112 research outputs found

    Advances in pre-processing and model generation for mass spectrometric data analysis

    Get PDF
    The analysis of complex signals as obtained by mass spectrometric measurements is complicated and needs an appropriate representation of the data. Thereby the kind of preprocessing, feature extraction as well as the used similarity measure are of particular importance. Focusing on biomarker analysis and taking the functional nature of the data into account this task is even more complicated. A new mass spectrometry tailored data preprocessing is shown, discussed and analyzed in a clinical proteom study compared to a standard setting

    Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: an untargeted lipidomic study

    Get PDF
    Cervical cancer is still an important issue of public health since it is the fourth most frequent type of cancer in women worldwide. Much effort has been dedicated to combating this cancer, in particular by the early detection of cervical pre-cancerous lesions. For this purpose, this paper reports the use of mass spectrometry coupled with multivariate analysis as an untargeted lipidomic approach to classifying 76 blood plasma samples into negative for intraepithelial lesion or malignancy (NILM, n = 42) and squamous intraepithelial lesion (SIL, n = 34). The crude lipid extract was directly analyzed with mass spectrometry for untargeted lipidomics, followed by multivariate analysis based on the principal component analysis (PCA) and genetic algorithm (GA) with support vector machines (SVM), linear (LDA) and quadratic (QDA) discriminant analysis. PCA-SVM models outperformed LDA and QDA results, achieving sensitivity and specificity values of 80.0% and 83.3%, respectively. Five types of lipids contributing to the distinction between NILM and SIL classes were identified, including prostaglandins, phospholipids, and sphingolipids for the former condition and Tetranor-PGFM and hydroperoxide lipid for the latter. These findings highlight the potentiality of using mass spectrometry associated with chemometrics to discriminate between healthy women and those suffering from cervical pre-cancerous lesions

    Adaptive distance measures for sequential data

    Get PDF
    Mokbel B, Paaßen B, Hammer B. Adaptive distance measures for sequential data. In: Verleysen M, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com; 2014: 265-270.Recent extensions of learning vector quantization (LVQ) to general (dis-)similarity data have paved the way towards LVQ classifiers for possibly discrete, structured objects such as sequences addressed by classical alignment. In this contribution, we propose a metric learning scheme based on this framework which allows for autonomous learning of the underlying scoring matrix according to a given discriminative task. Besides facilitating the often crucial and problematic choice of the scoring matrix in applications, this extension offers an increased interpretability of the results by pointing out structural invariances for the given task

    Optimized data processing algorithms for biomarker discovery by LC-MS

    Get PDF
    This thesis reports techniques and optimization of algorithms to analyse label-free LC-MS data sets for clinical proteomics studies with an emphasis on time alignment algorithms and feature selection methods. The presented work is intended to support ongoing medical and biomarker research. The thesis starts with a review of important steps in a data processing pipeline of label-free Liquid Chromatography – Mass Spectrometry (LC-MS) data. The first part of the thesis discusses an optimization strategy for aligning complex LC-MS chromatograms. It explains the combination of time alignment algorithms (Correlation Optimized Warping, Parametric Time Warping and Dynamic Time Warping) with a Component Detection Algorithm to overcome limitations of the original methods that use Total Ion Chromatograms when applied to highly complex data. A novel reference selection method to facilitate the pre-alignment process and an approach to globally compare the quality of time alignment using overlapping peak area are introduced and used in the study. The second part of this thesis highlights an ongoing challenge faced in the field of biomarker discovery where improvements in instrument resolution coupled with low sample numbers has led to a large discrepancy between the number of measurements and the number of measured variables. A comparative study of various commonly used feature selection methods for tackling this problem is presented. These methods are applied to spiked urine data sets with variable sample size and class separation to mimic typical conditions of biomarker research. Finally, the summary and the remaining challenges in the data processing field are summarized at the end of this thesis.

    Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer, like other diseases accompanied by strong metabolic disorders, shows characteristic effects on cell turnover rate, activity of modifying enzymes and DNA/RNA modifications, resulting also in elevated amounts of excreted modified nucleosides. For a better understanding of the impaired RNA metabolism in breast cancer cells, we screened these metabolites in the cell culture supernatants of the breast cancer cell line MCF-7 and compared it to the human mammary epithelial cells MCF-10A. The nucleosides were isolated and analyzed via 2D-chromatographic techniques: In the first dimension by cis-diol specific boronate affinity extraction and subsequently by reversed phase chromatography coupled to an ion trap mass spectrometer.</p> <p>Results</p> <p>Besides the determination of ribonucleosides, additional compounds with cis-diol structure, deriving from cross-linked biochemical pathways, like purine-, histidine- and polyamine metabolism were detected. In total, 36 metabolites were identified by comparison of fragmentation patterns and retention time. Relation to the internal standard isoguanosine yielded normalized area ratios for each identified compound and enabled a semi-quantitative metabolic signature of both analyzed cell lines.</p> <p>13 of the identified 26 modified ribonucleosides were elevated in the cell culture supernatants of MCF-7 cells, with 5-methyluridine, <it>N</it><sup>2</sup>,<it>N</it><sup>2</sup>,7-trimethylguanosine, <it>N</it><sup>6</sup>-methyl-<it>N</it><sup>6</sup>-threonylcarbamoyladenosine and 3-(3-aminocarboxypropyl)-uridine showing the most significant differences. 1-ribosylimidazole-4-acetic acid, a histamine metabolite, was solely found in the supernatants of MCF-10A cells, whereas 1-ribosyl-4-carboxamido-5-aminoimidazole and S-adenosylmethionine occurred only in supernatants of MCF-7 cells.</p> <p>Conclusion</p> <p>The obtained results are discussed against the background of pathological changes in cell metabolism, resulting in new perspectives for modified nucleosides and related metabolites as possible biomedical markers for breast carcinoma <it>in vivo</it>.</p

    Efficient Adaptation of Structure Metrics in Prototype-Based Classification

    Get PDF
    Mokbel B, Paaßen B, Hammer B. Efficient Adaptation of Structure Metrics in Prototype-Based Classification. In: Wermter S, Weber C, Duch W, et al., eds. Artificial Neural Networks and Machine Learning - ICANN 2014 - 24th International Conference on Artificial Neural Networks, Hamburg, Germany, September 15-19, 2014. Proceedings. Lecture Notes in Computer Science. Vol 8681. Springer; 2014: 571-578.More complex data formats and dedicated structure metrics have spurred the development of intuitive machine learning techniques which directly deal with dissimilarity data, such as relational learning vector quantization (RLVQ). The adjustment of metric parameters like relevance weights for basic structural elements constitutes a crucial issue therein, and first methods to automatically learn metric parameters from given data were proposed recently. In this contribution, we investigate a robust learning scheme to adapt metric parameters such as the scoring matrix in sequence alignment in conjunction with prototype learning, and we investigate the suitability of efficient approximations thereof
    • …
    corecore