, and

attacks primarily the training time complexity. Post-process algorithms [26, 25] are widely

used to approximate solutions in large scale applications. However, these algorithms do

not solve the exact same original optimization problem and focus exclusively on manifold

learning.

Keerthi et al. [64] propose a similar approach to our work. They specifically reduce the SVM

evaluation cost by reducing the number of support vectors. Heuristics are used to select a

small subset of support vectors, up to a given budget, during training time, thus solving

an approximate SVM optimization. However, different from their approach, our method is

a post-processing compression to the regular SVM. We begin from an exact SVM solution

and compresses the set of support vectors by choosing and optimizing over a small subset

of support vectors to approximate the optimal decision boundary. This post-processing

optimization framework renders unmatched accuracy and cost performance.

Perhaps the most relevant work is proposed by Burges [11]. They also learn a reduced set

of artificial support vectors to approximate the decision boundary of the full SVM model.

However, different from ours, they initialize these artificial support vectors randomly, whereas

we carefully select a compressed set of support vectors by re-solving the exactly original SVM

optimization problem with stage-wise regression.

4.3 Background

In this section, we briefly re-cap kernel support vector machines and introduce an useful

forward selection method used in our algorithm.

Kernel support vector machines. Given instances x in a low dimensional space, the

kernel-trick [110] maps the original feature space x into a higher (possibly infinite) dimen-

sional space φ(x). SVMs learn a hyperplane in this higher dimensional space by maximizing

the margin 1
‖w‖ and penalizing training instances on the wrong side of the hyperplane,

min
w,b
‖w‖+ C

n∑

i

(
max

(
1− yiw>φ(xi) + b, 0

))2

, (4.1)
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where b is the bias, and C trades-off regularization/margin and training accuracy. Note

that we use the quadratic hinge loss penalty and thus (4.1) is differentiable. The power

of the kernel trick is that the higher dimensional space φ(x) never needs to be expressed

explicitly, because (4.1) can be formulated in terms of inner products between input vectors

in the higher dimensional space. Let a matrix K denote these inner products, where Kij =

φ(xi)
>φ(xj), and K is the training kernel matrix. The optimization in (4.1) can be then

expressed in terms of the kernel matrix K and coefficients α using the representer theorem

[65, 17]:

min
α,b

(
max(1− K̂α− yb, 0)

)2

+ α>Kα. (4.2)

The classification rule J(·) for a test input xt can also be expressed by testing kernel K̃ that

consists of inner products between a test input xt and support vectors S = {xi|αi 6= 0},
K̃it = φ(xi)

>φ(xt), where

J(φ(xt)) =
n∑

i=1

αiyiK̃it + b. (4.3)

Note that once the testing kernel K̃ is computed, generating the final prediction is merely a

linear combination, and thus the dominating cost is computing the testing kernel itself.

Least angle regression (LARS). LARS [38] is a widely used forward selection algorithm

because of its simplicity and efficiency. Given input vectors x, target labels y, and a quadratic

loss `(β) = (x>β − y)2, LARS learns to approximate labels by building up the coefficient

vector β in successive steps, starting from an all-zero vector. To minimize the loss function

`, LARS initially descends on a coordinate direction that has the largest gradient,

β∗t = argmax
βt

∂`

∂βt
. (4.4)

The algorithm then incorporates this coordinate into its active set. After identifying the

gradient direction, LARS selects the step size very carefully. Instead of too greedy or too

tiny, LARS computes a step size such that after taking this step, a new direction outside of

the active set has the same maximum gradient as directions in the active set. LARS then

include this new direction into the active set.
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In the following iterations, LARS gradient descends on a direction that maintains the same

gradient for all directions in the active set. In other words, LARS descends following an

equiangular direction of all directions in the active set. The algorithm then repeats comput-

ing step-size, including new directions into the active set, and descending on an equiangular

directions. This process makes LARS very efficient, as after T iterations, LARS solution has

exactly T directions in the active set, or equivalently, only T non-zero coefficients in β.

4.4 Method

In this section, we detail our approach to reduce the test-time SVM evaluation cost. We

regard our approach as a post-processing compression to the original SVM solution. After

solving an SVM, we obtain a set of support vectors S = {xi|αi 6= 0}, and the corresponding

coefficients α. Given the original SVM solution, we can model the test-time evaluation cost

explicitly.

Kernel SVM evaluation cost. Based on the prediction function (4.3) we can formulate

the exact SVM classifier evaluation cost. Let e denote the cost of computing a test kernel

entry K̃it (i.e. kernel function of a test input xt and a support vector xi). We assume that

the computation cost is identical across all test inputs and all support vectors. As shown

in (4.3), generating a prediction for a test input requires computing the kernel entries between

the test input and all support vectors. The total evaluation cost is therefore a function of

the number of support vectors nsv. After obtaining all kernel entries for a test point xt, the

final prediction is simply linear combination of the kernel row K̃t weighted by α. The cost

of computing this linear combination is very low compared to the kernel computation, and

therefore the total evaluation cost ce ≈ nsve. We aim to reduce the size of the support vector

set nsv without greatly affecting prediction accuracy.

Removing non-support vectors. Since the test-time evaluation cost is a function of the

number of support vectors, the goal is to cherry-pick and optimize a subset of the optimal

support vectors bounded in size by a user-specified compression ratio. We first note that

all non-support vectors can be removed during this process without affecting the full SVM

solution. If we define a design matrix K̂ ∈ Rn×n, where K̂ij = yiKij, and note that the

weight vector in (4.1) can be expressed as w =
∑n

i=1 αiyiφ(xi). The squared penalty SVM
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objective function in (4.1) can be expressed with coefficients α and the kernel matrix K

using the representer theorem [65, 17]:

min
α,b

(
max(1− K̂α− yb, 0)

)2

+ α>Kα. (4.5)

Since (4.5) is a strongly convex function, and all non-support vectors have the corresponding

coefficient αi = 0, we can remove all non-support vectors from the optimization problem and

the full SVM optimal solution stays the same.

To find an optimal subset of support vectors given the compression ratio, we re-train the

SVM with only support vectors and a constraint on the number of support vectors. Note

that α are effectively the coefficients of support vectors, and we can efficiently control the

number of support vectors by adding an l0-norm on α, where the l0-norm effectively counts

the number of non-zeros in α. The optimization problem becomes

min
α,b

(
1− K̂α− yb

)2

+ α>Kα (4.6)

s.t.‖α‖0 ≤
1

e
Be,

where Be is evaluation cost budget, and consequently, 1
e
Be is the desired number of support

vectors based on the budget. Note that after removing non-support vectors, we obtain a

condensed matrix K and K̂ ∈ Rnsv×nsv , and y ∈ {−1,+1}nsv .

Forming ordinary least squares problem. The current form of equation (4.6) can be

made more amenable to optimization by rewriting the objective function as an ordinary least

square problem. Expanding the squared term, simplifying, and fixing the bias term b (as it

does not affect the solution dramatically), we re-format the objective function (4.6) into

min
α

(1− yb)>(1− yb)− 2α>K̂>(1− yb) + α>(K̂>K̂ + K)α. (4.7)

We introduce two auxiliary variables Ω and β, where Ω>Ω = K̂>K̂+K and Ω>β = −K̂>(1−
yb). Because K̂>K̂ + K is a symmetric matrix, we can compute its eigen-decomposition

K̂>K̂ + K = SDS>, (4.8)
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where D is the diagonal matrix of eigenvalues and S is the orthonormal matrix of eigen-

vectors. Moreover, because the matrix K̂>K̂ + K is positive semi-definite, we can further

decompose SDS> into an inner product of two real matrices by taking the square root of D.

Let Ω =
√

DS>, and we obtain a matrix Ω that satisfies Ω>Ω = K̂>K̂+K. After computing

Ω, we can readily compute β = −(Ω>)−1K̂>(1− yb), where (Ω>)−1 = 1√
D

S>.

With the help of the two auxiliary variables, we convert (4.7), plus a constant term6, into

least squares format. Together with relaxation of the non-continuous l0-norm constraint to

an l1-norm constraint, we obtain

min
α

(Ωα + β)2, s.t. ‖α‖1 ≤
1

e
B′e, (4.9)

where B′e is used to relax the constraint Be resulting from using l1-norm to approximate

l0-norm in (4.6).

Compressing the support vector set. The squared loss and l1 constraint in (4.9) lead

naturally to the LARS algorithm. Given a budget Be, we can determine the maximum size

m of the compressed support vector set (m = Be
e

). Using LARS, we start from an empty

support vector set and add m support vectors incrementally. Since adding a support vector

is equivalent to activating a coefficient in α to a non-zero value, we can obtain m optimal

support vectors by running LARS optimization in (4.9) exactly m steps, where each step

activates one coefficient. The resulting solution gives the optimal set of m support vectors.

We refer this intermediate step as LARS-SVM. Note that this step is crucial for the problem,

as this LARS-SVM solution is obtained by solving the exact SVM optimization problem, and

it serves as a very good initialization for the next step, which is a non-convex optimization

problem.

Gradient support vectors. If we interpret α as coordinates and the corresponding

columns in the kernel matrix K as basis vectors, then these basis vectors span an Rnsv

space in which lie predictions of the original SVM model. In this compression algorithm, our

goal is to find a lower dimensional space that supports good approximations of the original

predictions. After running LARS for m iterations, we obtain m support vectors and their

coefficients α, forming an Rm affine space of the space spanned by the full kernel matrix.

6(1− yb)>
(
K̂(K̂>K̂ + K)−1K̂> − I

)
(1− yb)
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Figure 4.1: Illustration of searching for a space V ∈ R2 that best approximates predictions
P1 and P2 of training instances in R3 space. Neither V1 or V2, spanned by existing columns
in the kernel matrix, is a good approximation. V ∗ spanned by kernel columns computed
from two artificial support vectors is the optimal solution.

We illustrate this lower dimensional approximation in Figure 4.1. Vectors P1 and P2 are

predictions of two training points made in the full SVM solution space (R3 and spanned by

three support vectors). We want to compress the model to two support vectors by looking

for a space V ∈ R2 that supports the best approximations of these two predictions. Using

existing support vectors as a basis, we can find spaces V1 and V2, each spanned by a pair

of support vectors. The projections of P1 and P2 on plane V1 (P V1
1 and P V1

2 ) are closest to

the original predictions P1 and P2, and thus V1 is a better approximation, compared to V2.

However, in this case, neither V1 nor V2 is a particularly good approximation. Suppose we

remove the restriction of selecting a space spanned by existing basis vectors in the kernel

matrix, instead optimizing the basis vectors to yield a more suitable space. In Figure 4.1,

this is illustrated by the optimal space V ∗ which produces a better approximation to the

target predictions.

Note that the basis vectors (columns of the kernel matrix) are parameterized by support

vectors. By optimizing these underlying support vectors, we can search for a better low-

dimensional space. We follow the approach from [11]. We first denote Km as the training

kernel matrix with only m columns corresponding to the support vectors chosen by LARS,

and αm as the coefficients of these support vectors. We can then formulate the search for

artificial support vector as an optimization problem. Specifically, we minimize a squared loss

between approximate and full SVM predictions over all support vectors, and the parameters
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are the subset of support vectors chosen by LARS and their corresponding coefficient α.

min
(x1,...,xm,α)

L =
(
Kmαm −Kα

)2

. (4.10)

Kij is one entry of the kernel matrix K, and for simplicity, we use radial basis function (RBF)

kernel function (Kij = e
‖xi−xj‖

2

2σ2 ). However, other kernel functions are equally suitable. The

unconstrained optimization problem (4.10) can be solved by conjugate gradient descent with

respect to the chosen m support vectors. Since α’s are the coordinates with respect to

the basis, we optimize α jointly with support vectors, which is faster than optimizing basis

and solving coordinates alternatively. The gradients can be computed very efficiently using

matrix operations. Since gradient descent on support vectors is equivalent to moving these

support vectors in a continuous space, thereby generating m new support vectors, we refer to

these newly generated support vectors as gradient support vectors. Because the optimization

problem in (4.10) is non-convex with respect to xi, we initialize our algorithm with the basis

Km and coordinates αm returned in the LARS-SVM solution. We denote this combined

method of LARS-SVM and gradient support vectors as Compressed Vector Machine (CVM).

4.5 Results

In this section, we first demonstrate Compressed Vector Machine (CVM) on a synthetic data

set to graphically illustrate each step in the algorithm. We then evaluate CVM on several

real-world data sets.

Synthetic data set. The data set contains 600 sample inputs from two classes (red and

blue), where each input contains two features. The blue inputs are sampled from a Gaussian

distribution with mean at the origin and variance 1, and red inputs are sampled from a noisy

circle surrounding the blue inputs. As shown in Figure 4.2(a), by design the data set is not

linearly separable. For simplicity, we treat all inputs as training inputs. To evaluate CVM,

we first learn an SVM with RBF kernel from the full training set. We plot the resulting

optimal decision boundary in Figure 4.2(b) with a black curve. In total, the full model has

248 support vectors, and they are enlarged points in Figure 4.2(b).

86



−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6 LARS - SVM
full model
decision 
boundary 

optimized 
decision 
boundary

LARS
decision boundary

CVM, iter 20

CVM, iter 40 CVM, iter 80 CVM, iter 160 CVM, iter 10000

Simulation data

(a) (b) (c) (d)

(e) (f) (g) (h)

subset of support vectors 
selected by LARS

full SVM

all support 
vectors 

Figure 4.2: Illustration of each step of CVM on a synthetic data set. (a) Simulation inputs
from two classes (red and blue). By design, the two classes are not linear separable. (b)
Decision boundary formed by a full SVM solution (black curve), and all support vectors
(enlarged points). (c) A small subset of support vectors picked by LARS (cyan circles) and
the compressed decision boundary formed by this subset of support vectors (gray curve).
(d-h) Optimization iterations. The gradient support vectors are moved by the iterative
optimization. The optimized decision boundary formed by gradient support vectors (green
curve) gradually approaches the one formed by the full SVM solution.

To compress the model, we first select a subset of support vectors by solving LARS-SVM

optimization (4.9). Specifically, we compress the model to 3% of its original size, 8 support

vectors, by running LARS for 8 iterations. The 8 LARS-SVM support vectors are shown in

Figure 4.2(c) as circles in cyan color, and the approximate LARS-SVM decision boundary is

shown by the gray curve.

Since the space formed by 8 support vectors is heavily restricted by the discrete training

input space, the approximation is poor. To overcome this problem, we search for a better

space or basis in a continuous space, and perform gradient descent on support vectors by

optimizing (4.10). In Figure 4.2(d-h), we illustrate the optimization with updated support
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Statistics Pageblocks Magic Letters 20news MNIST DMOZ

#training exam. 4379 15216 16000 11269 60000 7184

#testing exam. 1094 3804 4000 7505 10000 1796

#features 10 10 16 200 784 16498

#classes 2 2 26 20 10 16

Table 4.1: Statistics of all six data sets.

vector locations and optimized decision boundaries as we gradually increase the number of

iterations. The resulting gradient support vectors are shown as cyan circles and the new

optimized decision boundaries formed from these new gradient support vectors are shown

by green curves. After 10000 iterations, as shown in Figure 4.2(h), we can observe that the

optimized decision boundary (green) is very close to the boundary captured in the full model

(black). These optimized decision boundaries demonstrate that moving a small subset of sup-

port vectors in a continuous space can efficiently approximate the optimal decision boundary

formed by the full SVM solution, supporting effective SVM model compression. Note that we

use the simple gradient descent method for illustration, and in practice, conjugate gradient

descent method can be used to decrease the number of iterations to converge.

Real-world data sets. To evaluate the performance of CVM on real-world applications,

we evaluate our algorithm on six data sets of varying size, dimensionality and complexity.

Table 4.1 details the statistics of all six data sets. We use LibSVM [16] to train a regular

RBF kernel SVM using regularization parameter C and RBF kernel width σ selected on a

20% validation split. For multi-class data sets, we use the one-vs-one multi-class scheme.

The classification accuracy of test predictions from this SVM model serves as a baseline in

Figure 4.3 (full SVM).

Given the full SVM solution, we run CVM in two steps. First, we use LARS to solve the

optimization problem in (4.9) using all support vectors from the original SVM model. An

initial compressed support vector set is selected with a target compressed size (e.g. 10

out of 500 support vectors). The selected support vectors serve as the second baseline

in Figure 4.3 (LARS-SVM). Second, we shift these support vectors in a continuous space

by optimizing (4.10) w.r.t. the input support vectors and the corresponding coefficient α,

generating gradient support vectors. This final set of gradient support vectors constitutes

the CVM model. To show the trend of accuracy/cost performance, we plot the classification

88



103 104 105 106
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

full SVM
LARS−SVM
Reduced−SVM (Keerthi et. al. 2006)
Compress SVM

Pageblocks

Magic

Letters

20news

MNIST

103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

full SVM
LARS−SVM
Reduced−SVM (Keerthi et. al. 2006)
Compress SVM

103 104 105
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 

 

full SVM
LARS−SVM
Reduced−SVM (Keerthi et. al. 2006)
Compress SVM

101 102 103 104
0.65

0.7

0.75

0.8

0.85

0.9

 

 

full SVM
LARS−SVM
Reduced−SVM (Keerthi et. al. 2006)
Compress SVM

102 103 104 105

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

full SVM
LARS−SVM
Reduced−SVM (Keerthi et. al. 2006)
Compress SVM

101 102 103
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

 

 

full SVM
LARS−SVM
Reduced−SVM (Keerthi et. al. 2006)
Compress SVM

DMOZ

CVM CVM

CVM CVM

CVMCVM

Figure 4.3: Accuracy versus number of support vectors (in log scale).

accuracy for CVM after adding every 10 support vectors. Figure 4.3 shows the performance

of CVM and the baselines on all six data sets.

Comparison with prior work. Figure 4.3 also shows a comparison of CVM with Reduced-

SVM [64]. This algorithm takes an iterative two phase approach. First a set of support

vectors is heuristically selected from random samples of the training set and added to the

existing set of support vectors (initially empty). Then, the model weights are optimized by

an SVM with the quadratic hinge loss. The algorithm alternates these two steps until the

target number of support vectors is reached.
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As shown in Figure 4.3, CVM significantly improves over all baselines. Compared to the

current state-of-the-art, Reduced-SVM, CVM has the capability of moving support vectors,

generating a new basis, and learning a highly approximated basis to match the decision

boundaries formed by the full SVM solution. It is this ability that distinguishes CVM from

other algorithms when the evaluation budget is low. On all six data sets, CVM maintains

the same accuracy as the full SVM with merely 10% of the support vectors. Even when the

cost budget is reduced to 1%, CVM can still yield a relatively high accuracy in all data sets.

4.6 Conclusion

We introduce CVM, a novel learning algorithm for reducing test-time classifier evaluation

cost. Our algorithm focuses specifically on widely used kernel SVM classifiers and reduce

the kernel SVM test-time evaluation cost. The algorithm builds upon regular SVMs, and

compresses the model with evaluation cost constraint by solving the exact SVM optimization

problem with a forward selection algorithm. We further optimize the compressed model by

searching a better basis (support vectors) to approximate the decision boundaries formed

by full SVM solution in a continuous input space. We demonstrate that only a small set of

these optimized support vectors can generate very accurate predictions on a variety of data

sets.
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Chapter 5

Conclusion

In real-world machine learning applications, such as email-spam [128], adult content filter-

ing [40], and web-search engines [142], data sets are usually very large and tasks are frequently

repeated. In applications of such large scale, computation cost must be budgeted and ac-

counted for. In this thesis, we systematically investigate the test-time cost and introduce

learning under test-time resource constraints, a new branch of machine learning that focuses

mainly on learning efficient, low test-time cost classifiers.

We propose three strategies that promise large gains in reducing test-time cost if classifiers

are trained explicitly to stay within pre-defined test-time budgets. 1) Feature extraction cost

reduction; 2) Classification with trees and cascade; 3) Model compression.

The first strategy gives rise to solutions of two learning under test-time resource constraints

scenarios: low feature extraction cost classification and anytime classification. Correspond-

ingly, we propose two algorithms Greedy Miser and Anytime Feature Representation Learn-

ing (AFR) that employ the common reducing feature extraction cost strategy. Greedy Miser

focuses on incorporating feature extraction cost during training an additive classifier and

AFR aims to build an anytime classifier by learning an anytime feature representation. The

second strategy results from a different goal, budgeting amortized test-time cost. It inspires

two novel algorithms Cost-sensitive Tree of Classifiers (CSTC) and its cascade variant Cost-

sensitive Cascade of Classifiers (CSCC). CSTC builds a tree of classifiers that partitions

the input space and learns specialized classifiers for different inputs, and CSCC is a vari-

ant of CSTC for binary imbalanced data sets. Finally, based on the last strategy, model

compression, we propose a new Compressed Vector Machine (CVM) algorithm, which aims

exclusively to compress the model of kernel SVMs, and budget its evaluation cost. CVM
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cherry-picks a small subset of support vectors learned by the full SVM solution, and opti-

mizes this subset of support vectors to approximate the decision boundary formed by the

full model.

Addressing learning under test-time resource constraints in a principled fashion has high

impact potential in two ways: i) reducing the cost required for the average case frees up more

resources for the rare difficult cases – thus improving accuracy; ii) decreasing computational

demands of massive industrial computations can substantially reduce energy consumption

and greenhouse emissions.

As future works, we would like to explore incorporating latest computing technologies (such

as parallel computing [121] and graphics processing unit (GPU) [79, 80]) during training

classifiers to better trade off test-time cost and accuracy.
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