472 research outputs found

    Optimum graph cuts for pruning binary partition trees of polarimetric SAR images

    Get PDF
    This paper investigates several optimum graph-cut techniques for pruning binary partition trees (BPTs) and their usefulness for the low-level processing of polarimetric synthetic aperture radar (PolSAR) images. BPTs group pixels to form homogeneous regions, which are hierarchically structured by inclusion in a binary tree. They provide multiple resolutions of description and easy access to subsets of regions. Once constructed, BPTs can be used for a large number of applications. Many of these applications consist in populating the tree with a specific feature and in applying a graph cut called pruning to extract a partition of the space. In this paper, different pruning examples involving the optimization of a global criterion are discussed and analyzed in the context of PolSAR images for segmentation. Through the objective evaluation of the resulting partitions by means of precision-and-recall-for-boundaries curves, the best pruning technique is identified, and the influence of the tree construction on the performances is assessed.Peer ReviewedPostprint (author's final draft

    Analytic Expressions for Stochastic Distances Between Relaxed Complex Wishart Distributions

    Full text link
    The scaled complex Wishart distribution is a widely used model for multilook full polarimetric SAR data whose adequacy has been attested in the literature. Classification, segmentation, and image analysis techniques which depend on this model have been devised, and many of them employ some type of dissimilarity measure. In this paper we derive analytic expressions for four stochastic distances between relaxed scaled complex Wishart distributions in their most general form and in important particular cases. Using these distances, inequalities are obtained which lead to new ways of deriving the Bartlett and revised Wishart distances. The expressiveness of the four analytic distances is assessed with respect to the variation of parameters. Such distances are then used for deriving new tests statistics, which are proved to have asymptotic chi-square distribution. Adopting the test size as a comparison criterion, a sensitivity study is performed by means of Monte Carlo experiments suggesting that the Bhattacharyya statistic outperforms all the others. The power of the tests is also assessed. Applications to actual data illustrate the discrimination and homogeneity identification capabilities of these distances.Comment: Accepted for publication in the IEEE Transactions on Geoscience and Remote Sensing journa

    Fuzzy superpixels for polarimetric SAR images classification

    Get PDF
    Superpixels technique has drawn much attention in computer vision applications. Each superpixels algorithm has its own advantages. Selecting a more appropriate superpixels algorithm for a specific application can improve the performance of the application. In the last few years, superpixels are widely used in polarimetric synthetic aperture radar (PolSAR) image classification. However, no superpixel algorithm is especially designed for image classification. It is believed that both mixed superpixels and pure superpixels exist in an image.Nevertheless, mixed superpixels have negative effects on classification accuracy. Thus, it is necessary to generate superpixels containing as few mixed superpixels as possible for image classification. In this paper, first, a novel superpixels concept, named fuzzy superpixels, is proposed for reducing the generation of mixed superpixels.In fuzzy superpixels ,not al lpixels are assigned to a corresponding superpixel. We would rather ignore the pixels than assigning them to improper superpixels. Second,a new algorithm, named FuzzyS(FS),is proposed to generate fuzzy superpixels for PolSAR image classification. Three PolSAR images are used to verify the effect of the proposed FS algorithm. Experimental results demonstrate the superiority of the proposed FS algorithm over several state-of-the-art superpixels algorithms

    A Content Based Region Separation and Analysis Approach for SAR Image Classification

    Get PDF
    SAR images are the images captured through satellite or radar to monitor the specific geographical area or to extract any information regarding the geographical structure. This information can be used to recognize the land areas or regions with specific features such as identification of water area or flood area etc. But the images captured from satellite covers larger land regions with multiple scene pictures. To recognize the specific land area, it is required to process all the images with defined constraints to identify the particular region. The images or the image features can be trained under some classification method to categorize the land regions. There are various supervised and unsupervised classification methods to classify the SAR images. But the SAR images are high resolution images with multiple region types in same images. Because of this, the existing methods are not fully capable to classify the regions accurately. There is the requirement of more effective classification that can identify the land regions more adaptively

    Fuzzy Superpixels based Semi-supervised Similarity-constrained CNN for PolSAR Image Classification

    Get PDF
    Recently, deep learning has been highly successful in image classification. Labeling the PolSAR data, however, is time-consuming and laborious and in response semi-supervised deep learning has been increasingly investigated in PolSAR image classification. Semi-supervised deep learning methods for PolSAR image classification can be broadly divided into two categories, namely pixels-based methods and superpixels-based methods. Pixels-based semi-supervised methods are liable to be affected by speckle noises and have a relatively high computational complexity. Superpixels-based methods focus on the superpixels and ignore tiny detail-preserving represented by pixels. In this paper, a Fuzzy superpixels based Semi-supervised Similarity-constrained CNN (FS-SCNN) is proposed. To reduce the effect of speckle noises and preserve the details, FS-SCNN uses a fuzzy superpixels algorithm to segment an image into two parts, superpixels and undetermined pixels. Moreover, the fuzzy superpixels algorithm can also reduce the number of mixed superpixels and improve classification performance. To exploit unlabeled data effectively, we also propose a Similarity-constrained Convolutional Neural Network (SCNN) model to assign pseudo labels to unlabeled data. The final training set consists of the initial labeled data and these pseudo labeled data. Three PolSAR images are used to demonstrate the excellent classification performance of the FS-SCNN method with data of limited labels

    Remote Sensing for Non‐Technical Survey

    Get PDF
    This chapter describes the research activities of the Royal Military Academy on remote sensing applied to mine action. Remote sensing can be used to detect specific features that could lead to the suspicion of the presence, or absence, of mines. Work on the automatic detection of trenches and craters is presented here. Land cover can be extracted and is quite useful to help mine action. We present here a classification method based on Gabor filters. The relief of a region helps analysts to understand where mines could have been laid. Methods to be a digital terrain model from a digital surface model are explained. The special case of multi‐spectral classification is also addressed in this chapter. Discussion about data fusion is also given. Hyper‐spectral data are also addressed with a change detection method. Synthetic aperture radar data and its fusion with optical data have been studied. Radar interferometry and polarimetry are also addressed
    corecore