
A majority voting classifier with probabilistic guarantees

Giorgio Manganini, Alessandro Falsone, Maria Prandini

Abstract— This paper deals with supervised learning for
classification. A new general purpose classifier is proposed that
builds upon the Guaranteed Error Machine (GEM). Standard
GEM can be tuned to guarantee a desired (small) misclassifi-
cation probability and this is achieved by letting the classifier
return an unknown label. In the proposed classifier, the size of
the unknown classification region is reduced by introducing a
majority voting mechanism over multiple GEMs. At the same
time, the possibility of tuning the misclassification probability
is retained. The effectiveness of the proposed majority voting
classifier is shown on both synthetic and real benchmark data-
sets, and the results are compared with other well-established
classification algorithms.

I. INTRODUCTION

Machine Learning (ML) techniques, see e.g. [1]–[5], aim
at designing automatic procedures to make accurate predic-
tion of future instances of some phenomenon based on a
set of observations (the training data–set). To this end, every
instance in the data–set is represented by a set of features.
When instances in the training data–set are provided together
with the corresponding output, and the ML technique ex-
ploits this information, then we are dealing with supervised
learning. This work is concerned with supervised learning in
the context of classification, where the output takes values
in a finite set.

A classifier is a map associating to the features (input)
some label (output). The goal of a supervised learning
algorithm is to construct a classifier that provides highly
accurate predictions when applied to new unseen instances,
minimizing the number of misclassification (generalization
error).
Various techniques have been developed for supervised clas-
sification within the fields of artificial intelligence (logi-
cal/symbolic techniques, like Decision trees [6] or learning
set of rules [7]), neural–networks and statistics (Bayesian
Networks [8], NNC [3], SVM [4] and SCM [9]). The inter-
ested reader is referred to [10] for an overview. The appli-
cation domains of supervised classification include text cate-
gorization, fraud detection, machine vision, natural-language
processing, and bio–informatics to name a few (see e.g. [11]
and [12] for application–oriented papers).

In this work, we focus on a general purpose classifier,
called Guaranteed Error Machine (GEM) [13]. A compar-
ative discussion on alternative approaches proposed in the

This work is partially supported by the European Commission under the
project UnCoVerCPS with grant number 643921.

Giorgio Manganini, Alessandro Falsone and Maria Prandini are
with the Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, via Ponzio 34/5, 20133 Milano, Italy.
{giorgio.manganini, alessandro.falsone,
maria.prandini}@polimi.it

literature goes beyond the scope of this paper, and the
interested reader is referred to [13]. The supervised learning
algorithm that builds a GEM classifier processes the training
data–set progressively, starting from one of the training data
named the base sample. The main property of the GEM
classifier is that, under general conditions, the statistics of
its generalization error are universal, i.e., independent of the
(unknown) mechanism that generates the data. This property
allows the user to select a desired maximum level of gener-
alization error and let the learning machine automatically
adjust to meet it. In order to control the probability of
misclassification, the GEM is allowed to return an unknown
label, expressing doubt on which label should be associated
to a particular instance. The requirement on the accuracy
level is actually met by modulating the size of the region
where the machine returns the unknown label.

Our main contribution consists in introducing a supervised
learning algorithm for shrinking the unknown classification
region as much as possible, while retaining some probabilis-
tic guarantees on the generalization error of the resulting
new GEM-based classifier. The idea is as simple as follows:
building multiple GEMs based on the same training data–set
by starting from different base samples, and then assigning
to each new data the label that is voted by most GEMs,
except for the unknown label that is assigned only if all
GEMs vote for it. Indeed, this reduces the region with the
unknown label by construction. As for the generalization
error properties of the majority voting GEM, a conservative
bound can be derived based on that of the standard GEM.
In practice, numerical examples on both artificially generated
and real data show that the generalization error is much lower
than the a-priori bound, and that the majority voting GEM
outperforms standard GEM also in that respect.

The rest of the paper is organized as follows. We start
revising briefly the GEM classifier and its generalization
properties in Section II. We then propose the new majority
voting classifier and discuss its properties in Section III. In
Section IV we present numerical examples assessing the
performance of the majority voting classifier. Finally, in
Section V some concluding remarks are drawn and possible
extensions are described.

II. THE GEM CLASSIFIER

In this section we revise the GEM supervised learning al-
gorithm proposed in [13] and introduce some basic notations
and definitions.

Let x ∈ X ⊆ Rd be a vector of features and y = y(x) ∈
Y = {0, 1} the corresponding binary label. A classifier
ŷ = ŷ(x) provides an estimate for the label y of x and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55259228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

it errs on x if y(x) 6= ŷ(x). Differently from most other
classifiers, the GEM one may return an unknown label
expressing the inability to classify the sample, so that the
label set is augmented to Y ∪ {unknown}.

Now, let EN = {(x1, y1), . . . , (xN , yN)} be a data–set
of N training samples, where x1, . . . , xN are independently
extracted from X according to some probability distribution
µ and yi = y(xi). We denote by ŷN (·) the GEM classifier
trained on these data.

The algorithm to build the GEM classifier takes as input
the training data–set EN , a “base” instance (xB , yB) ∈ EN ,
and some integer parameter k < N . It then constructs a set
of hyper-ellipsoidal regions R = {R1, . . . ,Rr}. Each region
Rj has associated a label `j ∈ Y . The union of the regions in
R constitutes that part of the input space X where the GEM
classifier assigns a proper label, whereas in the remaining
(uncovered) part of the space the machine returns the label
unknown. More precisely, the GEM classifier is defined as

ŷN (x) =

{
unknown if x ∈ X \⋃r

j=1Rj

`q(x) if x ∈ ⋃r
j=1Rj

, (1)

where

q(x) = min{j : such that x ∈ Rj , j = 1, . . . , r}.

As for the construction of the regions in R, starting from the
base instance (xB , yB), the algorithm constructs an hyper-
ellipsoidal set R1 ⊆ X , that contains xB and extends it
until it touches another example xj 6= xB , with a different
label yj 6= yB . All training samples included into R1 have
the same label `1 = yB of xB and are removed from the
training data–set, while the instances (x, y) ∈ EN with x
on the boundary Ω(R1) of the region R1 are marked as
“active” points and added to some set Q. If the cardinality
of Q satisfies |Q| < k and the updated training data–set is not
empty, then the active point farthest from xB is selected to
form the new base instance, and a new region is constructed.
Parameter k acts on the size of the unknown region, where
a classification cannot be provided. Roughly speaking, larger
values for k correspond to classifiers with smaller unknown
regions, but more prone to misclassification. Ensuring that
|Q| ≤ k is the key property to prove the generalization
properties of the GEM classifier in [13].

A flow diagram of the algorithm is shown in Figure 1.
Note that, depending on the cardinality of set Q a different
convex optimization problem is solved to construct the region
Rj (parametrized by A∗j and b∗j). More specifically, problem
(A) constructs hyper-ellipsoids containing xB , problem (B)
determines hyper-spheres containing xB , and problem (C)
finds hyper-spheres centered in xB . For more details on the
GEM algorithm the reader is referred to [13].

The probability of error (or generalization error) of the
GEM classifier ŷN (·) in (1) is defined as

PE(ŷN) = µ (ŷN (x) ∈ Y ∧ y(x) 6= ŷN (x)) ,

which is the probability that a proper label in Y is issued
and that label is not correct. Note that the unknown label is

not considered, and hence it is not counted as an error when
returned by the classifier.

Given that ŷN (·) is derived based on the set EN of ran-
domly sampled training data, PE(ŷN) is a random variable
that depends on the data generation mechanism {µ, y(·)}.
Interestingly, Theorem 1 in [13] provides a strict bound on
the probability distribution of PE(ŷN), which is independent
on the data generation mechanism {µ, y(·)}. Specifically, let

FPE(ε) := µN {PE(ŷN) ≤ ε}
be the probability that PE(ŷN) ≤ ε. Then, we have that

FPE(ε) ≥ 1−
k−1∑
i=0

(
N − 1

i

)
εi(1− ε)N−1−i.

If the training data–set size N can be selected arbitrarily,
then, one can choose the confidence parameter δ ∈ (0, 1)
and determine N satisfying

k−1∑
i=0

(
N − 1

i

)
εi(1− ε)N−1−i ≤ δ, (2)

so that the misclassification probability PE(ŷN) is guar-
anteed not to exceed ε with confidence not smaller than
1− δ. Following [14], we can compute the following lower
bound on the number of training data N that are needed for
expression (2) to hold, as a function of ε, δ, and k:

N ≥ 1 +
1

ε

(
k − 1 + log

1

δ
+

√
2(k − 1) log

1

δ
.

)
. (3)

The GEM classifier ŷN (·) depends on the training data–set
EN and on the sample selected as base instance. As suggested
in [13], one can run the algorithm in Figure 1 multiple times
starting from different base instances, and then select the best
classifier (i.e., the one with a smaller unknown region) a
posteriori. The probability that all the resulting M classifiers
have a probability of error smaller than or equal to ε can be
bounded as follows:

µN
{
PE(ŷ

(1)
N) ≤ ε ∧ · · · ∧ PE(ŷ

(M)
N) ≤ ε

}
= 1− µN

{
PE(ŷ

(1)
N) > ε ∨ · · · ∨ PE(ŷ

(M)
N) > ε

}
≥ 1−

M∑
i=1

µN
{
PE(ŷ

(M)
N) > ε

}
≥ 1−M

k−1∑
i=0

(
N − 1

i

)
εi(1− ε)N−1−i. (4)

The size N of the training data–set can then be determined
based on (3) with δ replaced with Mδ.

III. MAJORITY VOTING CLASSIFIER

Voting denotes the simplest method of combining multiple
classifiers [15]. In its simplest form, called plurality or
majority voting, each classifier contributes with a single
vote [16]. The labeling mechanism is decided by the majority
of the votes, i.e., the label with the most votes is the final

EN , (xB , yB), k

P = EN \ {(xB , yB)}
Q = ∅,
j = 1

|Q|

Solve
Problem (B)

Solve
Problem (A)

Form region Rj

given A∗
j , b

∗
j

Remove interior points
P = P \ {(x, y) : x ∈ Rj}

Find new xB ,
j = j + 1

Store active points
Q = Q ∪ {x ∈ Ω(Rj)}

P = ∅ |Q| < k

ŷN

yes

Solve
Problem (C)

yes

no

no

Fig. 1. Flow diagram of the algorithm to construct a GEM classifier.

one. In the following we propose a novel classifier which
involves multiple GEMs and incorporate a majority voting
mechanism.

Suppose to design M GEMs by running M times the
algorithm in Figure 1 from different base instances (xB , yB)

in the same training dataset EN . Let `(m)(x) = ŷ
(m)
N (x) be

the label associated to sample x ∈ X by the m–th GEM,
with m = 1, . . . ,M . Given a label c ∈ Y , we define 1c(`)
to be the indicator function, i.e.,

1c(`) =

{
1, if ` = c

0, otherwise
,

for any ` ∈ Y ∪ {unknown}. A simple majority voting
mechanism [16] prescribes to select the label for a sample
x ∈ X according to

c?(x) = arg max
c∈Y

M∑
m=1

1c(`
(m)(x)),

with the understanding that if there is more than one maxi-
mizer, the smallest one is chosen.

The proposed majority voting classifier is then given by

ŷN,M (x) =

unknown, if `(m)(x) = unknown,

∀m ∈ {1, . . . ,M},
c?(x), otherwise.

(5)

and returns the label in Y that is most voted, and the
unknown label only when all GEMs return unknown.
The unknown classification region of the majority voting
classifier is thus the intersection of the unknown classifi-
cation regions of all M GEMs and as such it is reduced.

Proposition 3.1 below shows the probabilistic guarantees
of the majority voting classifier.

Proposition 3.1: The majority voting classifier (5) con-
structed using M GEMs, each one with probability of error
bounded by ε with confidence not smaller than 1 − δ, has
a probability of error bounded by Mε with confidence not
smaller than 1−Mδ. Formally, if

µN
{
PE(ŷ

(m)
N) ≤ ε

}
≥ 1− δ, m = 1, . . . ,M,

then
µN {PE(ŷN,M) ≤Mε} ≥ 1−Mδ. (6)

The proof of Proposition 3.1 straightforward given that the
probability of error of the majority voting classifier is upper
bounded by the probability that at least one GEM makes an
error. In turn, this probability is smaller than or equal to Mε
in the case when all M GEMs have a probability of error
of at most ε, which happens with confidence larger than or
equal to 1−Mδ (see (4)).

Note that the bound (6) on the misclassification probability
depends on the number M of GEMs used to construct
the majority voting classifier through a scaling factor on
the confidence parameter and on the probability of error
parameter as well. Hence, to guarantee a-priori that the
probability of error of the majority voting classifier is upper
bounded by ε̄ with confidence 1 − δ̄, one has to replace δ
with δ̄/M and ε with ε̄/M when calculating N through (3).
In Section IV we report some numerical examples that show
the effectiveness of the proposed majority voting classifier in
shrinking the unknown region. These examples also reveal
that the bound in (6) is deem over conservative and one can
in fact use ε̄ in place of ε̄/M when calculating N through
(3) in order to have that the actual probability of error is
lower than or equal to ε̄, like in the single GEM.

We next describe how to choose M so as to obtain a
majority voting classifier that is structurally guaranteed to
never provide unknown as a label for the data in the training
data–set.
We start by setting M = 1 and constructing a GEM starting
from a random data point in EN as base instance. Then, we
construct the set of unknowns as

U(M) = {(xi, yi) ∈ EN : ŷN,M (xi) = unknown} .
If U(M) is not empty, then we increase M by one and
construct an additional GEM instance to be incorporated

into the majority voting classifier. The procedure is repeated
iteratively until U(M) is empty. The obtained value for
M is denoted as M? and the corresponding classifier as
M?-GEM majority voting classifier. The whole procedure
is summarized in Algorithm 1.

Algorithm 1 M?–GEM majority voting classifier
Input: Training data–set EN = {(xi; yi)|xi ∼ µ}Ni=1

1: M ← 0
2: U(M)← EN
3: repeat
4: (x̄; ȳ)← an element from U(M)
5: M ←M + 1
6: ŷ

(M)
N (·)← GEM instance starting from (x̄; ȳ)

7: U(M)← {(xi, yi) ∈ EN : ŷN,M (xi) = unknown}
8: until U(M) = ∅
9: M? = M

Output: ŷN,M?(·)

The M?–GEM majority voting classifier guarantees by
construction zero unknowns over the data–set. In order to
determine N , one would need to know a-priori what the
value of M? will be. Given that the worst case scenario
consists in having M? = N , the confidence level for all
GEM instances can be set to 1− δ̄/N to ensure a confidence
level 1− δ̄ for the M?–GEM majority voting classifier.

IV. NUMERICAL EXAMPLES

This section provides empirical evidence of the effective-
ness of the proposed classifier and of the theoretical results
in Section III. To this aim, we use two types of data–sets.
The first one is obtained artificially from (µ, y(·)), where µ
is a uniform distribution on [0, 1]n, and y(·) is given by:

y(x) =

{
1 if 1−

√
2
2 ≤ xi ≤ 1 ∀i = 1 . . . n

0 otherwise
, (7)

where xi is the i-th component of x. Figure 2 shows N =
1000 samples extracted from µ for the case n = 2.

x1

0 0.2 0.4 0.6 0.8 1

x
2

0

0.2

0.4

0.6

0.8

1

Fig. 2. Synthetic training data–set.

Then, additional empirical results are computed on real
and publicly available data–set: Glass, BreastW, Haberman,

Pima, Bupa and Credit. All these data–sets are obtained from
the machine learning repository at UCI [17], except for the
Glass data–set which can be downloaded from [18]. For each
data–set, we removed all samples with missing features or
contradictory labels (this occurred only for a few samples in
the Haberman data–set).

A. Synthetic data–set

In Figure 3 we report the number of unknown obtained
with the GEM and the majority voting classifier using M
GEMs. In both cases we fixed N = 1000 and a confidence
1− δ with δ = 10−5. We can clearly see from Figure 3, that
the number of unknowns decreases as a function of k when
we increase the number M of GEMs in the majority voting
classifier.

k
 8 11 14 17 20

U
n
k
n
ow

n
s=

N
[%

]

0

5

10

15

20

25

30

35

40

M=1

M=2

M=5

M=10

M=15

M=20

Fig. 3. Percentage of unknowns as a function of k and M .)

Note that for a given k the number of unknowns de-
creases with M . Though this effect is an obvious conse-
quence of using multiple GEMs and the same result could
be achieved increasing the value of k for the original GEM,
the impact on the value of the misclassification probability
is different. As a matter of fact, by looking at Figure 4,
one can see that as M increases not only the number of
unknowns but also the empirical error probability decreases
in the M -GEM classifier. Given that each of the M GEMs
has a theoretical misclassification level ε, Figure 4 provides
empirical evidence that the bound in Proposition 3.1 is
conservative, and that, by increasing M , we also gain in
accuracy and not only in a reduction of the unknown region.

Figure 5 plots the number of unknowns obtained with
the standard GEM and the majority voting classifier using
M GEMs when the dimensionality of the problem n is
increased. Classifiers are constructed by setting N = 1000,
δ = 10−5/M , and ε = 6% for each GEM. Note that standard
GEM is obtained by setting M = 1. Clearly both classifiers
suffer the growth in dimensionality, but the impact on the
number of unknowns returned gets lower and lower as we
increase the value of M .

We also compare the performance of the majority voting
classifier using M–GEMs with the solution proposed in (4)
which prescribes to create a certain number of GEMs starting

M - # GEMs
 1 2 5 10 15 20

E
m

p
ir
ic

a
l
er

ro
r

[%
]

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 = 5%

0 = 8%

Fig. 4. Empirical error in percentage as a function of M and ε.

n - Problem dimension
2 3 4 5

U
n
k
n
ow

n
s=

N
[%

]

0

10

20

30

40

50

60

M=1

M=2

M=5

M=10

M=15

M=20

Fig. 5. Number of unknowns in percentage as a function of problem
dimensionality and M .

from different base instances and then use the one with
the smallest unknown region. For a given value of M , we
construct M GEMs using δ/M = 10−5/M as confidence
parameter, an ε = 8% for the accuracy parameter. For each
value of M we run 30 trials starting from different M -
tuples of base instances. Denote with UKmin the number
of unknowns obtained using the solution in (4) and with
UKM the number of unknowns obtained using the M–GEM.
Figure 6 represents the mean (dots), the 25-th and 75-th
percentiles (boxes), and min/max values (whiskers), over
the 30 trials, of the quantity UKmin − UKM , which is the
difference between the number of unknowns obtained with
the two approaches. One can notice from Figure 6 that, as M
increases from 2 on, all trials exhibit less unknowns than
the solution in (4). Indeed, this shows that using the majority
voting of M GEMs is more convenient than selecting the best
GEM out of M .

B. Real data–sets

We next compare the performance of the majority voting
classifier with M GEMs (M=5 and 10) and M?–GEM
against other well-known classification algorithms, like the
nearest–neighbor classifier (NNC [3]), the support–vector

M - # GEMs
 1 2 5 10 15 20

U
K

m
in
!

U
K

M

0

50

100

150

200

250

300

350

400

Fig. 6. UKmin −UKM as a function of M (N = 1000).

machine (SVM [4]) and the set covering machine (SCM [9],
[19]).
For all the data–sets, we use the 10–fold cross validation
error as an estimate of the generalization error. Precisely,
each time one–tenth of the data is used as a test set for the
classifier obtained by using as training data–set the remaining
nine–tenths. Thereupon, the operation is repeated for ten
times using as a test set another tenth separated from the
previous. The values reported in Table I and II are expressed
as the total number of errors found in the test set at each trial,
averaged on 30 independent execution of (M–, M?–)GEM
majority voting classifiers starting from different tuples of
base instances.

As for NNC, SVM and SCM, the results in Table I are
taken from [9]. For the SVM, the parameter C refers to the
soft margin; for the SCM, type c and d refer to machines
based on conjunction or disjunction of boolean-based fea-
tures (see [9]). In the comparison with the GEM classifier
(in all its variants), it is important to remark that these
parameters for SVM and SCM are the ones that gave the
smallest 10-fold cross validation error among an exhaustive
scan of many values for these parameters. Since all these
methods do not return the unknown label, to perform a
comparison we chose the k value so that the standard GEM
gives no unknowns. We then set, for each GEM composing
the M–GEM and M?–GEM majority voting classifier, the
same theoretical probability of error ε determined by the
aforementioned k value, with the confidence parameter set
equal to δ/M . First of all, by inspecting Table I, it is
interesting to notice the positive impact of the majority voting
mechanism on the performance of the GEM classifier. In
all the data–sets, 5–GEM outperforms the standard GEM,
and both do not return any unknown label. The 10–GEM
classifier reduces the empirical error probability with respect
to the 5–GEM. Moreover, in the Credit data–set, both the 5–
GEM and the 10–GEM achieve a better score than SCM,
which reaches better results than all the other classifiers on
the remaining data–sets.

In Table II we test the influence of the error probability

TABLE I
COMPARISON OF DIFFERENT METHODS IN TERMS OF AVERAGE NUMBER OF ERRORS.

GEM 5–GEM 10–GEM NNC SVM (C =∞) SVM (finite C) SCM type c SCM type d

Glass 47 37.7 36.4 36 42 34 35 36
BreastW 38.1 27.6 26.3 29 27 19 18 16
Haberman 104.7 95.9 95.8 107 111 71 71 93
Pima 261.3 228.4 216.1 247 243 203 189 206
Bupa 136.2 123.8 123.6 124 121 107 109 106
Credit 157.2 118.2 108.5 214 205 190 198 195

parameter on the performance of the 10–GEM and M∗–
GEM, both in terms of number of errors and unknown
labels, by setting it to ε/2 for each GEM used in the 10–
GEM and in the M∗–GEM. While the majority mechanism
is still able to reduce the number of errors compared to the
standard GEM, the a-priori fixed number M = 10 of GEMs
employed in the 10–GEM results in a non zero number
of unknowns (reported in brackets in Table II). The Pima
dataset is illustrative of this issue: 10–GEM ends up with
the same number of errors of M?–GEM, but it carries also
40 unknown labels over N = 768 instances. On the other
hand, M∗–GEM never returns the unknown label, while it
is able to reach the same number of errors or even less. In
particular, M∗–GEM achieves better results than SCM on
Glass and Credit data–sets. Finally, we should point out that
SVM and SCM are “tuned” (as stated before) to the data–set
and hence their total number of errors are underestimates of
the real generalization error. This is not the case for the M–
and M?–GEM majority voting classifiers.

V. CONCLUSIONS

In this work we analyzed the general–purpose GEM
classifier that was recently proposed in the literature. Starting
from the observation that probabilistic guarantees on the
GEM misclassification error can be provided, but at the price
of eventually returning the unknown label, we developed a
majority voting classifier involving multiple GEMs to shrink
the unknown classification region. We derived probabilistic
guarantees on its misclassification error. Numerical tests
on both artificial and real benchmark data-sets show that
the proposed majority voting classifier is effective, also
compared to other well-known state-of-the-art classifiers.

Future research will regard the application of the majority
voting classifier to control policy design for a system with
a finite control space, where one can compute the optimal
action to be applied for a finite number of state samples

TABLE II
AVERAGE NUMBER OF ERRORS AND UNKNOWNS FOR ε/2.

10–GEM M?–GEM

Glass 35.8 (1.2) 34.6
BreastW 27.9 (1.49) 27
Haberman 88.81 (15) 92.1
Pima 212.8 (40) 212.2
Bupa 118.3 (24.6) 115.4
Credit 104.6 (3.8) 105.4

only, and then identify the optimal map by solving a clas-
sification problem [20]. In this setting, a policy can indeed
be interpreted as a classifier that associates to each state a
label representing the control action, and the existence of a
region with an unknown label is undesirable.

REFERENCES

[1] V. N. Vapnik, “The nature of statistical learning theory,” 1995.
[2] V. N. Vapnik and V. Vapnik, Statistical learning theory. Wiley New

York, 1998, vol. 1.
[3] L. Devroye, A probabilistic theory of pattern recognition. Springer

Science & Business Media, 1996, vol. 31.
[4] N. Cristianini and J. Shawe-Taylor, An introduction to support vector

machines and other kernel-based learning methods. Cambridge
university press, 2000.

[5] B. Schölkopf and A. J. Smola, Learning with kernels: Support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[6] S. K. Murthy, “Automatic construction of decision trees from data:
A multi-disciplinary survey,” Data mining and knowledge discovery,
vol. 2, no. 4, pp. 345–389, 1998.

[7] J. Fürnkranz, “Separate-and-conquer rule learning,” Artificial Intelli-
gence Review, vol. 13, no. 1, pp. 3–54, 1999.

[8] F. V. Jensen, An introduction to Bayesian networks. UCL press
London, 1996, vol. 210.

[9] M. Marchand and J. S. Taylor, “The set covering machine,” The
Journal of Machine Learning Research, vol. 3, pp. 723–746, 2003.

[10] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learn-
ing: a review of classification and combining techniques,” Artificial
Intelligence Review, vol. 26, no. 3, pp. 159–190, 2006.

[11] L. Saitta and F. Neri, “Learning in the “real world”,” Machine
Learning, vol. 30, no. 2-3, pp. 133–163, 1998.

[12] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[13] M. C. Campi, “Classification with guaranteed probability of error,”
Mach. Learn., vol. 80, no. 1, pp. 63–84, Jul. 2010. [Online].
Available: http://dx.doi.org/10.1007/s10994-010-5183-x

[14] T. Alamo, R. Tempo, and A. Luque, “On the sample complexity of
randomized approaches to the analysis and design under uncertainty,”
in American Control Conference, June 2010, pp. 4671–4676.

[15] F. Roli, G. Giacinto, and G. Vernazza, “Methods for designing multiple
classifier systems,” in Multiple Classifier Systems. Springer, 2001,
pp. 78–87.

[16] L. Hall, K. Bowyer, W. Kegelmeyer, T. Moore, and C.-m. Chao,
“Distributed learning on very large data sets,” in Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Citeseer, 2000, pp. 79–84.

[17] A. Asuncion and D. J. Newman, “Uci machine learning repository
[http://www. ics. uci. edu/˜ mlearn/mlrepository. html]. irvine, ca:
University of california,” School of Information and Computer Science,
2007.

[18] T. B. Bylander. Tom bylander’s home page at the university of texas,
san antonio. [Online]. Available: http://www.cs.utsa.edu/ bylander/

[19] Z. Hussain, F. Laviolette, M. Marchand, J. Shawe-Taylor, S. C.
Brubaker, and M. D. Mullin, “Revised loss bounds for the set covering
machine and sample-compression loss bounds for imbalanced data,”
The Journal of Machine Learning Research, vol. 8, pp. 2533–2549,
2007.

[20] G. Manganini, L. Piroddi, and M. Prandini, “A classification–based
approach to the optimal control of affin switched systems,” in 54th

IEEE Conference on Decision and Control, Osaka, Japan, Dec. 2015.

