
Comin et al. Algorithms for Molecular Biology  (2015) 10:4 
DOI 10.1186/s13015-014-0029-x

RESEARCH Open Access

Clustering of reads with alignment-free
measures and quality values
Matteo Comin*, Andrea Leoni and Michele Schimd

Abstract

Background: The data volume generated by Next-Generation Sequencing (NGS) technologies is growing at a pace
that is now challenging the storage and data processing capacities of modern computer systems. In this context an
important aspect is the reduction of data complexity by collapsing redundant reads in a single cluster to improve the
run time, memory requirements, and quality of post-processing steps like assembly and error correction. Several
alignment-free measures, based on k-mers counts, have been used to cluster reads.
Quality scores produced by NGS platforms are fundamental for various analysis of NGS data like reads mapping and
error detection. Moreover future-generation sequencing platforms will produce long reads but with a large number of
erroneous bases (up to 15%).

Results: In this scenario it will be fundamental to exploit quality value information within the alignment-free
framework. To the best of our knowledge this is the first study that incorporates quality value information and k-mers
counts, in the context of alignment-free measures, for the comparison of reads data. Based on this principles, in this
paper we present a family of alignment-free measures called Dq-type. A set of experiments on simulated and real
reads data confirms that the new measures are superior to other classical alignment-free statistics, especially when
erroneous reads are considered. Also results on de novo assembly and metagenomic reads classification show that the
introduction of quality values improves over standard alignment-free measures. These statistics are implemented in a
software called QCluster (http://www.dei.unipd.it/~ciompin/main/qcluster.html).
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Background
The data volume generated by Next-Generation Sequenc-
ing (NGS) technologies is growing at a pace that is now
challenging the storage and data processing capacities of
modern computer systems [1]. Current technologies pro-
duce over 500 billion bases of DNA per run, and the forth-
coming sequencers promise to increase this throughput.
The rapid improvement of sequencing technologies has
enabled a number of different sequencing-based applica-
tions like genome resequencing, RNA-Seq, ChIP-Seq and
many others [2]. Handling and processing such large files
is becoming one of the major challenges in most genome
research projects.
Alignment-based methods have been used for quite

some time to establish similarity between sequences [3].
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However there are cases where alignment methods can
not be applied or they are not suited.
For example the comparison of whole genomes is

impossible to conduct with traditional alignment tech-
niques, because of events like rearrangements that can
not be captured with an alignment [4-6]. Although fast
alignment heuristics exist, another drawback is that align-
ment methods are usually time consuming, thus they
are not suited for large-scale sequence data produced by
Next-Generation Sequencing technologies (NGS) [7,8].
For these reasons a number of alignment-free techniques
have been proposed over the years [9].
The use of alignment-free methods for comparing

sequences has proved useful in different applications.
Researchers have shown that the use of k-mers fre-
quencies can improve the construction of phylogenetic
trees traditionally based on a multiple-sequence align-
ment, especially for distant related species [10]. Some
alignment-free measures use the patterns distribution to
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study evolutionary relationships among different organ-
isms [4,11,12]. The efficiency of alignment-free measures
also allows the reconstruction of phylogenies for whole
genomes [4-6]. Several alignment-free methods have been
devised for the detection of enhancers in ChIP-Seq data
[13-15] and also of entropic profiles [16,17]. Another
application is the classification of protein remotely related,
which can be addressed with sophisticated word count-
ing procedures [18,19]. The assembly-free comparison of
genomes based on NGS reads has been investigated only
recently [7,8]. For a comprehensive review of alignment-
free measures and applications we refer the reader
to [9].
In this study we want to explore the ability of alignment-

free measures to cluster reads data. Clustering techniques
are widely used in many different applications based on
NGS data, from error correction [20] to the discovery of
groups of microRNAs [21]. With the increasing through-
put of NGS technologies another important aspect is
the reduction of data complexity by collapsing redundant
reads into a single cluster to improve the run time, mem-
ory requirements, and quality of subsequent steps like
assembly.
In [22] Solovyov et al. presented one of the first com-

parison of alignment-free measures when applied to NGS
reads clustering. They focused on clustering reads com-
ing from different genes and different species based on
k-mer counts. They showed that D-type measures (see
next section), in particular D∗

2, can efficiently detect and
cluster reads from the same gene or species (as opposed
to [21] where the clustering is focused on errors). In this
paper we extend this study by incorporating quality value
information into these measures.
Quality scores produced by NGS platforms are funda-

mental for various analysis of NGS data: mapping reads to
a reference genome [23]; error correction [20]; detection
of insertion and deletion [24] and many others. More-
over future-generation sequencing technologies will pro-
duce longer and less biased reads with a large number of
erroneous bases [25]. The average number of errors per
read will grow up to 15%, thus it will be fundamental to
exploit quality value information within the alignment-
free framework and the de novo assembly where longer
and less biased reads could have dramatic impact.
Most applications require as input a set of reads that is

error-free, thus they need to pre-process the data with a
filter. Usually quality values are used to detect low qual-
ity reads, that in most applications are discarded. With
the increasing of error rates, the ability to work with erro-
neous reads will be fundamental. Moreover, in this sce-
nario, quality values are used only during the pre-process
to select reads that are error-free. Approximately half of
the data produced by a sequencers are quality values, yet
they are discarded after the pre-processing. In this paper

we pave the way to a new paradigm where also quality
values play a major role when analyzing reads data.
In the following section we briefly review some

alignment-free measures. Then we present a new fam-
ily of statistics, called Dq-typea, that take advantage of
quality values. The software QCluster is discussed and rel-
evant results on simulated and real data are presented in
the results section. In the last section we summarize the
findings and we discuss future directions of investigation.

Previous work on alignment-free measures
One of the first papers that introduced an alignment-free
method is due to Blaisdell in 1986 [26]. He proposed a
statistic called D2, to study the correlation between two
sequences. The initial purpose was to speed up database
searches, where alignment-based methods were too slow.
TheD2 similarity is the correlation between the number of
occurrences of all k-mers appearing in two sequences. Let
X and Y be two sequences from an alphabet �. The value
Xw is the number of times w appears in X, with possible
overlaps. Then the D2 statistic is:

D2 =
∑

w∈�k

XwYw.

This is the inner product of the word vectors Xw and
Yw, each one representing the number of occurrences of
words of length k, i.e. k-mers, in the two sequences. How-
ever, it was shown by Lippert et al. [27] that theD2 statistic
can be biased by the stochastic noise in each sequence.
To address this issue another popular statistic, called Dz

2,
was introduced in [14]. This measure was proposed to
standardize the D2 in the following manner:

Dz
2 = D2 − E(D2)

V(D2)
,

where E(D2) and V(D2) are the expectation and the stan-
dard deviation of D2, respectively. Although the Dz

2 sim-
ilarity improves D2, it is still dominated by the specific
variation of each pattern from the background [28,29]. To
account for different distributions of the k-mers, in [28,29]
two other new statistics are defined and namedD∗

2 andD
s
2.

Let X̃w = Xw−(n−k+1)∗pw and Ỹw = Yw−(n−k+1)∗pw
where pw is the probability of w under the null model.
Then D∗

2 and Ds
2 can be defined as follows:

D∗
2 =

∑

w∈�k

X̃wỸw
(n − k + 1)pw

and,

Ds
2 =

∑

w∈�k

X̃wỸw√
X̃2
w + Ỹ 2

w

.
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This latter similarity measure responds to the need of
normalization of D2. These set of alignment-free mea-
sures are usually called D-type statistics. All these statis-
tics have been studied by Reinert et al. [28] and Wan
et al. [29] for the detection of regulatory sequences. From
the word vectors Xw and Yw several other measures can
be computed like L2, Kullback-Leibler divergence (KL),
symmetrized KL [22] etc.

Comparison of reads with quality values
Background on quality values
Upon producing base calls for a read x, sequencing
machines also assign a quality score Qx(i) to each base in
the read. These scores are usually given as phred-scaled
probability [30] of the i-th base being wrong

Qx(i) = −10 log10 Prob{the base i of read x is wrong }.
For example, if Qx(i) = 30 then there is 1 in 1000 chance
that base i of read x is incorrect.
If we assume that quality values are produced indepen-

dently to each other (similarly to [23]), we can calculate
the probability of an entire read x being correct as:

Px {the read x is correct} =
n−1∏
j=0

(
1 − 10−Qx(j)/10

)

where n is the length of the read x. In the same way we
define the probability of a word w of length k, occurring at
position i of read x being correct as:

Pw,i {the word w at position i of read x is correct}

=
k−1∏
j=0

(
1 − 10−Qx(i+j)/10

)
.

In all previous alignment-free statistics the k-mers are
counted such that each occurrence contributed as 1 irre-
spective of its quality. Here we can use the quality of that
occurrence instead to account also for erroneous k-mers.
The idea is to model sequencing as the process of read-
ing k-mers from the reference and assigning a probability
to them. Thus this formula can be used to weight the
occurrences of all k-mers used in the previous statistics.

New Dq-type statistics
We extend here D-type statistics [28,29] to account for
quality values. By defining Xq

w as the sum of probabilities
of all the occurrences of w in x:

Xq
w =

∑
i∈{i|w occurs in x at position i}

Pw,i

we assign a weight (i.e. a probability) to each occurrence
of w. Now Xq

w can be used instead of Xw to compute the
alignment-free statistics. Note that, by using Xq

w, every
occurrence is not counted as 1, but with a value in [0, 1]

depending of the reliability of the read.We can now define
a new alignment-free statistic as :

Dq
2 =

∑

w∈�k

Xq
wY

q
w.

This is the extension of theD2 measure, in which occur-
rences are weighted based on quality scores. Following the
previous section we can also define the centralized k-mers
counts as follows:

X̃q
w = Xq

w − (n − k + 1)pwE(Pw)

where n = |x| is the length of x, pw is the probability of
the word w in the i.i.d. model and the expected number of
occurrences (n − k + 1)pw is multiplied by E(Pw) which
represents the expected probability of k-mer w based on
the quality scores.
We can now extend two other popular alignment-free

statistics:

D∗q
2 =

∑

w∈�k

X̃q
wỸ

q
w

(n − k + 1)pwE(Pw)

and,

Dsq
2 =

∑

w∈�k

X̃q
wỸ

q
w√

X̃q
w
2 + Ỹ q

w
2
.

We call these three alignment-free measures Dq-type.
Now, E(Pw) depends on w and on the actual sequencing
machine, therefore it can be very hard, if not impossi-
ble, to calculate precisely. However, if the set D of all the
reads is large enough we can estimate the prior probability
using the posterior relative frequency, i.e. the frequency
observed on the actual set D, similarly to [23]. We assume
that, given the quality values, the error probability on a
base is independent from its position within the read and
from all other quality values (see [23]). We defined two
different approximations, the first one estimates E(Pw) as
the average error probability of the k-mer w among all
reads x ∈ D:

E(Pw) ≈
∑

x∈D Xq
w∑

x∈D Xw

while the second defines, for each base j of w, the average
quality observed over all occurrences of w in D:

Qw[j]=
∑

x∈D
∑

i∈{i| w occurs in x at position i} Qx(i + j)∑
x∈D Xw

and it uses the average quality values to compute the
expected word probability.

E(Pw) ≈
k−1∏
j=0

(
1 − 10−Qw(j)/10

)
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We called the first approximation Average Word Proba-
bility (AWP) and the second one Average Quality Proba-
bility (AQP). Both these approximations are implemented
within the software QCluster and tests are presented in
the Experimental Results section.

Quality value redistribution
If we consider the meaning of quality values it is possi-
ble to further exploit it to extend and improve the above
statistics. Let’s say that the base A has quality 70%, it
means that there is a 70% probability that the base is cor-
rect. However there is also another 30% probability that
the base is incorrect. Let’s ignore for themoment insertion
and deletion errors, if the four bases are equiprobable, this
means that with uniform probability 10% the wrong base
is a C, or a G or a T . It’s therefore possible to redistribute
the “missing quality” among other bases.
We can perform a more precise operation by redis-

tributing the missing quality among other bases in pro-
portion to their frequency in the read. For example, if the
frequencies of the bases in the read are A=20%, C=30%,
G=30%, T=20%, the resulting qualities, after the redistri-
bution, will be: A=70%, C = 30% ∗ 30%/(30% + 30% +
20%) = 11.25%, G = 30% ∗ 30%/(30% + 30% + 20%) =
11.25%, T = 30% ∗ 20%/(30% + 30% + 20%) = 7.5%. For
an example see Table 1.
The same redistribution, with a slight approximation,

can be extended to k-mers quality. More in detail, we con-
sider the case in which only one base is wrong, thus we
redistribute the quality of only one base at a time. Given
a k-mer, we generate all neighboring words that can be
obtained by substitution of the wrong base. The quality of
the replaced letter is calculated as in the previous exam-
ple and the quality of the entire word is again given by the
product of the qualities of all the bases in the new k-mers.
We increment the corresponding entry of the vector Xq

w
with the score obtained for the new k-mer. This process
is repeated for all bases of the original k-mer. Thus every
time we are evaluating the quality of a word, we are also
scoring neighboring k-mers by redistributing the quali-
ties. We didn’t consider the case where two or more bases

Table 1 Example of quality value redistribution of the
word TGACCA

Original Word T G A C C A

Accuracy X X 70% X X X

Possible Word 1 T G C C C A

Accuracy X X 11.25% X X X

Possible Word 2 T G G C C A

Accuracy X X 11.25% X X X

Possible Word 3 T G T C C A

Accuracy X X 7.5% X X X

are wrong simultaneously, because the computational cost
would be too high and the quality of the resulting word
would not appreciably affect the measures.

QCluster: clustering of reads withDq-type
measures
Clustering is the process of partitioning a given set into c
distinct disjoint subsets called clusters such that elements
(e.g. reads) on the same cluster have minimum distance
between them and maximum distance with elements of
different clusters. Centroid clustering associates to each
cluster one point on the space of input elements called
centroid which does not need to be part of the input set.
Each element is then assigned to the cluster for which the
distance measure to the centroid is minimized. A classical
example of centroid clustering is the algorithm k-means.
We extent the software afcluster [22] which uses

k-means to compute the clustering of reads based on sev-
eral distance measures: L2 which is the Euclidean norm,
Kullback-Liebler divergence and its symmetrized version,
and D2 based measures. Starting from this software we
developed QCluster by incorporating the computation of
the Dq

2-type statistics described above using both AWP
and AQP prior probability estimators and the redistribu-
tion of quality values.
The program takes in input a FastQ format file and per-

forms centroid-based clustering (k-means) of the reads
based on the counts and the quality of k-mers. When
using the Dq-type measures, one needs to choose the
method for the computation of the expected word proba-
bility, AWP or AQP, and the quality redistribution.
Since some of the implemented distances (symmetrized

KL, D∗
2) do not guarantee to converge, we implemented

a stopping criteria. The execution of the algorithm inter-
rupts if the number of iterations without improvements,
over the best solution, exceeds a certain threshold. In this
case, the best solution found is returned. To avoid as much
as possible biases due to the initial random generation of
centroids, the best solution over several runs is reported.
The number of runs may be set by the user and for our
experiments we use the value 5.
Several other options like consensus clustering, reverse

complement and different normalizations are available.
All implementedmeasures can be computed in linear time
and space, which is desirable for large NGS datasets. The
QCluster is freely available (http://www.dei.unipd.it/~
ciompin/main/qcluster.html), it has been implemented in
C++ and compiled and tested using GNU GCC.

Experimental results
Several tests have been performed in order to estimate the
effectiveness of the different distances, on both simulated
and real datasets. In particular, we had to ensure that, with
the use of the additional information of quality values, the

http://www.dei.unipd.it/~ciompin/main/qcluster.html
http://www.dei.unipd.it/~ciompin/main/qcluster.html
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clustering improved compared to that produced by the
original algorithms.
For simulations we use the dataset of human mRNA

genes downloaded from NCBI [31], also used in [22]. We
randomly select 50 sets of 100 sequences each of human
mRNA, with the length of each sequence ranged between
500 and 10000 bases. From each sequence, 10000 reads
of length 200 were simulated using Mason [32,33] with
different parameters, e.g. percentage of mismatches, read
length. We apply QCluster using different distances, to
the whole set of reads and then we measure the quality
of the clusters produced by evaluating the extent to which
the partitioning agrees with the natural splitting of the
sequences. In other words, we measured how well reads
originating from the same sequence are grouped together.
We calculate the recall rate as follows, for each mRNA
sequence S we identify the set of reads originated from
S. We look for the cluster C that contains most of the
reads of S. The percentage of the S reads that have been
grouped in C is the recall value for the sequence S. We
repeat the same operation for each sequence and calculate
the average value of recall rate over all sequences.
Several clustering were produced by using the follow-

ing distance types: D∗
2, D2, L2, KL, symmetrized KL and

compared with D∗q
2 in all its variants, using the expec-

tation formula (1) AWP or (2) AQP, with and without
quality redistribution (q-red). In order to avoid as much
as possible biases due to the initial random generation of
centroids, each algorithm was executed 5 times with dif-
ferent random seeds and the clustering with the lower
distortion was chosen.
Table 2 reports the recall while varying error rates, num-

ber of clusters and k. As expected, for all distances the
recall rate decreases with the number of clusters. For tra-
ditional distances, if the reads do not contain errors then
D∗
2 preforms consistently better then the others D2, L2,

KL. When the sequencing process becomes more noisy,
the KL distances appears to be less sensitive to sequencing
errors. However if quality information are used, D∗q

2 out-
performs all other methods and the advantage grows with
the error rate. This confirms that the use of quality val-
ues can improve clustering accuracy. When the number
of clusters increases then the advantage of D∗q

2 becomes
more evident. In these experiments the use of AQP for
expectation withinD∗q

2 is more stable and better perform-
ing compared with formula AWP. The contribution of
quality redistribution (q-red) is limited, although it seems
to have some positive effect with the expectation AQP.
In a second series of experiments, maintaining the pre-

viously described experimental setup, we test how the
number of reads and the different types of errors affect
the recall rates. Table 3 shows the recall rates, for differ-
ent methods, while varying the number of reads and the
types of sequencing errors. The relative performances are

similar to that of Table 2, however we can note that as the
number of reads increases the advantage of quality based
measures slightly improve. It is of interest to note that
among the different types of sequencing errors, deletions
seem to cause a drop of recall rates more evident than
mismatches and insertions.
The future generation sequencing technologies will pro-

duce long reads with a large number of erroneous bases.
To this end we study how read length affects these mea-
sures. Since the length of sequences under investigation
is limited we keep the read length under 400 bases. In
Table 4 we report some experiments for the setup with 4
clusters and k = 3, while varying the error rate and read
length. If we compare these results with Table 2, where
the read length is 200, we can observe a similar behavior.
As the error rate increases the improvement with respect
to the other measures remains evident, in particular the
difference in terms of recall of D∗q

2 with the expectations
AQP grows with the length of reads when compared with
KL (up to 9%), and it remains constant when compared
withD∗

2. With the current tendency of the future sequenc-
ing technologies to produce longer reads this behavior is
desirable. These performance are confirmed also for other
setups with larger k and higher number of clusters (data
not shown).

Boosting assembly
Assembly is one of the most challenging computational
problems in the field of NGS data. It is a very time
consuming process with highly variable outcomes for dif-
ferent datasets [34]. Currently large datasets can only
be assembled on high performance computing systems
with considerable CPU and memory resources. Cluster-
ing has been used as preprocessing, prior to assembly, to
improve memory requirements as well as the quality of
the assembled contigs [21,22]. Here we test if the quality
of assembly of real read data can be improved with clus-
tering. For the assembly component we use Velvet [35],
one of the most popular assembly tool for NGS data. We
study two genomes: Helicobacter Pylori and Zymomonas
Mobilis. We download the reads datasets SRR023794 and
SRR017901, of about 117 and 23.5 MBases respectively,
corresponding to 10× coverage. We apply the clustering
algorithms, with k = 3, and divide the datasets of reads in
two and three clusters. Then we produce an assembly, as a
set of contigs, for each cluster using Velvet and we merged
the generated contigs. In order to evaluate the clustering
quality, we compare this merged set with the assembly,
without clustering, using of the whole set of reads. Com-
monly used metrics such as number of contigs, N50 and
percentage of mapped contigs are presented in Tables 5
and 6. When merging contigs from different clusters,
some contig might be very similar or they can cover the
same region of the genome, this can artificially increase
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Table 2 Recall rates of clustering of mRNA simulated reads (10000 reads of length 200) for different measures, error
rates, number of clusters and parameter k

k = 2 k = 3

(a) (b)

Distance No errors 3% 5% 10% No errors 3% 5% 10%

2 clusters 2 clusters

D∗
2 0,815 0,813 0,810 0,801 0,822 0,819 0,814 0,794

D∗q
2 AQP 0,815 0,815 0,813 0,810 0,822 0,822 0,820 0,809

D∗q
2 AQP q-red 0,815 0,815 0,813 0,810 0,822 0,822 0,820 0,807

D∗q
2 AWP 0,809 0,806 0,805 0,802 0,809 0,807 0,805 0,802

D∗q
2 AWP q-red 0,809 0,806 0,805 0,802 0,809 0,807 0,805 0,802

L2 0,811 0,807 0,806 0,801 0,810 0,806 0,805 0,801

KL 0,812 0,809 0,807 0,802 0,812 0,809 0,807 0,802

Symm, KL 0,812 0,809 0,807 0,802 0,812 0,808 0,806 0,802

D2 0,811 0,807 0,806 0,801 0,809 0,806 0,805 0,800

3 clusters 3 clusters

D∗
2 0,695 0,689 0,683 0,662 0,717 0,707 0,697 0,668

D∗q
2 AQP 0,695 0,696 0,696 0,689 0,717 0,711 0,705 0,679

D∗q
2 AQP q-red 0,695 0,696 0,696 0,691 0,717 0,712 0,704 0,681

D∗q
2 AWP 0,653 0,646 0,646 0,638 0,668 0,662 0,655 0,646

D∗q
2 AWP q-red 0,653 0,646 0,645 0,637 0,668 0,662 0,655 0,644

L2 0,682 0,673 0,671 0,657 0,685 0,677 0,674 0,663

KL 0,694 0,687 0,685 0,672 0,696 0,689 0,687 0,675

Symm, KL 0,693 0,686 0,684 0,669 0,695 0,688 0,685 0,673

D2 0,675 0,668 0,662 0,654 0,675 0,671 0,665 0,655

4 clusters 4 clusters

D∗
2 0,623 0,613 0,606 0,574 0,627 0,616 0,591 0,551

D∗q
2 AQP 0,622 0,621 0,618 0,602 0,628 0,617 0,602 0,572

D∗q
2 AQP q-red 0,622 0,622 0,619 0,605 0,628 0,617 0,603 0,573

D∗q
2 AWP 0,580 0,563 0,566 0,535 0,582 0,571 0,572 0,555

D∗q
2 AWP q-red 0,580 0,560 0,565 0,533 0,582 0,570 0,570 0,555

L2 0,554 0,551 0,547 0,540 0,568 0,565 0,553 0,543

KL 0,555 0,548 0,545 0,536 0,566 0,558 0,547 0,537

Symm, KL 0,556 0,549 0,546 0,538 0,562 0,554 0,547 0,539

D2 0,553 0,547 0,547 0,538 0,556 0,549 0,548 0,540

5 clusters 5 clusters

D∗
2 0,553 0,539 0,532 0,500 0,560 0,534 0,512 0,462

D∗q
2 AQP 0,554 0,545 0,551 0,532 0,560 0,544 0,524 0,489

D∗q
2 AQP q-red 0,553 0,544 0,550 0,533 0,561 0,545 0,531 0,487

D∗q
2 AWP 0,483 0,475 0,470 0,463 0,509 0,494 0,485 0,470

D∗q
2 AWP q-red 0,483 0,475 0,470 0,461 0,509 0,494 0,482 0,470

L2 0,478 0,472 0,465 0,453 0,500 0,495 0,486 0,465

KL 0,498 0,488 0,484 0,468 0,507 0,501 0,492 0,476

Symm, KL 0,498 0,488 0,484 0,468 0,507 0,500 0,491 0,474

D2 0,470 0,464 0,457 0,449 0,488 0,482 0,476 0,455

Best results are in bold.
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Table 3 Recall rates of clustering of mRNA simulated reads (reads of length 200, k = 2 and 2 clusters) for different
measures, different types of errors and number of reads

Distance No errors Mismatch= 10% Insertion= 10% Deletion= 10%
Mismatch= 10% Mismatch= 10%

500 reads

D∗
2 0.86445887 0.83981814 0.79073482 0.80640363

D∗q
2 AQP 0.86441326 0.86694192 0.86376933 0.85925575

D∗q
2 AQP q-red 0.86441326 0.86375045 0.85782736 0.85818320

D∗q
2 AWP 0.86723257 0.85428665 0.84756397 0.85088665

D∗q
2 AWP q-red 0.86723257 0.85613671 0.85305013 0.85504185

L2 0.86114263 0.85504302 0.85105192 0.85118905

D2 0.86258900 0.85247832 0.84995366 0.85110380

KL 0.87235487 0.85916040 0.85026923 0.85475077

Simm, KL 0.86712365 0.85695963 0.84730941 0.85418699

1000 reads

0.86594479 0.83906192 0.78782226 0.80686962

D∗q
2 AQP 0.86599548 0.86400152 0.86423642 0.85659489

D∗q
2 AQP q-red 0.86600096 0.86099042 0.85469494 0.85441545

D∗q
2 AWP 0.86790093 0.85433807 0.84230775 0.84839892

D∗q
2 AWP q-red 0.86790093 0.85770704 0.85062824 0.85104321

L2 0.86216987 0.85477261 0.84904670 0.85024936

D2 0.86058645 0.85312555 0.84767965 0.85043005

KL 0.87048717 0.85667036 0.85002398 0.85088847

Simm, KL 0.86919513 0.85488101 0.84896184 0.84950072

2000 reads

D∗
2 0.86307749 0.83460148 0.78680210 0.81273009

D∗q
2 AQP 0.86306541 0.86490821 0.86432381 0.85783381

D∗q
2 AQP q-red 0.86306541 0.86129411 0.85330127 0.85111236

D∗q
2 AWP 0.86305839 0.85432677 0.84295441 0.85043303

D∗q
2 AWP q-red 0.86306276 0.85799349 0.84868427 0.85289041

L2 0.86125521 0.85265296 0.84487856 0.84694314

D2 0.85971734 0.85283644 0.84325115 0.84899721

KL 0.86990625 0.85621086 0.84559916 0.85108524

Simm, KL 0.86827273 0.85433859 0.84321338 0.85010800

3000 reads

D∗
2 0.86131992 0.83027426 0.79355066 0.81057286

D∗q
2 AQP 0.86134064 0.86519721 0.86235323 0.85792626

D∗q
2 AQP q-red 0.86128705 0.85978356 0.85252267 0.85262847

D∗q
2 AWP 0.86477422 0.85334750 0.84374378 0.84947286

D∗q
2 AWP q-red 0.86477422 0.85637033 0.84850933 0.85162186

L2 0.86370337 0.85297951 0.84525794 0.84901375

D2 0.86242736 0.85271505 0.84384526 0.84832590

KL 0.86934393 0.85488377 0.84531374 0.85014251

Simm, KL 0.86580244 0.85353783 0.84308462 0.84878825
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Table 3 Recall rates of clustering of mRNA simulated reads (reads of length 200, k = 2 and 2 clusters) for different
measures, different types of errors and number of reads (Continued)

Distance No errors Mismatch= 10% Insertion= 10% Deletion= 10%
Mismatch= 10% Mismatch= 10%

5000 reads

D∗
2 0.86179886 0.83217374 0.79345107 0.80917623

D∗q
2 AQP 0.86166330 0.86412834 0.86385592 0.86064860

D∗q
2 AQP q-red 0.86166519 0.85559541 0.85133437 0.85345570

D∗q
2 AWP 0.86317541 0.85224352 0.84168072 0.84837070

D∗q
2 AWP q-red 0.86317541 0.85543020 0.84770910 0.85121979

L2 0.86262435 0.85243814 0.84436053 0.84898583

D2 0.86122271 0.85167640 0.84308556 0.84801094

KL 0.86792997 0.85473650 0.84431637 0.84985690

Simm, KL 0.86488656 0.85297623 0.84262083 0.84815285

Best results are in bold.

Table 4 Recall rates for clustering of mRNA simulated reads(10000 reads, k = 3, 4 clusters) for different measures, error
rates and read length

read length= 300 read length= 400

(a) (b)

Distance No errors 3% 5% 10% No Errors 3% 5% 10%

4 clusters 4 clusters

D∗
2 0,680 0,667 0,658 0,625 0,713 0,700 0,697 0,672

D∗q
2 AQP 0,680 0,672 0,673 0,650 0,713 0,712 0,710 0,693

D∗q
2 AQP q-red 0,680 0,671 0,673 0,650 0,713 0,711 0,711 0,694

D∗q
2 AWP 0,616 0,610 0,608 0,601 0,643 0,636 0,632 0,623

D∗q
2 AWP q-red 0,616 0,610 0,607 0,602 0,643 0,635 0,631 0,622

L2 0,610 0,600 0,602 0,581 0,638 0,630 0,624 0,614

KL 0,617 0,604 0,601 0,577 0,649 0,632 0,628 0,618

Symm, KL 0,613 0,603 0,599 0,576 0,647 0,632 0,627 0,616

D2 0,601 0,593 0,588 0,575 0,626 0,618 0,615 0,604

Best results are in bold.

Table 5 Comparison of assembly with and without clustering preprocess (k = 3, 2 clusters)

Distance Mapped contigs N50 Number of contigs Genome coverage

No Clustering 93.55% 112 22823 0,828

D∗q
2 AQP q-red 94.13% 141 29421 0,920

D∗
2 93.97% 138 28701 0,914

L2 94.24% 135 28297 0,904

KL 94.19% 135 28171 0,903

Symm, KL 94.27% 134 27999 0,902

D2 94.33% 134 28019 0,903

The assembly with Velvet is evaluated in terms of mapped contigs, N50, number of contigs and genome coverage. The dataset used is SRR017901 (23.5M bases,
10x coverage) that contains reads of Zymomonasmobilis. Best results are in bold.
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Table 6 Comparison of assembly with and without clustering preprocess (k = 3, 3 clusters)

Distance Mapped contigs N50 Number of contigs Genome coverage

No Clustering 96.97% 122 16724 0.729

D∗q
2 AQP q-red 98.49% 175 41086 0.994

D∗
2 98.38% 174 40156 0.994

L2 98.16% 175 36798 0.986

KL 98.28% 178 37717 0.990

Simm, KL 98.30% 182 37217 0.990

D2 98.22% 186 34866 0.987

The assembly with Velvet is evaluated in terms of mapped contigs, N50, number of contigs and genome coverage. The dataset used is SRR023794 (117MBases) that
contains reads of Helicobacter Pylori. Best results are in bold.

these values. Thus we compute also a less biased measure
that is the percentage of the genome that is covered by the
contigs (last column).
In this set of experiments the introduction of clustering

as a preprocessing step increases the number of contigs
and the N50. More relevant is the fact that the genome
coverage is incremented by 10%with respect to the assem-
bly without clustering. The relative performance between
the distance measures is very similar to the case with
simulated data. In fact D∗q

2 with expectation AQP and
quality redistribution is again the best performing. More
experiments should be conducted in order to prove that
assembly can benefit from the clustering preprocessing.
However this first preliminary tests show that, at least for
some configuration, a 10% improvement on the genome
coverage can be obtained. The time required to performed
the above experiments are in general less than a minute
on a modern laptop with an Intel i7 and 8Gb of ram.
The introduction of quality values typically increases the
running time by 4% compared to standard alignment-free
methods.

Clustering metagenomic reads
Another application, where the use of clustering tech-
niques might be of help, is the classification of metage-
nomic reads. Modern sequencing machines are capable
of sequencing several genomes at the same time, more
precisely the input can be a microbiome community com-
posed of thousands of different organisms. If the refer-
ence genomes are not available, or we don’t know all the
organisms being sequenced, clustering techniques can be
used to group together reads with the same word dis-
tribution that presumably come from the same genome.
To test our quality based measure on this challeng-
ing task we devise a simple preliminary test. We con-
sider the reads of the following four different organisms:
Helicobacter pylori (SRR023794), Zymomonas mobilis
(SRR017901), E.coli (FXAWNEV04) and Legionella pneu-
mophila (ERR164429). These datasets contain reads of
length between 150 to 350 bases. We create a single

mixture of reads by sampling the same number of reads
from each organisms. Then we tested how well cluster-
ing techniques can recover the original taxonomy of each
genome in this artificial dataset. In Table 7 we report
the recall rates for different alignment-free measures.
Surprisingly, without knowing any reference genome, we
can classify correctly about 80% of reads. Again quality
based methods have a small advantage over traditional
alignment-free techniques. This is just a preliminary test,
however we believe that the classification of metagenomic
reads with alignment-free methods deserved to be further
investigated.

Conclusions
The comparison of reads with quality values is essentials
in many genome projects. Moreover, the importance of
quality values will increase in the near future with the
advent of future sequencing technologies, that promise to
produce long reads, but with up to 15% error rates. In this
paper we presented a family of alignment-free measures,
called Dq-type, that incorporate quality value information
and k-mers counts for the comparison of reads data. A
set of experiments on simulated and real reads data con-
firms that the newmeasures are superior to other classical

Table 7 Metagenomic reads classification of Helicobacter
pylori (SRR023794), Zymomonasmobilis (SRR017901), E.coli
(FXAWNEV04) and Legionella pneumophila (ERR164429)

Distance 4 cluster 3 cluster

D∗
2 0.79782297 0.79129356

D∗q
2 AQP q-red 0.79775189 0.76920676

D∗q
2 AWP q-red 0.80050234 0.82603989

L2 0.64335292 0.73455525

KL 0.78663484 0.80525234

Simm, KL 0.77196713 0.79216786

D2 0.73917085 0.77062424

The recall rates for different measures with k = 4 and 3 and 4 clusters. Best
results are in bold.
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alignment-free statistics, especially when erroneous reads
are considered. If quality information are used, D∗q

2 out-
performs all other methods and the advantage grows with
the error rate and with the length of reads. This con-
firms that the use of quality values can improve clustering
accuracy.
Furthermore, preliminary experiments on real reads

data show that the quality of assembly can be improved
by using clustering as preprocessing. Also metagenomic
reads classification can be addressed with these statis-
tics, especially when the reference genomes are unknown.
All these measures are implemented in a software called
QCluster. As a future work we plan investigate other
applications like genome diversity estimation and meta-
genome assembly in which the impact of reads clustering
might be substantial.

Endnote
aa preliminary version of this work as been presented at

WABI 2014 [36].
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