29,650 research outputs found

    Semi-automatic video object segmentation for multimedia applications

    Get PDF
    A semi-automatic video object segmentation tool is presented for segmenting both still pictures and image sequences. The approach comprises both automatic segmentation algorithms and manual user interaction. The still image segmentation component is comprised of a conventional spatial segmentation algorithm (Recursive Shortest Spanning Tree (RSST)), a hierarchical segmentation representation method (Binary Partition Tree (BPT)), and user interaction. An initial segmentation partition of homogeneous regions is created using RSST. The BPT technique is then used to merge these regions and hierarchically represent the segmentation in a binary tree. The semantic objects are then manually built by selectively clicking on image regions. A video object-tracking component enables image sequence segmentation, and this subsystem is based on motion estimation, spatial segmentation, object projection, region classification, and user interaction. The motion between the previous frame and the current frame is estimated, and the previous object is then projected onto the current partition. A region classification technique is used to determine which regions in the current partition belong to the projected object. User interaction is allowed for object re-initialisation when the segmentation results become inaccurate. The combination of all these components enables offline video sequence segmentation. The results presented on standard test sequences illustrate the potential use of this system for object-based coding and representation of multimedia

    Adaptive Multi-Pattern Fast Block-Matching Algorithm Based on Motion Classification Techniques

    Get PDF
    Motion estimation is the most time-consuming subsystem in a video codec. Thus, more efficient methods of motion estimation should be investigated. Real video sequences usually exhibit a wide-range of motion content as well as different degrees of detail, which become particularly difficult to manage by typical block-matching algorithms. Recent developments in the area of motion estimation have focused on the adaptation to video contents. Adaptive thresholds and multi-pattern search algorithms have shown to achieve good performance when they success to adjust to motion characteristics. This paper proposes an adaptive algorithm, called MCS, that makes use of an especially tailored classifier that detects some motion cues and chooses the search pattern that best fits to them. Specifically, a hierarchical structure of binary linear classifiers is proposed. Our experimental results show that MCS notably reduces the computational cost with respect to an state-of-the-art method while maintaining the qualityPublicad

    Low complexity video compression using moving edge detection based on DCT coefficients

    Get PDF
    In this paper, we propose a new low complexity video compression method based on detecting blocks containing moving edges us- ing only DCT coe±cients. The detection, whilst being very e±cient, also allows e±cient motion estimation by constraining the search process to moving macro-blocks only. The encoders PSNR is degraded by 2dB com- pared to H.264/AVC inter for such scenarios, whilst requiring only 5% of the execution time. The computational complexity of our approach is comparable to that of the DISCOVER codec which is the state of the art low complexity distributed video coding. The proposed method ¯nds blocks with moving edge blocks and processes only selected blocks. The approach is particularly suited to surveillance type scenarios with a static camera

    Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor

    Get PDF
    We investigate video classification via a two-stream convolutional neural network (CNN) design that directly ingests information extracted from compressed video bitstreams. Our approach begins with the observation that all modern video codecs divide the input frames into macroblocks (MBs). We demonstrate that selective access to MB motion vector (MV) information within compressed video bitstreams can also provide for selective, motion-adaptive, MB pixel decoding (a.k.a., MB texture decoding). This in turn allows for the derivation of spatio-temporal video activity regions at extremely high speed in comparison to conventional full-frame decoding followed by optical flow estimation. In order to evaluate the accuracy of a video classification framework based on such activity data, we independently train two CNN architectures on MB texture and MV correspondences and then fuse their scores to derive the final classification of each test video. Evaluation on two standard datasets shows that the proposed approach is competitive to the best two-stream video classification approaches found in the literature. At the same time: (i) a CPU-based realization of our MV extraction is over 977 times faster than GPU-based optical flow methods; (ii) selective decoding is up to 12 times faster than full-frame decoding; (iii) our proposed spatial and temporal CNNs perform inference at 5 to 49 times lower cloud computing cost than the fastest methods from the literature.Comment: Accepted in IEEE Transactions on Circuits and Systems for Video Technology. Extension of ICIP 2017 conference pape

    Rate-Accuracy Trade-Off In Video Classification With Deep Convolutional Neural Networks

    Get PDF
    Advanced video classification systems decode video frames to derive the necessary texture and motion representations for ingestion and analysis by spatio-temporal deep convolutional neural networks (CNNs). However, when considering visual Internet-of-Things applications, surveillance systems and semantic crawlers of large video repositories, the video capture and the CNN-based semantic analysis parts do not tend to be co-located. This necessitates the transport of compressed video over networks and incurs significant overhead in bandwidth and energy consumption, thereby significantly undermining the deployment potential of such systems. In this paper, we investigate the trade-off between the encoding bitrate and the achievable accuracy of CNN-based video classification models that directly ingest AVC/H.264 and HEVC encoded videos. Instead of retaining entire compressed video bitstreams and applying complex optical flow calculations prior to CNN processing, we only retain motion vector and select texture information at significantly-reduced bitrates and apply no additional processing prior to CNN ingestion. Based on three CNN architectures and two action recognition datasets, we achieve 11%-94% saving in bitrate with marginal effect on classification accuracy. A model-based selection between multiple CNNs increases these savings further, to the point where, if up to 7% loss of accuracy can be tolerated, video classification can take place with as little as 3 kbps for the transport of the required compressed video information to the system implementing the CNN models

    Complexity Analysis Of Next-Generation VVC Encoding and Decoding

    Full text link
    While the next generation video compression standard, Versatile Video Coding (VVC), provides a superior compression efficiency, its computational complexity dramatically increases. This paper thoroughly analyzes this complexity for both encoder and decoder of VVC Test Model 6, by quantifying the complexity break-down for each coding tool and measuring the complexity and memory requirements for VVC encoding/decoding. These extensive analyses are performed for six video sequences of 720p, 1080p, and 2160p, under Low-Delay (LD), Random-Access (RA), and All-Intra (AI) conditions (a total of 320 encoding/decoding). Results indicate that the VVC encoder and decoder are 5x and 1.5x more complex compared to HEVC in LD, and 31x and 1.8x in AI, respectively. Detailed analysis of coding tools reveals that in LD on average, motion estimation tools with 53%, transformation and quantization with 22%, and entropy coding with 7% dominate the encoding complexity. In decoding, loop filters with 30%, motion compensation with 20%, and entropy decoding with 16%, are the most complex modules. Moreover, the required memory bandwidth for VVC encoding/decoding are measured through memory profiling, which are 30x and 3x of HEVC. The reported results and insights are a guide for future research and implementations of energy-efficient VVC encoder/decoder.Comment: IEEE ICIP 202

    Video object segmentation introducing depth and motion information

    Get PDF
    We present a method to estimate the relative depth between objects in scenes of video sequences. The information for the estimation of the relative depth is obtained from the overlapping produced between objects when there is relative motion as well as from motion coherence between neighbouring regions. A relaxation labelling algorithm is used to solve conflicts and assign every region to a depth level. The depth estimation is used in a segmentation scheme which uses grey level information to produce a first segmentation. Regions of this partition are merged on the basis of their depth level.Peer ReviewedPostprint (published version
    corecore