10,446 research outputs found

    Analysis of loss networks with routing

    Get PDF
    This paper analyzes stochastic networks consisting of finite capacity nodes with different classes of requests which move according to some routing policy. The Markov processes describing these networks do not, in general, have reversibility properties, so the explicit expression of their invariant distribution is not known. Kelly's limiting regime is considered: the arrival rates of calls as well as the capacities of the nodes are proportional to a factor going to infinity. It is proved that, in limit, the associated rescaled Markov process converges to a deterministic dynamical system with a unique equilibrium point characterized by a nonstandard fixed point equation.Comment: Published at http://dx.doi.org/10.1214/105051606000000466 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Using data network metrics, graphics, and topology to explore network characteristics

    Full text link
    Yehuda Vardi introduced the term network tomography and was the first to propose and study how statistical inverse methods could be adapted to attack important network problems (Vardi, 1996). More recently, in one of his final papers, Vardi proposed notions of metrics on networks to define and measure distances between a network's links, its paths, and also between different networks (Vardi, 2004). In this paper, we apply Vardi's general approach for network metrics to a real data network by using data obtained from special data network tools and testing procedures presented here. We illustrate how the metrics help explicate interesting features of the traffic characteristics on the network. We also adapt the metrics in order to condition on traffic passing through a portion of the network, such as a router or pair of routers, and show further how this approach helps to discover and explain interesting network characteristics.Comment: Published at http://dx.doi.org/10.1214/074921707000000058 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Product Return Handling

    Get PDF
    In this article we focus on product return handling and warehousingissues. In some businesses return rates can be well over 20% andreturns can be especially costly when not handled properly. In spiteof this, many managers have handled returns extemporarily. The factthat quantitative methods barely exist to support return handlingdecisions adds to this. In this article we bridge those issues by 1)going over the key decisions related with return handling; 2)identifying quantitative models to support those decisions.Furthermore, we provide insights on directions for future research.reverse logistics;decision-making;quantitative models;retailing and warehousing

    Virtual Geodemographics: Repositioning Area Classification for Online and Offline Spaces

    Get PDF
    Computer mediated communication and the Internet has fundamentally changed how consumers and producers connect and interact across both real space, and has also opened up new opportunities in virtual spaces. This paper describes how technologies capable of locating and sorting networked communities of geographically disparate individuals within virtual communities present a sea change in the conception, representation and analysis of socioeconomic distributions through geodemographic analysis. We argue that through virtual communities, social networks between individuals may subsume the role of neighbourhood areas as the most appropriate units of analysis, and as such, geodemographics needs to be repositioned in order to accommodate social similarities in virtual, as well as geographical, space. We end the paper by proposing a new model for geodemographics which spans both real and virtual geographies

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400
    • 

    corecore