829 research outputs found

    Classification of index partitions to boost XML query performance

    Get PDF
    XML query optimization continues to occupy considerable research effort due to the increasing usage of XML data. Despite many innovations over recent years, XML databases struggle to compete with more traditional database systems. Rather than using node indexes, some efforts have begun to focus on creating partitions of nodes within indexes. The motivation is to quickly eliminate large sections of the XML tree based on the partition they occupy. In this research, we present one such partition index that is unlike current approaches in how it determines size and number of these partitions. Furthermore, we provide a process for compacting the index and reducing the number of node access operations in order to optimize XML queries

    Classification of Index Partitions to Boost XML Query Performance

    Full text link

    A node partitioning strategy for optimising the performance of XML queries

    Get PDF
    For ease of communication between heterogeneous systems, the eXtensible Markup Language (XML) has been widely adopted as a data storage format. However, XML query processing presents issues both in terms of query performance and updatability. Thus, many are choosing to shred XML data into relational databases in order to benet from its mature technology. The problem with this approach is that (often complex and time consuming) data transformation processes are required to transform XML data to relational tables and vice versa. Additionally, many of the benets of XML data can be lost during these processes. In this dissertation, we present a process that partitions nodes within an XML document into disjoint subsets. Briefly, as there are fewer partitions than there are nodes, a more efficient join operation can be performed between partitions, thus reducing the number of inefficient node comparisons. The number and size of partitions varies depending on the structure and layout in the XML document, and the number of partitions impacts query performance. Therefore, we also provide a partition classication process, which signicantly reduces the number of partitions because each partition class represents many equivalent partitions within the XML document. In this dissertation, we will demonstrate that our approach outperforms similar approaches for a large subset of XML queries by eliminating complex join operations (where possible) during the query process

    Feature Extraction and Duplicate Detection for Text Mining: A Survey

    Get PDF
    Text mining, also known as Intelligent Text Analysis is an important research area. It is very difficult to focus on the most appropriate information due to the high dimensionality of data. Feature Extraction is one of the important techniques in data reduction to discover the most important features. Proce- ssing massive amount of data stored in a unstructured form is a challenging task. Several pre-processing methods and algo- rithms are needed to extract useful features from huge amount of data. The survey covers different text summarization, classi- fication, clustering methods to discover useful features and also discovering query facets which are multiple groups of words or phrases that explain and summarize the content covered by a query thereby reducing time taken by the user. Dealing with collection of text documents, it is also very important to filter out duplicate data. Once duplicates are deleted, it is recommended to replace the removed duplicates. Hence we also review the literature on duplicate detection and data fusion (remove and replace duplicates).The survey provides existing text mining techniques to extract relevant features, detect duplicates and to replace the duplicate data to get fine grained knowledge to the user

    TREE-D-SEEK: A Framework for Retrieving Three-Dimensional Scenes

    Get PDF
    In this dissertation, a strategy and framework for retrieving 3D scenes is proposed. The strategy is to retrieve 3D scenes based on a unified approach for indexing content from disparate information sources and information levels. The TREE-D-SEEK framework implements the proposed strategy for retrieving 3D scenes and is capable of indexing content from a variety of corpora at distinct information levels. A semantic annotation model for indexing 3D scenes in the TREE-D-SEEK framework is also proposed. The semantic annotation model is based on an ontology for rapid prototyping of 3D virtual worlds. With ongoing improvements in computer hardware and 3D technology, the cost associated with the acquisition, production and deployment of 3D scenes is decreasing. As a consequence, there is a need for efficient 3D retrieval systems for the increasing number of 3D scenes in corpora. An efficient 3D retrieval system provides several benefits such as enhanced sharing and reuse of 3D scenes and 3D content. Existing 3D retrieval systems are closed systems and provide search solutions based on a predefined set of indexing and matching algorithms Existing 3D search systems and search solutions cannot be customized for specific requirements, type of information source and information level. In this research, TREE-D-SEEK—an open, extensible framework for retrieving 3D scenes—is proposed. The TREE-D-SEEK framework is capable of retrieving 3D scenes based on indexing low level content to high-level semantic metadata. The TREE-D-SEEK framework is discussed from a software architecture perspective. The architecture is based on a common process flow derived from indexing disparate information sources. Several indexing and matching algorithms are implemented. Experiments are conducted to evaluate the usability and performance of the framework. Retrieval performance of the framework is evaluated using benchmarks and manually collected corpora. A generic, semantic annotation model is proposed for indexing a 3D scene. The primary objective of using the semantic annotation model in the TREE-D-SEEK framework is to improve retrieval relevance and to support richer queries within a 3D scene. The semantic annotation model is driven by an ontology. The ontology is derived from a 3D rapid prototyping framework. The TREE-D-SEEK framework supports querying by example, keyword based and semantic annotation based query types for retrieving 3D scenes

    The Forgotten Document-Oriented Database Management Systems: An Overview and Benchmark of Native XML DODBMSes in Comparison with JSON DODBMSes

    Get PDF
    In the current context of Big Data, a multitude of new NoSQL solutions for storing, managing, and extracting information and patterns from semi-structured data have been proposed and implemented. These solutions were developed to relieve the issue of rigid data structures present in relational databases, by introducing semi-structured and flexible schema design. As current data generated by different sources and devices, especially from IoT sensors and actuators, use either XML or JSON format, depending on the application, database technologies that store and query semi-structured data in XML format are needed. Thus, Native XML Databases, which were initially designed to manipulate XML data using standardized querying languages, i.e., XQuery and XPath, were rebranded as NoSQL Document-Oriented Databases Systems. Currently, the majority of these solutions have been replaced with the more modern JSON based Database Management Systems. However, we believe that XML-based solutions can still deliver performance in executing complex queries on heterogeneous collections. Unfortunately nowadays, research lacks a clear comparison of the scalability and performance for database technologies that store and query documents in XML versus the more modern JSON format. Moreover, to the best of our knowledge, there are no Big Data-compliant benchmarks for such database technologies. In this paper, we present a comparison for selected Document-Oriented Database Systems that either use the XML format to encode documents, i.e., BaseX, eXist-db, and Sedna, or the JSON format, i.e., MongoDB, CouchDB, and Couchbase. To underline the performance differences we also propose a benchmark that uses a heterogeneous complex schema on a large DBLP corpus.Comment: 28 pages, 6 figures, 7 table

    Graph Pattern Matching on Symmetric Multiprocessor Systems

    Get PDF
    Graph-structured data can be found in nearly every aspect of today's world, be it road networks, social networks or the internet itself. From a processing perspective, finding comprehensive patterns in graph-structured data is a core processing primitive in a variety of applications, such as fraud detection, biological engineering or social graph analytics. On the hardware side, multiprocessor systems, that consist of multiple processors in a single scale-up server, are the next important wave on top of multi-core systems. In particular, symmetric multiprocessor systems (SMP) are characterized by the fact, that each processor has the same architecture, e.g. every processor is a multi-core and all multiprocessors share a common and huge main memory space. Moreover, large SMPs will feature a non-uniform memory access (NUMA), whose impact on the design of efficient data processing concepts should not be neglected. The efficient usage of SMP systems, that still increase in size, is an interesting and ongoing research topic. Current state-of-the-art architectural design principles provide different and in parts disjunct suggestions on which data should be partitioned and or how intra-process communication should be realized. In this thesis, we propose a new synthesis of four of the most well-known principles Shared Everything, Partition Serial Execution, Data Oriented Architecture and Delegation, to create the NORAD architecture, which stands for NUMA-aware DORA with Delegation. We built our research prototype called NeMeSys on top of the NORAD architecture to fully exploit the provided hardware capacities of SMPs for graph pattern matching. Being an in-memory engine, NeMeSys allows for online data ingestion as well as online query generation and processing through a terminal based user interface. Storing a graph on a NUMA system inherently requires data partitioning to cope with the mentioned NUMA effect. Hence, we need to dissect the graph into a disjunct set of partitions, which can then be stored on the individual memory domains. This thesis analyzes the capabilites of the NORAD architecture, to perform scalable graph pattern matching on SMP systems. To increase the systems performance, we further develop, integrate and evaluate suitable optimization techniques. That is, we investigate the influence of the inherent data partitioning, the interplay of messaging with and without sufficient locality information and the actual partition placement on any NUMA socket in the system. To underline the applicability of our approach, we evaluate NeMeSys against synthetic datasets and perform an end-to-end evaluation of the whole system stack on the real world knowledge graph of Wikidata
    corecore