4 research outputs found

    Clustering of reads with alignment-free measures and quality values

    Get PDF
    BACKGROUND: The data volume generated by Next-Generation Sequencing (NGS) technologies is growing at a pace that is now challenging the storage and data processing capacities of modern computer systems. In this context an important aspect is the reduction of data complexity by collapsing redundant reads in a single cluster to improve the run time, memory requirements, and quality of post-processing steps like assembly and error correction. Several alignment-free measures, based on k-mers counts, have been used to cluster reads. Quality scores produced by NGS platforms are fundamental for various analysis of NGS data like reads mapping and error detection. Moreover future-generation sequencing platforms will produce long reads but with a large number of erroneous bases (up to 15 %). RESULTS: In this scenario it will be fundamental to exploit quality value information within the alignment-free framework. To the best of our knowledge this is the first study that incorporates quality value information and k-mers counts, in the context of alignment-free measures, for the comparison of reads data. Based on this principles, in this paper we present a family of alignment-free measures called D(q)-type. A set of experiments on simulated and real reads data confirms that the new measures are superior to other classical alignment-free statistics, especially when erroneous reads are considered. Also results on de novo assembly and metagenomic reads classification show that the introduction of quality values improves over standard alignment-free measures. These statistics are implemented in a software called QCluster (http://www.dei.unipd.it/~ciompin/main/qcluster.html)

    Identifying Relevant Evidence for Systematic Reviews and Review Updates

    Get PDF
    Systematic reviews identify, assess and synthesise the evidence available to answer complex research questions. They are essential in healthcare, where the volume of evidence in scientific research publications is vast and cannot feasibly be identified or analysed by individual clinicians or decision makers. However, the process of creating a systematic review is time consuming and expensive. The pace of scientific publication in medicine and related fields also means that evidence bases are continually changing and review conclusions can quickly become out of date. Therefore, developing methods to support the creating and updating of reviews is essential to reduce the workload required and thereby ensure that reviews remain up to date. This research aims to support systematic reviews, thus improving healthcare through natural language processing and information retrieval techniques. More specifically, this thesis aims to support the process of identifying relevant evidence for systematic reviews and review updates to reduce the workload required from researchers. This research proposes methods to improve studies ranking for systematic reviews. In addition, this thesis describes a dataset of systematic review updates in the field of medicine created using 25 Cochrane reviews. Moreover, this thesis develops an algorithm to automatically refine the Boolean query to improve the identification of relevant studies for review updates. The research demonstrates that automating the process of identifying relevant evidence can reduce the workload of conducting and updating systematic reviews

    Classification of Protein Sequences by means of Irredundant Patterns

    Get PDF
    Abstract Background The classification of protein sequences using string algorithms provides valuable insights for protein function prediction. Several methods, based on a variety of different patterns, have been previously proposed. Almost all string-based approaches discover patterns that are not "independent, " and therefore the associated scores overcount, a multiple number of times, the contribution of patterns that cover the same region of a sequence. Results In this paper we use a class of patterns, called irredundant, that is specifically designed to address this issue. Loosely speaking the set of irredundant patterns is the smallest class of "independent" patterns that can describe all common patterns in two sequences, thus they avoid overcounting. We present a novel discriminative method, called Irredundant Class, based on the statistics of irredundant patterns combined with the power of support vector machines. Conclusion Tests on benchmark data show that Irredundant Class outperforms most of the string algorithms previously proposed, and it achieves results as good as current state-of-the-art methods. Moreover the footprints of the most discriminative irredundant patterns can be used to guide the identification of functional regions in protein sequences
    corecore