8 research outputs found

    The 10th Jubilee Conference of PhD Students in Computer Science

    Get PDF

    Topology-based classification error calculation based on indoorGML document

    Get PDF
    Topology-based classification error calculation method for symbolic indoor positioning is presented based on IndoorGML document. Symbolic indoor positions or Zones are well-defined parts of the building, which can be treated as a classification category. The evaluation of well-known classifiers is based on the classical CRISP approach, which considers each misclassification equally wrong. Our previous experimental results revealed the need to consider the topology in the classification error calculation. A possible solution for this challenge is gravitational force based approach, which calculates the classification error by the size and the layout of the Zones. Testing the criteria against this approach in real-life scenario, real-life environment is required. IndoorGML is a standard for specifying indoor spatial information, and it represents the indoor space as non-overlapping closed objects. These indoor spaces are bounded by physical or fictional boundaries, and the representation of an object is by both geometric shape and bounding box. Thus, IndoorGML standard can be used both for modeling the indoor environment and calculation the classification error for symbolic indoor positioning services. In this paper, the gravitational force based approach is examined in real-life environment of Institute of Information Science building in University of Miskolc defined in IndoorGML Document

    Multi-Slot BLE Raw Database for Accurate Positioning in Mixed Indoor/Outdoor Environments

    Get PDF
    The technologies and sensors embedded in smartphones have contributed to the spread of disruptive applications built on top of Location Based Services (LBSs). Among them, Bluetooth Low Energy (BLE) has been widely adopted for proximity and localization, as it is a simple but efficient positioning technology. This article presents a database of received signal strength measurements (RSSIs) on BLE signals in a real positioning system. The system was deployed on two buildings belonging to the campus of the University of Extremadura in Badajoz. the database is divided into three different deployments, changing in each of them the number of measurement points and the configuration of the BLE beacons. the beacons used in this work can broadcast up to six emission slots simultaneously. Fingerprinting positioning experiments are presented in this work using multiple slots, improving positioning accuracy when compared with the traditional single slot approach

    Deep Learning Methods for Fingerprint-Based Indoor and Outdoor Positioning

    Get PDF
    Outdoor positioning systems based on the Global Navigation Satellite System have several shortcomings that have deemed their use for indoor positioning impractical. Location fingerprinting, which utilizes machine learning, has emerged as a viable method and solution for indoor positioning due to its simple concept and accurate performance. In the past, shallow learning algorithms were traditionally used in location fingerprinting. Recently, the research community started utilizing deep learning methods for fingerprinting after witnessing the great success and superiority these methods have over traditional/shallow machine learning algorithms. The contribution of this dissertation is fourfold: First, a Convolutional Neural Network (CNN)-based method for localizing a smartwatch indoors using geomagnetic field measurements is presented. The proposed method was tested on real world data in an indoor environment composed of three corridors of different lengths and three rooms of different sizes. Experimental results show a promising location classification accuracy of 97.77% with a mean localization error of 0.14 meter (m). Second, a method that makes use of cellular signals emitting from a serving eNodeB to provide symbolic indoor positioning is presented. The proposed method utilizes Denoising Autoencoders (DAEs) to mitigate the effects of cellular signal loss. The proposed method was evaluated using real-world data collected from two different smartphones inside a representative apartment of eight symbolic spaces. Experimental results verify that the proposed method outperforms conventional symbolic indoor positioning techniques in various performance metrics. Third, an investigation is conducted to determine whether Variational Autoencoders (VAEs) and Conditional Variational Autoencoders (CVAEs) are able to learn the distribution of the minority symbolic spaces, for a highly imbalanced fingerprinting dataset, so as to generate synthetic fingerprints that promote enhancements in a classifier\u27s performance. Experimental results show that this is indeed the case. By using various performance evaluation metrics, the achieved results are compared to those obtained by two state-of-the-art oversampling methods known as Synthetic Minority Oversampling TEchnique (SMOTE) and ADAptive SYNthetic (ADASYN) sampling. Fourth, a novel dataset of outdoor location fingerprints is presented. The proposed dataset, named OutFin, addresses the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions which can constitute a high entry barrier for studies. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 Reference Points (RPs). Before OutFin was made available to the public, several experiments were conducted to validate its technical quality

    The 11th Conference of PhD Students in Computer Science

    Get PDF
    corecore