8 research outputs found

    A majority voting classifier with probabilistic guarantees

    Get PDF
    This paper deals with supervised learning for classification. A new general purpose classifier is proposed that builds upon the Guaranteed Error Machine (GEM). Standard GEM can be tuned to guarantee a desired (small) misclassification probability and this is achieved by letting the classifier return an unknown label. In the proposed classifier, the size of the unknown classification region is reduced by introducing a majority voting mechanism over multiple GEMs. At the same time, the possibility of tuning the misclassification probability is retained. The effectiveness of the proposed majority voting classifier is shown on both synthetic and real benchmark data-sets, and the results are compared with other well-established classification algorithms

    A classification-based approach to the optimal control of affine switched systems

    Get PDF
    This paper deals with the optimal control of discrete–time switched systems, characterized by a finite set of operating modes, each one associated with given affine dynamics. The objective is the design of the switching law so as to minimize an infinite–horizon expected cost, that penalizes frequent switchings. The optimal switching law is computed off–line, which allows an efficient online operation of the control via a state feedback policy. The latter associates a mode to each state and, as such, can be viewed as a classifier. In order to train such classifier–type controller one needs first to generate a set of training data in the form of optimal state–mode pairs. In the considered setting, this involves solving a Mixed Integer Quadratic Programming (MIQP) problem for each pair. A key feature of the proposed approach is the use of a classification method that provides guarantees on the generalization properties of the classifier. The approach is tested on a multi–room heating control problem

    Non-convex scenario optimization

    Get PDF
    Scenario optimization is an approach to data-driven decision-making that has been introduced some fifteen years ago and has ever since then grown fast. Its most remarkable feature is that it blends the heuristic nature of data-driven methods with a rigorous theory that allows one to gain factual, reliable, insight in the solution. The usability of the scenario theory, however, has been restrained thus far by the obstacle that most results are standing on the assumption of convexity. With this paper, we aim to free the theory from this limitation. Specifically, we focus on the body of results that are known under the name of “wait-and-judge” and show that its fundamental achievements maintain their validity in a non-convex setup. While optimization is a major center of attention, this paper travels beyond it and into data-driven decision making. Adopting such a broad framework opens the door to building a new theory of truly vast applicability

    Compression, Generalization and Learning

    Full text link
    A compression function is a map that slims down an observational set into a subset of reduced size, while preserving its informational content. In multiple applications, the condition that one new observation makes the compressed set change is interpreted that this observation brings in extra information and, in learning theory, this corresponds to misclassification, or misprediction. In this paper, we lay the foundations of a new theory that allows one to keep control on the probability of change of compression (which maps into the statistical "risk" in learning applications). Under suitable conditions, the cardinality of the compressed set is shown to be a consistent estimator of the probability of change of compression (without any upper limit on the size of the compressed set); moreover, unprecedentedly tight finite-sample bounds to evaluate the probability of change of compression are obtained under a generally applicable condition of preference. All results are usable in a fully agnostic setup, i.e., without requiring any a priori knowledge on the probability distribution of the observations. Not only these results offer a valid support to develop trust in observation-driven methodologies, they also play a fundamental role in learning techniques as a tool for hyper-parameter tuning.Comment: https://www.jmlr.org/papers/v24/22-0605.htm
    corecore