5 research outputs found

    Classification of the factorial functions of Eulerian binomial and Sheffer posets

    Get PDF
    We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!n!, the factorial function of the infinite Boolean algebra, or 2n12^{n-1}, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n)=n!B(n) = n! has Sheffer factorial function D(n) identical to that of the infinite Boolean algebra, the infinite Boolean algebra with two new coatoms inserted, or the infinite cubical poset. Moreover, we are able to classify the Sheffer factorial functions of Eulerian Sheffer posets with binomial factorial function B(n)=2n1B(n) = 2^{n-1} as the doubling of an upside down tree with ranks 1 and 2 modified. When we impose the further condition that a given Eulerian binomial or Eulerian Sheffer poset is a lattice, this forces the poset to be the infinite Boolean algebra BXB_X or the infinite cubical lattice CX<C_X^{< \infty}. We also include several poset constructions that have the same factorial functions as the infinite cubical poset, demonstrating that classifying Eulerian Sheffer posets is a difficult problem.Comment: 23 pages. Minor revisions throughout. Most noticeable is title change. To appear in JCT

    Level Eulerian Posets

    Full text link
    The notion of level posets is introduced. This class of infinite posets has the property that between every two adjacent ranks the same bipartite graph occurs. When the adjacency matrix is indecomposable, we determine the length of the longest interval one needs to check to verify Eulerianness. Furthermore, we show that every level Eulerian poset associated to an indecomposable matrix has even order. A condition for verifying shellability is introduced and is automated using the algebra of walks. Applying the Skolem--Mahler--Lech theorem, the ab{\bf ab}-series of a level poset is shown to be a rational generating function in the non-commutative variables a{\bf a} and b{\bf b}. In the case the poset is also Eulerian, the analogous result holds for the cd{\bf cd}-series. Using coalgebraic techniques a method is developed to recognize the cd{\bf cd}-series matrix of a level Eulerian poset

    Euler flag enumeration of Whitney stratified spaces

    Get PDF
    The flag vector contains all the face incidence data of a polytope, and in the poset setting, the chain enumerative data. It is a classical result due to Bayer and Klapper that for face lattices of polytopes, and more generally, Eulerian graded posets, the flag vector can be written as a cd-index, a non-commutative polynomial which removes all the linear redundancies among the flag vector entries. This result holds for regular CW complexes. We relax the regularity condition to show the cd-index exists for Whitney stratified manifolds by extending the notion of a graded poset to that of a quasi-graded poset. This is a poset endowed with an order-preserving rank function and a weighted zeta function. This allows us to generalize the classical notion of Eulerianness, and obtain a cd-index in the quasi-graded poset arena. We also extend the semi-suspension operation to that of embedding a complex in the boundary of a higher dimensional ball and study the simplicial shelling components.Comment: 41 pages, 3 figures. Final versio

    Classification and enumeration of special classes of posets and polytopes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 91-93).This thesis concerns combinatorial and enumerative aspects of different classes of posets and polytopes. The first part concerns the finite Eulerian posets which are binomial, Sheffer or triangular. These important classes of posets are related to the theory of generating functions and to geometry. Ehrenborg and Readdy [ER2] gave a complete classification of the factorial functions of infinite Eulerian binomial posets and infinite Eulerian Sheffer posets, where infinite posets are those posets which contain an infinite chain. We answer questions asked by R. Ehrenborg and M. Readdy [ER2]. We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. This work is also motivated by the work of R. Stanley about recognizing the boolean lattice by looking at smaller intervals. In the second topic concerns lattice path matroid polytopes. The theory of matroid polytopes has gained prominence due to its applications in algebraic geometry, combinatorial optimization, Coxeter group theory, and, most recently, tropical geometry. In general matroid polytopes are not well understood. Lattice path matroid polytopes (LPMP) belong to two famous classes of polytopes, sorted closed matroid polytopes [LP] and polypositroids [Pos]. We study several properties of LPMPs and build a new connection between the theories of matroid polytopes and lattice paths. I investigate many properties of LPMPs, including their face structure, decomposition, and triangulations, as well as formulas for calculating their Ehrhart polynomial and volume.by Hoda Bidkhori.Ph.D
    corecore