4,068 research outputs found

    Simultaneous Matrix Diagonalization for Structural Brain Networks Classification

    Full text link
    This paper considers the problem of brain disease classification based on connectome data. A connectome is a network representation of a human brain. The typical connectome classification problem is very challenging because of the small sample size and high dimensionality of the data. We propose to use simultaneous approximate diagonalization of adjacency matrices in order to compute their eigenstructures in more stable way. The obtained approximate eigenvalues are further used as features for classification. The proposed approach is demonstrated to be efficient for detection of Alzheimer's disease, outperforming simple baselines and competing with state-of-the-art approaches to brain disease classification

    Discriminating different classes of biological networks by analyzing the graphs spectra distribution

    Get PDF
    The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them on (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed

    A generative model for protein contact networks

    Full text link
    In this paper we present a generative model for protein contact networks. The soundness of the proposed model is investigated by focusing primarily on mesoscopic properties elaborated from the spectra of the graph Laplacian. To complement the analysis, we study also classical topological descriptors, such as statistics of the shortest paths and the important feature of modularity. Our experiments show that the proposed model results in a considerable improvement with respect to two suitably chosen generative mechanisms, mimicking with better approximation real protein contact networks in terms of diffusion properties elaborated from the Laplacian spectra. However, as well as the other considered models, it does not reproduce with sufficient accuracy the shortest paths structure. To compensate this drawback, we designed a second step involving a targeted edge reconfiguration process. The ensemble of reconfigured networks denotes improvements that are statistically significant. As a byproduct of our study, we demonstrate that modularity, a well-known property of proteins, does not entirely explain the actual network architecture characterizing protein contact networks. In fact, we conclude that modularity, intended as a quantification of an underlying community structure, should be considered as an emergent property of the structural organization of proteins. Interestingly, such a property is suitably optimized in protein contact networks together with the feature of path efficiency.Comment: 18 pages, 67 reference

    Characterization of complex networks: A survey of measurements

    Full text link
    Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements. Important related issues covered in this work comprise the representation of the evolution of complex networks in terms of trajectories in several measurement spaces, the analysis of the correlations between some of the most traditional measurements, perturbation analysis, as well as the use of multivariate statistics for feature selection and network classification. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the proper application and interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of measurements for inclusion are welcomed by the author
    corecore