6 research outputs found

    Knowledge Transfer for Melanoma Screening with Deep Learning

    Full text link
    Knowledge transfer impacts the performance of deep learning -- the state of the art for image classification tasks, including automated melanoma screening. Deep learning's greed for large amounts of training data poses a challenge for medical tasks, which we can alleviate by recycling knowledge from models trained on different tasks, in a scheme called transfer learning. Although much of the best art on automated melanoma screening employs some form of transfer learning, a systematic evaluation was missing. Here we investigate the presence of transfer, from which task the transfer is sourced, and the application of fine tuning (i.e., retraining of the deep learning model after transfer). We also test the impact of picking deeper (and more expensive) models. Our results favor deeper models, pre-trained over ImageNet, with fine-tuning, reaching an AUC of 80.7% and 84.5% for the two skin-lesion datasets evaluated.Comment: 4 page

    Agreement Between Experts and an Untrained Crowd for Identifying Dermoscopic Features Using a Gamified App: Reader Feasibility Study

    Full text link
    Background Dermoscopy is commonly used for the evaluation of pigmented lesions, but agreement between experts for identification of dermoscopic structures is known to be relatively poor. Expert labeling of medical data is a bottleneck in the development of machine learning (ML) tools, and crowdsourcing has been demonstrated as a cost- and time-efficient method for the annotation of medical images. Objective The aim of this study is to demonstrate that crowdsourcing can be used to label basic dermoscopic structures from images of pigmented lesions with similar reliability to a group of experts. Methods First, we obtained labels of 248 images of melanocytic lesions with 31 dermoscopic “subfeatures” labeled by 20 dermoscopy experts. These were then collapsed into 6 dermoscopic “superfeatures” based on structural similarity, due to low interrater reliability (IRR): dots, globules, lines, network structures, regression structures, and vessels. These images were then used as the gold standard for the crowd study. The commercial platform DiagnosUs was used to obtain annotations from a nonexpert crowd for the presence or absence of the 6 superfeatures in each of the 248 images. We replicated this methodology with a group of 7 dermatologists to allow direct comparison with the nonexpert crowd. The Cohen Îș value was used to measure agreement across raters. Results In total, we obtained 139,731 ratings of the 6 dermoscopic superfeatures from the crowd. There was relatively lower agreement for the identification of dots and globules (the median Îș values were 0.526 and 0.395, respectively), whereas network structures and vessels showed the highest agreement (the median Îș values were 0.581 and 0.798, respectively). This pattern was also seen among the expert raters, who had median Îș values of 0.483 and 0.517 for dots and globules, respectively, and 0.758 and 0.790 for network structures and vessels. The median Îș values between nonexperts and thresholded average–expert readers were 0.709 for dots, 0.719 for globules, 0.714 for lines, 0.838 for network structures, 0.818 for regression structures, and 0.728 for vessels. Conclusions This study confirmed that IRR for different dermoscopic features varied among a group of experts; a similar pattern was observed in a nonexpert crowd. There was good or excellent agreement for each of the 6 superfeatures between the crowd and the experts, highlighting the similar reliability of the crowd for labeling dermoscopic images. This confirms the feasibility and dependability of using crowdsourcing as a scalable solution to annotate large sets of dermoscopic images, with several potential clinical and educational applications, including the development of novel, explainable ML tools

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Genetic Programming based Feature Manipulation for Skin Cancer Image Classification

    Get PDF
    Skin image classification involves the development of computational methods for solving problems such as cancer detection in lesion images, and their use for biomedical research and clinical care. Such methods aim at extracting relevant information or knowledge from skin images that can significantly assist in the early detection of disease. Skin images are enormous, and come with various artifacts that hinder effective feature extraction leading to inaccurate classification. Feature selection and feature construction can significantly reduce the amount of data while improving classification performance by selecting prominent features and constructing high-level features. Existing approaches mostly rely on expert intervention and follow multiple stages for pre-processing, feature extraction, and classification, which decreases the reliability, and increases the computational complexity. Since good generalization accuracy is not always the primary objective, clinicians are also interested in analyzing specific features such as pigment network, streaks, and blobs responsible for developing the disease; interpretable methods are favored. In Evolutionary Computation, Genetic Programming (GP) can automatically evolve an interpretable model and address the curse of dimensionality (through feature selection and construction). GP has been successfully applied to many areas, but its potential for feature selection, feature construction, and classification in skin images has not been thoroughly investigated. The overall goal of this thesis is to develop a new GP approach to skin image classification by utilizing GP to evolve programs that are capable of automatically selecting prominent image features, constructing new high level features, interpreting useful image features which can help dermatologist to diagnose a type of cancer, and are robust to processing skin images captured from specialized instruments and standard cameras. This thesis focuses on utilizing a wide range of texture, color, frequency-based, local, and global image properties at the terminal nodes of GP to classify skin cancer images from multiple modalities effectively. This thesis develops new two-stage GP methods using embedded and wrapper feature selection and construction approaches to automatically generating a feature vector of selected and constructed features for classification. The results show that wrapper approach outperforms the embedded approach, the existing baseline GP and other machine learning methods, but the embedded approach is faster than the wrapper approach. This thesis develops a multi-tree GP based embedded feature selection approach for melanoma detection using domain specific and domain independent features. It explores suitable crossover and mutation operators to evolve GP classifiers effectively and further extends this approach using a weighted fitness function. The results show that these multi-tree approaches outperformed single tree GP and other classification methods. They identify that a specific feature extraction method extracts most suitable features for particular images taken from a specific optical instrument. This thesis develops the first GP method utilizing frequency-based wavelet features, where the wrapper based feature selection and construction methods automatically evolve useful constructed features to improve the classification performance. The results show the evidence of successful feature construction by significantly outperforming existing GP approaches, state-of-the-art CNN, and other classification methods. This thesis develops a GP approach to multiple feature construction for ensemble learning in classification. The results show that the ensemble method outperformed existing GP approaches, state-of-the-art skin image classification, and commonly used ensemble methods. Further analysis of the evolved constructed features identified important image features that can potentially help the dermatologist identify further medical procedures in real-world situations
    corecore