1,367 research outputs found

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode

    Computer Vision for Volunteer Cotton Detection in a Corn Field with UAS Remote Sensing Imagery and Spot Spray Applications

    Full text link
    To control boll weevil (Anthonomus grandis L.) pest re-infestation in cotton fields, the current practices of volunteer cotton (VC) (Gossypium hirsutum L.) plant detection in fields of rotation crops like corn (Zea mays L.) and sorghum (Sorghum bicolor L.) involve manual field scouting at the edges of fields. This leads to many VC plants growing in the middle of fields remain undetected that continue to grow side by side along with corn and sorghum. When they reach pinhead squaring stage (5-6 leaves), they can serve as hosts for the boll weevil pests. Therefore, it is required to detect, locate and then precisely spot-spray them with chemicals. In this paper, we present the application of YOLOv5m on radiometrically and gamma-corrected low resolution (1.2 Megapixel) multispectral imagery for detecting and locating VC plants growing in the middle of tasseling (VT) growth stage of cornfield. Our results show that VC plants can be detected with a mean average precision (mAP) of 79% and classification accuracy of 78% on images of size 1207 x 923 pixels at an average inference speed of nearly 47 frames per second (FPS) on NVIDIA Tesla P100 GPU-16GB and 0.4 FPS on NVIDIA Jetson TX2 GPU. We also demonstrate the application of a customized unmanned aircraft systems (UAS) for spot-spray applications based on the developed computer vision (CV) algorithm and how it can be used for near real-time detection and mitigation of VC plants growing in corn fields for efficient management of the boll weevil pests.Comment: 39 page

    Hyperspectral Endmember Extraction Techniques

    Get PDF
    Hyperspectral data processing and analysis mainly plays a vital role in detection, identification, discrimination and estimation of earth surface materials. It involves atmospheric correction, dimensionality reduction, endmember extraction, spectral unmixing and classification phases. One of the ultimate aims of hyperspectral data processing and analysis is to achieve high classification accuracy. The classification accuracy of hyperspectral data most probably depends upon image-derived endmembers. Ideally, an endmember is defined as a spectrally unique, idealized and pure signature of a surface material. Extraction of consistent and desired endmember is one of the important criteria to achieve the high accuracy of hyperspectral data classification and spectral unmixing. Several methods, strategies and algorithms are proposed by various researchers to extract the endmembers from hyperspectral imagery. Most of these techniques and algorithms are significantly dependent on user-defined input parameters, and this issue is subjective because there is no standard specificity about these input parameters. This leads to inconsistencies in overall endmember extraction. To resolve the aforementioned problems, systematic, generic, robust and automated mechanism of endmember extraction is required. This chapter gives and highlights the generic approach of endmember extraction with popular algorithm limitations and challenges

    Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization

    Get PDF
    Hyperspectral remote sensing images contain hundreds of data channels. Due to the high dimensionality of the hyperspectral data, it is difficult to design accurate and efficient image segmentation algorithms for such imagery. In this paper, a new multilevel thresholding method is introduced for the segmentation of hyperspectral and multispectral images. The new method is based on fractional-order Darwinian particle swarm optimization (FODPSO) which exploits the many swarms of test solutions that may exist at any time. In addition, the concept of fractional derivative is used to control the convergence rate of particles. In this paper, the so-called Otsu problem is solved for each channel of the multispectral and hyperspectral data. Therefore, the problem of n-level thresholding is reduced to an optimization problem in order to search for the thresholds that maximize the between-class variance. Experimental results are favorable for the FODPSO when compared to other bioinspired methods for multilevel segmentation of multispectral and hyperspectral images. The FODPSO presents a statistically significant improvement in terms of both CPU time and fitness value, i.e., the approach is able to find the optimal set of thresholds with a larger between-class variance in less computational time than the other approaches. In addition, a new classification approach based on support vector machine (SVM) and FODPSO is introduced in this paper. Results confirm that the new segmentation method is able to improve upon results obtained with the standard SVM in terms of classification accuracies.Sponsored by: IEEE Geoscience and Remote Sensing SocietyRitrýnt tímaritPeer reviewedPre prin

    Discovering similarities in Landsat satellite images using the Kmeans method

    Get PDF
    This article different ways for the treatment and identification of similarities in satellite images. By means of the systematic review of the literature it is possible to know the different existing forms for the treatment of this type of objects and by means of the implementation that is described, the operation of the K-means algorithm is shown to help the segmentation and analysis of characteristics associated to the color. In this type of objects, a descriptive analysis of the results thrown by the method is finally carried out
    corecore