
A Node Partitioning Strategy for Optimising the

Performance of XML Queries

Gerard Marks, B.Sc., M.Sc.

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. Mark Roantree

August 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely

my own work, that I have exercised reasonable care to ensure that the work

is original, and does not to the best of my knowledge breach any law of copy-

right, and has not been taken from the work of others save and to the extent

that such work has been cited and acknowledged within the text of my work.

Signed: ID No.: 56213109 Date: 15/08/2011

Acknowledgements

I would like to thank all those people who made this dissertation possible. In

particular, I wish to express my sincere gratitude to my supervisor Dr. Mark

Roantree for his time, patience, effort and excellent guidance throughout the

PhD project. Without Mark, this dissertation would not have been possible.

I would also like to thank Dr. John Murphy for recommending me to Mark

as a potential PhD candidate and for his support and advice on a number

of occasions during the project. I may never have completed a PhD project

if it were not for John’s initial encouragement.

Thanks also to Enterprise Ireland who supplied the funding for my research

and to Dublin City University for the various structures and support they

provided.

Thanks to my colleagues from the Interoperable Systems Group for sharing

their experiences and knowledge during the time of my study. In particular,

I would like to thank Martin and Jun for their help in thrashing out various

ideas.

Thanks also to Paul Clarke and Donal McCann, for wading in through the

December snow to do some last minute proof reading for me when everyone

else was gone home for Christmas. It won’t be forgotten!

Thanks to my dad, Jim, and my sister, Caroline, for all their proof reading

efforts and support, it was greatly appreciated.

A very special thanks goes to my fiancée Dervla for her love, devotion, and

support throughout the entire PhD project. Not only was her emotional

support abundant, but her valuable opinions and her proof reading, printing,

and binding skills were all exploited.

This dissertation is dedicated to Dervla and my parents.

Contents

Abstract xi

1 Introduction 1

1.1 The XML Data Model . 3

1.2 XML Query Processing . 4

1.2.1 Performance Issues in XPath Query Processing 6

1.3 Aims and Objectives . 8

1.4 Summary . 10

2 Related Research 11

2.1 Node Based Approaches . 11

2.1.1 The XPath Accelerator 12

2.2 Algorithm Based Solutions . 17

2.3 XML Graph Indexing . 18

2.3.1 Strong DataGuides . 19

2.4 Path Based Approaches . 21

2.4.1 Path Indexing Approaches 21

2.5 Substituting Equijoins for Non-Equijoins 24

2.5.1 XParent and the Ancestor/Leaf Index 24

2.5.2 Proxy Indexes . 26

2.6 Node Partitioning Approaches 27

2.7 Summary . 29

iii

3 The BranchClassIndex:

An Overview 31

3.1 Architectural Overview . 31

3.2 The City Bikes XML Repository 34

4 XML Document Partitioning 37

4.1 Partitioning Constructs . 38

4.2 The Initial Partition Set . 39

4.2.1 Initial Partitions and False Hits 41

4.3 Partition Refinement . 42

4.4 Query Processing . 45

4.5 Summary . 48

5 Classification of Partitions 49

5.1 Branch Classification . 50

5.1.1 Branch Classification 51

5.1.2 Typical Build Times and Storage Costs. 54

5.1.3 Worst Case Storage Costs for BranchClassIndex . . . 56

5.2 Exploiting Branch Classification to Optimise XPath Queries . 57

5.2.1 Modelling the Indexing Constructs 59

5.2.2 Worked Example . 60

5.2.3 Worked Example Summary 64

5.3 Extending the Branch Classification Process 64

5.3.1 Identifying Text Values that have Low Selectivity . . . 66

5.3.2 The Text Value Identification Algorithms 68

5.4 Post Classification Integrity 72

5.5 Branch Classification Summary 74

6 Query Processing 76

6.1 Index Deployment . 77

6.2 The Transformation Method 80

iv

6.2.1 Generic Expression . 82

6.2.2 Transforming the Initial XPath Step 83

6.2.3 Transforming Interim Steps 85

6.2.4 Transforming the Final XPath Step 87

6.2.5 Transforming XPath Predicate Filters 88

6.3 Sample Transformation . 90

6.3.1 Transforming the Generic Expression 90

6.3.2 Transforming the Initial XPath Step 91

6.3.3 Transforming Interim Steps 91

6.3.4 Transforming the Final XPath Step 93

6.4 Index Selection . 96

6.4.1 Base Index Selection Rules 96

6.4.2 Advanced Index Selection Rules 97

6.5 Summary . 99

6.5.1 Integrity Checking for Transformation Process 99

6.5.2 Final Summary . 100

7 Experiments 101

7.1 Evaluation Method . 101

7.1.1 Implementation and Deployment Decisions 103

7.1.2 Query Categories . 104

7.2 Specifying Low Selectivity Text Values 104

7.3 The Bicycle Rental Dataset 105

7.3.1 Query Analysis . 106

7.3.2 Query Analysis after Text Value Classifications 114

7.3.3 Overall Query Performance 119

7.4 Comparison Using Standard Benchmarks 119

7.4.1 The XPathMark Benchmark 120

7.4.2 The Computer Science Bibliography 123

7.4.3 The Protein Sequence Database 126

v

7.5 Node Based Approaches . 129

7.6 Summary . 130

8 Conclusions 133

8.1 Thesis Summary . 133

8.2 Future Work . 135

8.2.1 Reducing Redundancy 135

8.2.2 Other Future Directions 137

Bibliography 148

vi

List of Figures

1.1 XML Document Illustrating XDM Properties 3

1.2 XPath Twig Query Illustration 6

2.1 Pre/Post Encoding . 12

2.2 The XPath Accelerator Illustrated 13

2.3 Illustrating a Strong DataGuide 19

2.4 Relational Path Based Index 22

2.5 Comparing XParent and Ancestor/Leaf 25

2.6 Partitioning factor N=4 . 28

3.1 Indexing and Query Processing Architecture 33

3.2 Single Station Sample for Lyon 36

4.1 Primary Partition Possibilities 41

4.2 Primary Partitions for Bicycle Rental Dataset 42

4.3 After Splitting Large Partitions 45

4.4 Search Space Pruning using the BranchIndex 46

5.1 XML Tree Showing Branch Classifications 52

5.2 Full Binary Tree with Distinct Path for each Node 55

5.3 ClassChain Components and Usage 58

5.4 Optimisation Constructs . 59

5.5 Bicycle Rental Repository Subset 60

5.6 XML Tree Showing Branch Classifications 65

vii

5.7 Illustrating the Effect of Low Cardinality Text Values 66

5.8 Examining Text Value Operations 67

5.9 XML Tree Showing Branch Classifications 73

6.1 XML Snippet from the Bicycle Rental Dataset 78

6.2 Node Relation and the NCLTV Index Relations 79

6.3 The XPath-to-SQL Transformation Template 81

6.4 The Completed SQL Expression 95

6.5 Index Selection . 96

6.6 Index Selection (Context Shift) 98

7.1 Average Linear Path Expression Performance 108

7.2 Average for Twig Queries without Text Values 109

7.3 Average for Twig Queries with Low Selectivity Text Values . 110

7.4 Average for Twig Queries with High Selectivity Text Values . 110

7.5 Average Single Step Path Fragment Queries 111

7.6 Average Performance across all Query Categories 112

7.7 Average for Twig Queries with Low Selectivity Text Values . 115

7.8 Average Linear Path Expression Performance 116

7.9 Average for Twig Queries without Text Values 118

7.10 Average for Twig Queries with High Selectivity Text Values . 118

7.11 Average Single Step Path Fragment Queries 119

7.12 Average Performance across all Query Categories 120

8.1 Relational Index Deployment Revisited 135

8.2 Redundancy Reduction . 136

viii

List of Tables

1.1 Breakdown of an XPath query. 5

2.1 XPath Expression Breakdown 14

3.1 Overview of the System Components 34

3.2 Bicycle Rental Data Collection 35

5.1 Build Times . 54

5.2 BranchCLassIndex Storage Costs 55

5.3 Extract from the Node Repository (Base Data) 61

5.4 Extract from the NCLT Covering Index 62

5.5 System Specification . 72

5.6 Efficiency of the Text Value Identification Algorithms 72

6.1 XPath 2.0 Language Coverage 80

6.2 The Generic Expression Components 80

6.3 Populating the Class Option Variable 82

6.4 The Initial Step Expression Components 84

6.5 Populating the Class Option Variable 85

6.6 The Interim Step Expression Components 86

6.7 New Class Options . 86

6.8 Equality Options for Component C12 87

6.9 Equality Options for Component C13 87

6.10 Leaf Path Expression Components 88

ix

6.11 Components within the <predicate-statement> 89

6.12 Generic Expression Components 90

6.13 Initial Step Expression Components 91

6.14 First Interim Step Expression Components 92

6.15 The Second Interim Step Expression Components 93

6.16 Leaf Opening and Closing Components 94

7.1 Bicycle Rental Queries . 106

7.2 Results for the Bicycle Rental Dataset 107

7.3 Branch Index Statistics . 107

7.4 Bicycle Rental Dataset Results (after Text Value Classification)113

7.5 Branch Index Statistics . 115

7.6 XMark Queries . 120

7.7 Results for the Mark Queries 121

7.8 BranchClassIndex Statistics (XMark) 122

7.9 Computer Science Bibliography Queries 124

7.10 Results for the Computer Science Bibliography 124

7.11 Branch Index Statistics (DBLP) 124

7.12 Protein Sequence Queries . 126

7.13 Results for the Protein Sequence Database 127

7.14 Branch Index Statistics (Protein) 127

7.15 Results for the Node Based Approaches 129

x

Abstract

For ease of communication between heterogeneous systems, the eXtensible

Markup Language (XML) has been widely adopted as a data storage format.

However, XML query processing presents issues both in terms of query per-

formance and updatability. Thus, many are choosing to shred XML data

into relational databases in order to benefit from its mature technology.

The problem with this approach is that (often complex and time consum-

ing) data transformation processes are required to transform XML data to

relational tables and vice versa. Additionally, many of the benefits of XML

data can be lost during these processes. In this dissertation, we present a

process that partitions nodes within an XML document into disjoint subsets.

Briefly, as there are fewer partitions than there are nodes, a more efficient

join operation can be performed between partitions, thus reducing the num-

ber of inefficient node comparisons. The number and size of partitions varies

depending on the structure and layout in the XML document, and the num-

ber of partitions impacts query performance. Therefore, we also provide

a partition classification process, which significantly reduces the number of

partitions because each partition class represents many equivalent partitions

within the XML document. In this dissertation, we will demonstrate that

our approach outperforms similar approaches for a large subset of XML

queries by eliminating complex join operations (where possible) during the

query process.

Chapter 1

Introduction

A Markup Language can be used to annotate text with meaning. The Stan-

dard Generalised Markup Language (SGML) was adopted by the ISO in

1986 [6]. Contrary to what the name suggests, the SGML itself is not a

markup language, but rather, a specification for defining markup languages.

The best known application of SGML is the Hypertext Markup Language

(HTML), which is used to annotate text in a way that web browsers under-

stand.

The finite number of tags used in HTML soon became an issue because

users wanted more control over web page rendering. Therefore, HTML

was extended to include additional tags and fierce competition between Mi-

crosoft and Netcape fragmented the HTML standard. Hence, a new web

page markup language was needed. At the time however, SMGL was con-

sidered too complex and therefore unsuitable for specifying the new web

page markup language [6].

To overcome this issue, the eXtensible Markup Language (XML) was intro-

duced in the late 1990’s. Similar to SGML, XML is a specification language

for defining markup languages. However, contrary to SGML, XML is hu-

man readable. Therefore, the development of applications that process XML

data is easier. One of the first applications of XML was XHTML (a reshaped

1

web page development language). However, XML generated wider interest

because it provided a format in which any type of data could be stored and

a common format in which heterogeneous systems could communicate. For

these reasons, XML is today generally accepted as the de-facto standard for

information interchange.

XML data is semi-structured, which means that each datum in an XML

database has its individual structure attached. This is in contrast to struc-

tured (e.g. relational) databases, where a generic structure (i.e. a schema)

must be designed first, and all of the data that one wishes to store, must

conform to this structure. Making changes to this generic structure, for

example to insert data that has an unsuitable structure, is often a time con-

suming task, and it can make applications that are dependant on the data

function incorrectly.

In an XML database, heterogeneous data can be inserted seamlessly because

each datum has its individual structure attached, and therefore does not

have to conform to a global schema. This storage flexibility has resulted

in systems generating large quantities of XML data. However, as the size

of XML repositories grew, the tree-centric nature of XML data resulted

in significant inefficiencies in terms of query performance - especially when

compared to more structured database solutions.

Three recent case studies demonstrating XML’s practical usage in industry

were presented by the authors of [53]. Firstly, a Government Tax Agency

was used to demonstrate that a relational database is impractical because of

schema diversity (one or more tables would be required for each government

form). As stated in [53], this would lead to thousands of relations in a rela-

tional database as well as issues in terms of schema evolution and selecting

appropriate tables for join operations. Secondly, an Order Processing at a

Telecommunications Company case study showed that the mapping of di-

verse orders to relational schemas is difficult and scatters the details of each

2

order across dozens of relations; it was noted that some orders were scat-

tered across more than 100 relations. Finally, a study of an Event Logging

at a Financial Services Company system showed that each event is variable

and application dependent. Therefore, they cannot be easily mapped to a

relational database schema.

The Sensor Web is another domain that is beginning to generate large quan-

tities of data in XML format [61]. For example, in the domain of health and

human performance, XML data is generated from sensors such as heart rate

monitors worn by players in team sports [50].

1.1 The XML Data Model

XML itself is not a data model, but rather a specification for defining markup

languages (as discussed earlier). However, in order to perform queries across

XML data it is necessary to formally specify the individual properties of an

XML document. For this purpose, the W3C recommend the XQuery and

XPath Data Model (XDM) [68].

Element
Node

Attribute
Node

Normalized
value

Text Node

Document Node
(opening tag)

Document Node
(closing tag)

Figure 1.1: XML Document Illustrating XDM Properties

The work presented in this dissertation requires an understanding of four

fundamental node types, which are specified in the XDM. An XML docu-

ment contains a single root node called the document node (see Figure 1.1).

3

The document node contains an opening tag and a closing tag and all other

nodes in an XML document will occur between these tags. The children

of a document node must be element or text nodes. Other node types are

permitted as children, for example comment nodes, but they are not rele-

vant to this dissertation. A text node encapsulates XML character content.

Similar to document nodes, element nodes have an opening and closing tag.

However, there can be any number of element nodes in an XML document,

whereas there is a single document node. Also, similar to a document node,

an element node can have element and text nodes as its children. Unlike a

document node, an element node can have one or more associated attribute

nodes. Attribute nodes appear within an element node’s opening tag. An

attribute node has a string-value, which is the normalised value of the at-

tribute. In this dissertation, we refer to text nodes and the normalized value

of attribute nodes collectively as text values.

1.2 XML Query Processing

The W3C recommend two query languages, XQuery and its fundamen-

tal subset XPath, as a standard means of retrieving data from an XML

database. One of the most widely documented query performance issues is

associated with hierarchical relationships [3,14,17,29,34,38,70], that is, the

time it takes to resolve parent/child and ancestor/descendant relationships.

In XPath, these relationships are specific to the ancestor, ancestor-or-self,

descendant, descendant-or-self, parent and child axes, which we collectively

refer to as the hierarchical XPath axes.

As XML database systems cannot perform at the same level as their struc-

tured counterparts, many of those who rely on XML for reasons of interop-

erability are choosing to store XML data in relational databases rather than

its native format. The advantages of semi-structured data (e.g. schema-

less data storage) are therefore lost in the structured world of relational

4

databases, where schema design is required before data storage is permitted.

The result of this is that many domains, such as sensor networks, are using

rigid data models where more flexible and dynamic solutions are required.

Over the last decade, many research groups have developed new levels of

optimisation. However, there remains significant scope and opportunity for

further improvements.

To illustrate these problems, consider the following example.

Example 1 Retrieve the title of each masters thesis.

XPath: /descendant::mastersthesis/child::title

Step Axis NodeTest
1 descendant mastersthesis
2 child title

Table 1.1: Breakdown of an XPath query.

A linear path expression is an XPath query that does not contain predicate

filters [28] (as illustrated in Example 1). Each linear XPath expression

contains a number of steps (Table 1.1 shows the breakdown of the linear

XPath expression in Example 1 into its steps). A step will take a sequence

of nodes as input (the context nodes) and locate another sequence of nodes

(the target nodes). The context node for the first step is the document node.

The step’s axis specifies the relationship between the context and target

nodes. For example, if the axis is descendant, then the target nodes must

be descendants of the context nodes. In other words, target nodes must

be in the subtrees rooted at the context nodes. A step will also contain a

NodeTest, which specifies the name the target nodes must have and their

type, for example element or attribute.

A twig query is an XPath expression that contains predicate filters [28]. In

other words, a linear path expression locates a subtree within the target

XML document and a twig query’s predicate filter(s) remove some of its

5

0,9
<dblp>

<book> 1,4

2,0 5,34,23,1

932-0-7... Distributed... Serge Abiteboul Springer

<book> 6,8

9,78,67.5

XQuery Join... Torsten Grust IEEE

<isbn> <title> <author> <publisher> <title> <author> <publisher>

/dblp[.//author=‘Serge Abiteboul’]//title

<dblp>

<author> <title>

Serge Abiteboul

X

X

X

a. Twig Query

b. Tree Pattern

c. XML Document

Figure 1.2: XPath Twig Query Illustration

branches. A twig query is sometimes called a tree pattern query [5] because

the query itself can be viewed as a tree (instances of which are located with

the XML document).

For example, Figure 1.2a shows a sample twig query (the predicate filters are

denoted by square brackets) and 1.2b illustrates its associated tree pattern.

Within the tree pattern (graph), ancestor/descendant edges are denoted by

double lines, whereas parent/child edges are shown as single lines. Figure

1.2c shows the tree representation an the XML document. The red edges

show the paths that the twig query specifies and the thicker red edges are

the path to the target node. The path marked with an ‘X’ are branches that

failed to satisfy the predicate filter.

1.2.1 Performance Issues in XPath Query Processing

Sequence-oriented [30] evaluation of XPath steps is inefficient as all of the

nodes in the sequence of context nodes must be compared, based on an

XPath axis, to all of the nodes in the sequence of target nodes. Initially,

the sequence of target nodes contains all of the nodes in the XML document

6

(we refer to them as the initial target nodes). In a naive system, the entire

sequence of target nodes will be traversed once for each context node or vice

versa, which, as we will show, is inefficient.

Another issue with sequence-oriented evaluation of XPath steps is duplica-

tion of work. Duplication of work occurs when the ‘regions’ (of an XML

document) ‘associated with the’ (XPath) ‘step are evaluated independently

for each context node’ [32]; we refer to this as node-at-a-time evaluation

of XPath steps. For example, based on the descendant axis, a single tar-

get node may be a descendant of multiple context nodes. If this occurs, a

node-at-a-time processor will traverse the target node multiple times. As we

will discuss shortly, node-at-a-time evaluation of XPath steps has a query

performance overhead that is often unnecessarily large. The fundamental

objective of an XML query processor is to reduce the number of nodes that

must be visited during query processing.

Current XML query optimisation solutions can be placed in two broad cat-

egories. On one hand, index-based approaches build indexes on XML docu-

ments to provide efficient access to data. Index-based solutions, for example,

XRel [69], XPath Accelerator [29], Xeek [42], benefit from existing join al-

gorithms such as those that are available to standard Relational Database

Management Systems (for example, NestedLoops, HashJoin, MergeJoin).

Index-based approaches can also exploit mature relational facilities, such as

Cost Based Optimisers, to select appropriate query execution plans based

on specific XML data and queries. On the other hand, algorithm-based (or

Native XML) approaches are focused on designing new join algorithms, for

example, TJFast [38], StaircaseJoin [32], which are specifically designed to

support queries across XML data.

The XPath Accelerator [29] is a node-at-a-time XPath query processor and

it demonstrated that an XPath index stored inside a relational database can

be used to evaluate all of the XPath axes. However, the XPath Accelerator

7

suffers from the aforementioned issues associated with node-at-a-time pro-

cessors, such as duplication of work. Thus, the XPath Accelerator suffers

from significant scalability issues as noted in [42].

Path-based approaches [24, 25, 34, 69] avoid visiting many nodes during the

query process by storing each node’s root path [28] (the path from the doc-

ument node to itself) in a path-index (sometimes called a path-summary

index [7]). As many node instances can share the same root path there are

usually much fewer root paths than there are nodes in the XML document.

An XPath expression can be divided into multiple path fragments such as

primary path fragments as specified in [24]. Node-at-a-time comparisons are

only required between primary path fragments. Thus, if primary path frag-

ments span more than one step in an XPath expression (which they often

do), inefficient node-at-a-time comparisons are not required at every step in

an XPath expression (unlike the node based approaches).

In a different approach, a special type of node partitioning allows nodes of

different names and types (element/attribute) to reside in the same parti-

tion [43]. The motivation to do this is based on the fact that there will always

be fewer partitions than there are nodes in the XML document. Thus, the

partitions that contain the target nodes can be identified more efficiently

and after the relevant partitions are identified, only the nodes that comprise

these partitions need to be visited using costly node-at-a-time evaluations.

However, to the best of our knowledge, [43] is the only such index-based node

partitioning approach and it requires a user defined partitioning factor for

each XML document. Thus, the user must run time-consuming experiments

to identify a suitable partitioning factor for each XML document.

1.3 Aims and Objectives

The hypothesis put forward in this research is that larger numbers of node-

at-a-time comparisons can be avoided during the query process through node

8

partitioning and partition classification. Furthermore, unlike the approach

presented in [43], the time-consuming preprocessing stage that is used to

identify suitable partitioning factors can be avoided. Finally, a node parti-

tioning approach can be independent of particular XML node labels. This

allows the most suitable XML encoding scheme to be chosen based on the

user’s needs, while exploiting the performance benefits of the approach pre-

sented in this dissertation. To demonstrate the effectiveness of our approach,

standard query performance benchmarks are used to compare this approach

to that of other researchers and XML database vendor systems. In addition,

data and queries, taken from a real world application which generates large

quantities of sensor data in XML format are used to demonstrate the wider

applicability of our approach. The main objectives of our research can be

highlighted as follows:

• To provide a novel partitioning method for XML data storage that

offers improved levels of optimisation for XML queries.

• To develop efficient algorithms that automatically identify and resize

document partitions. This is unlike the existing approach that requires

a preprocessing phase, which is infeasible for large XML documents

(we present experiments to substantiate this claim).

• To exploit structural information to allow identical node partitions to

be merged and thus, reduce the size of the index and avoid processing

large numbers of equivalent node partitions during the query process.

• To provide a relational deployment of the indexing structures that en-

courages relational query optimisers to choose efficient query execution

plans.

• To provide an XPath-to-SQL transformation process that produces

SQL queries that are engineered specifically for the approach presented

in this dissertation.

9

1.4 Summary

In this Chapter, a general introduction to XML and XML query processing

was provided. XML has been widely adopted as a data storage format be-

cause XML data does not have to conform to a generic schema. In addition,

XML databases can evolve easily without time-consuming schema re-design.

XML also provides a common format in which heterogeneous systems can

communicate, which has led to an explosive growth in its usage and the size

of XML repositories as a whole.

A major obstacle to improving XML query performance is the tree-centric

nature of the data and in this Chapter we discussed how node-at-a-time

XPath step evaluation is not scalable. Thus, an XPath query optimiser’s pri-

mary objective is to visit as few nodes as possible during the query process.

There are two main approaches to fulfilling this objective: (1) index-based

approaches materialise data structures in advance of query processing to

support query optimisation, (2) algorithm-based approaches bypass nodes

by making decisions during query processing itself.

We begin in Chapter 2 by examining related solutions to XML query per-

formance; in Chapter 3 an architectural overview of the system is provided

and we introduce a real world XML case study; in Chapter 4, we provide a

detailed description of the data structures used in the partitioned index and

provide a step by step description of how it is built; in Chapter 5, we present

the classification process for node partitions, which reduces the number of

partitions while maintaining the same degree of search space pruning, and

supports an additional node bypassing mechanism; in Chapter 6, we discuss

index deployment and query processing; in Chapter 7, we present our ex-

periments and discuss the findings; finally, Chapter 8 presents conclusions

and future work.

10

Chapter 2

Related Research

There are several approaches to XPath query optimisation. In Chapter 1,

we broadly categorised these efforts into index-based and algorithm-based

approaches. Early index-based approaches to XPath query optimisation are

presented in §2.1 and their inefficiencies are identified. Following this in

§2.2, we provide an evaluation of how algorithm-based approaches overcome

some of these shortcomings before introducing more advanced index-based

approaches.

In §2.3, XML schema graph indexing is introduced as its concepts are used

throughout the remaining index-based approaches; in §2.4, path-based in-

dexes are evaluated; §2.5 discusses approaches that convert non-equijoins to

more efficient equijoins to optimise node-at-a-time evaluations; finally, node

partitioning approaches are discussed in §2.6.

2.1 Node Based Approaches

Node based approaches are those that do not use structure, (i.e. DataGuides,

XML schemas, or Document Type Definitions), to optimise XPath steps.

These approaches evaluate the XPath axes by comparing individual node

labels in which the relationships between nodes are encoded.

11

2.1.1 The XPath Accelerator

The XPath Accelerator [29] is an XML index which is designed for deploy-

ment in relational databases. In this work, pre/post labels (known as Dietz

encoding [22]), are used to encode each node with the region of the XML

document that it encompasses. From the context of any given node, pre/post

labels can be used to partition all other nodes in the XML document into

its ancestor, descendant, following and proceeding nodes, that is, the four

major XPath axes. Figure 2.1a depicts an XML tree that is labelled with

(pre/post) identifiers and 2.1b illustrates how those nodes are dispersed in

the pre/post plane. In particular, notice the four major XPath axes associ-

ated with node x (6,5). For example, the nodes that are ancestors of node x

will have a preorder identifier that is less than 6 and a postorder identifier

greater than 5. The other major axes can be resolved using similar pre/post

logic.

(1, 14)

(2, 7)

(3, 2)

(4, 1)

(5, 6)

(6, 5)

(7, 3) (8, 4)

(9, 13)

(10, 8) (11, 12)

(12, 11)

(13, 9) (14, 10)

(a) pre/post labelling

1 14
2 7
3 2
4 1
5 6
6 5
7 3
8 4
9 13

10 8
11 12
12 11
13 9
14 10

x (6, 5)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14

preorder

po
st

or
de

r

Preceding

Ancestor Following

Descendant

(b) Major XPath Axes

Figure 2.1: Pre/Post Encoding

Figure 2.2 illustrates how a source XML document (2.2a) is stored in the

node relation (2.2b). The first two columns in the node relation contain

the preorder and postorder identifier of each node respectively. The major

XPath axes can be sub-partitioned or extended (to include the context node

itself) using the minor XPath axes. The most common of these are the par-

ent and child axes, which sub-partition the ancestor and descendant axes

12

0
<dblp>

1

2 3

4 5

6

7 8

9 10

11

12 13

<article> <article> <article>

<author> <author> <author><title> <title> <title>

<sub><sub> <i> <i>

a. (Source XML Dataset)

T. Grust.S. Manegold.

pre post par att tag cdata
0 13 null no dblp null
1 4 0 no article null
2 0 1 no author null
3 3 1 no title S. Manegold.
4 1 3 no sub null
5 2 3 no i null
6 9 0 no article null
7 5 6 no author null
8 8 6 no title null
9 6 8 no sub null

10 7 8 no i null
11 12 0 no article null
12 10 11 no author T. Grust.
13 11 11 no title null

b. (Node Relation for XPath Accelerator)

Figure 2.2: The XPath Accelerator Illustrated

respectively. For the purpose of evaluating the parent and child axes, the

XPath Accelerator assigns an additional par (parent) label to each node.

The yes or no (boolean) column att is used for differentiating between at-

tribute and element nodes as specified in the XQuery and XPath Data Model

(XDM) [68]. Node label tag is the name of the element or attribute node.

Finally, cdata is used to associate each node with its text value, i.e. text

values associated with element or attribute nodes.

Example 2 (Sample XPath Expression)

//article[./author = ‘T. Grust.’]/descendant::title.

The step-at-a-time XPath evaluation process that is used by the XPath

Accelerator is referred to many times throughout this dissertation, thus we

13

Step Axis Name Type Predicates
1 descendant-or-self article element child::author = ‘T. Grust.’
2 descendant title element

Table 2.1: XPath Expression Breakdown

will now spend some time detailing it. The XPath expression in Example 2

specifies: find the title of Torsten Grust’s articles. The expression contains

two steps and the breakdown of each step is shown in Table 2.1. Each step

in an XPath expression receives a sequence of context nodes and locates

another sequence of nodes, which we call the target nodes. The sequence of

target nodes initially contains all of the nodes in the XML document. Then

the sequence of initial target nodes is reduced to the actual target nodes

based on the following:

• The step’s axis relative to the context nodes. For example, if the

descendant axis is specified, the target nodes must be descendants of

the context nodes.

• The node’s name (article) and type (element/attribute) to satisfy the

step’s NodeTest.

• The text value of element or attribute nodes (T. Grust.).

The sequence of context nodes for the first step in an absolute XPath ex-

pression is always a single node sequence containing the document node.

The document node is always assigned the first preorder and last postorder

value, for example, node (0, 13) in Figure 2.2b. For all subsequent steps, the

context nodes are the actual target nodes that were located at the previous

step. Using the query in Example 2, the process is as follows:

1. Find the element nodes (we know it is an element node because at-

tribute node names in an XPath expression have the prefix ‘@’) called

article that are descendants of the document node. As all nodes are

14

descendant of the document node, in the first step all nodes that have

tag ‘article’ and att ‘no’ are returned from the node relation (Figure

2.2b), the sequence (1, 6, 11). For brevity, the sequence here contains

the preorder identifiers only.

• The predicate filter, denoted by square brackets, in the first step

specifies that: only the articles that were written by Torsten Grust

should be returned. The first (and only) step in the predicate

receives the sequence of context nodes: (1, 6, 11). The step’s axis

is child, denoted by the abbreviated syntax ‘/ ’. The NodeTest

specifies that the target nodes must have the tag ‘author ’, att ‘no’

and cdata ‘T. Grust.’ and they must be children of at least one of

the context nodes. In this instance, the par label is exploited to

return those nodes that have the par equal to 1, 6 or 11. In other

words, all nodes whose parent is a context node are returned.

The target node sequence is (12). Thus, as this predicate is a

filter on the first step in the XPath expression, all of the target

nodes in the first step that do not have node 12 as a child are

filtered out. Therefore the sequence of target nodes is reduced to

(11).

2. The final step receives the context node sequence (11) and the step’s

axis is descendant. The NodeTest specifies that only nodes that have

tag ‘title’ and att ‘no’ are returned. This time the preorder and pos-

torder labels are used to ensure that the target nodes are descendants

of node 11, that is, the nodes that have a preorder label greater than

that of node 11, and a postorder label less than that of node 11. See

pre/post ranges in Figure 2.1 for more details. Thus, the node sequence

(13) is returned.

In [31], a variant of the XPath Accelerator is presented, in that it uses

15

pre/size/level labels instead of pre/post/par. The level label replaces the

par label used by the XPath Accelerator to evaluate the parent and child

axes. The benefit of pre/size/level is that the size variant of post minimises

the overhead of node relabelling upon updates to the XML document, as

size is invariant with respect to subtree copying or moving, whereas post is

not [64].

For the purpose of query performance however, [31] describes how partitioned

B-trees (i.e. multi-column B-tree indexes) and context pruning can be used to

optimise the performance of XPath queries in standard Relational Database

Management Systems (RDBMSs). In this approach, partitioned B-trees are

used to optimise non-recursive XPath axes (parent and child). Optimisation

is achieved by minimising false hits; in other words, avoiding nodes that

cannot contribute to the result. For example, a partitioned B-tree index

on columns: (level,pre) allows the relational query optimiser to avoid false

hits at levels that cannot contribute to the result. Additionally, as columns

such as level and type have only a small number of possible values (that is,

they have low selectivity), partitioned B-trees that are prefixed with these

columns have lower creation and maintenance overheads than those prefixed

on columns that have high selectivity [31].

Critical Evaluation

While the XPath Accelerator has the benefit of supporting all of the XPath

axes, range comparisons (e.g. pre/post comparisons) were shown to be highly

inefficient for large XML documents [40–42]. The experiments presented in

this dissertation show that even when pushed to their limit using the tech-

niques described in [31], node based approaches are inefficient because they

perform too many node-at-a-time comparisons. The remaining approaches

discussed in this Chapter describe ways of reducing the number of node com-

parisons that must be performed, therefore improving query performance.

16

2.2 Algorithm Based Solutions

The MPMGJN (Multi-Predicate MerGe JoiN) [70] algorithm is similar to

the standard merge join algorithm used for equijoins in a relational database,

but it is tailored to evaluate structural joins efficiently. A merge-join algo-

rithm performs a join between two lists of nodes. Two cursors are created,

one pointing to the head of each list. The cursors are compared to each

other as they advance forward to perform the join operation. The MP-

MGJN differs to the standard merge-join by skipping nodes as the cursors

are advanced forward [28].

In [3], it was noted that the MPMGJN could not evaluate the ‘/ ’ (child)

axis efficiently in certain circumstances as it visits descendant nodes that

are not actually child nodes. In [3], a StackTree is proposed which (un-

like MPMGJN) avoids processing the unnecessary descendant nodes, thus

improving performance. As the name suggests, StackTree uses a stack struc-

ture to store nodes that are nested on the same path in data trees. It was

also shown in [63] that the MPMGJN and StackTree could be optimised

further by calculating partitions of the pre/post plane that can be avoided,

thus reducing the number of nodes that are evaluated.

The MPMGJN, StackTree, and similar approaches [32, 63], are binary join

algorithms. A binary join in the case of XPath query processing is a join

based on a sequence of context nodes and a sequence of initial target nodes

at each step in the XPath expression. In other words, a binary join is a

join between lists of nodes. This is exactly the approach used by the node

based approaches detailed in §2.1. It soon became apparent that the binary

join approach processed large numbers of intermediate nodes that could be

avoided if more than two XPath steps are evaluated simultaneously.

PathStack and TwigStack use a more holistic approach to perform structural

joins unlike the binary join algorithms. In contrast to StackTree, PathStack

and TwigStack use multiple stacks to cache nested nodes. Each node in

17

a stack has a pointer to its corresponding node in its parent stack which

enables the maintenance of possible n-ary path solutions. Other advance-

ments in holistic twig pattern matching solutions include TwigStackList [37],

TwigList [59] and those that are based on prefix labelling schemes (much

like Dewey decimal) TJFast [38], Twig2Stack [17].

Critical Evaluation

Relational database technology is a mature technology and thus, there are

many advantages to indexing XML data within a relational database such

as mature query optimisation and transaction management technology [30,

62]. In addition, modern query optimisers that are available in relational

databases, such as the cost based optimiser in Oracle 11g, are well suited for

choosing suitable query execution plans for XML queries (if the XML index

is well designed).

An issue with algorithm-based approaches (as identified in [31]) is that they

require significant modifications to the relational database kernel (which is

the approach used by [11]). Alternatively, Native XML databases [23,33,51]

can incorporate algorithm-based approaches to facilitate query optimisation.

2.3 XML Graph Indexing

Each datum in an XML database has its structure attached, which is the

fundamental difference between semi-structured and structured data (struc-

tured data must conform to a global structure). Thus, structural informa-

tion can be extracted from an XML dataset. In this section, we discuss

various graph indexing schemes that exploit this structural information for

the purpose of query processing.

18

2.3.1 Strong DataGuides

XML graph indexing is based on the concept of a Strong DataGuide [27].

Strong DataGuides are defined in terms of a graph that is not required to

be a tree. When the graph is a tree, as is the case of an XML dataset, a

Strong DataGuide reduces to what is known as a 1-index [28,52]. Therefore,

we will now introduce the concept of Strong DataGuide in the form that is

relevant to an XML tree, that is, as defined for a 1-index [52].

In a 1-index, a node in the source dataset (a data node) maps to a single

distinct node in the index (an index node), that is, many nodes in the base

data map to the same index node. One or more data nodes map to the

same index node if they are B-bisimilar (backward bisimilar) [28]. Two

data nodes are B-bisimilar if they have the same root path; the path that

contains their name and the name of each of their ancestors in root-to-leaf

order. Figure 2.3a shows a source dataset (taken from the Computer Science

Bibliography [21]) containing data nodes. The 1-index is depicted in Figure

2.3b.

0
<dblp>

1

2 3

4 5

6

7 8

9 10

11

12 13

<article> <article> <article>

<author> <author> <author><title> <title> <title>

<sub><sub> <i> <i>

0
<dblp>

1, 6,11
<article>

2,7,12
<author>

3,8,13

4,9 5,10

<title>

<i><sub>

a. (Source XML Dataset)

b. (1-Index) c. (F&B-Index)

0
<dblp>

1, 6
<article>

2,7
<author>

3,8

4,9 5,10

<title>

<i><sub>

11
<article>

13 <title>12
<author>

Figure 2.3: Illustrating a Strong DataGuide

19

Critical Evaluation

There are two major issues with the 1-index. Firstly, the size of the 1-index

can be equal to the size of the XML document in the worst case and even

in situations where it is smaller than the size of the original dataset, it is

usually too large to be efficient [28]. Similar approaches [16, 19, 36] have

minimised the size of the 1-index by shortening the number of nodes in the

root path. For example, by shortening the root path, the A(k) index [36]

trades index size for query accuracy, i.e. the result set for the query may

contain unwanted nodes, but the target nodes are definitely in the result set.

However, more important is the fact the 1-index and similar approaches can

only satisfy linear path queries, i.e. they cannot satisfy Twig queries [28].

It is widely thought that the smallest index that can satisfy all Twig queries

is an F&B (Forward and Backward bisimilar) Index [1, 35, 65]. An F&B

Index requires not only that the incoming root path is bisimilar, but also

that the node’s outgoing paths be bisimilar. This is illustrated in Figure 2.3c.

Notice how node 11 in the 1-index (Figure 2.3b) is separated from nodes 1

and 6 in the F&B Index. This is because node 11 has different outgoing

paths than nodes 1 and 6. Similar is true for node 13.

Index graph approaches such as the 1-index cannot evaluate Twig queries,

thus they provide coverage of a very small subset of the XPath language.

Although an F&B Index can evaluate Twig queries, it is typically too large

to be used in practice [28,35,65].

One approach [35] tried to minimise this problem by creating multiple F&B

Indexes, each of which satisfies a subset of Twig queries. However, a more

significant issue is that schema graph index structures are not suitable for

indexing in a relational database [28, 39]. For this reason, (and because

of the size of 1-indexes, F&B indexes and similar approaches), path-based

indexing structures that prune the search space for Twig queries (rather

than evaluating them) have become popular. Therefore, we will now discuss

20

path-based approaches.

2.4 Path Based Approaches

As discussed in §2.3, schema graph indexes are generally too large in practice.

For this reason, many approaches exploit the same structural information

as schema graph indexes, but for the simpler task of search space pruning.

We have categorised this class of XPath index as path-based indexes.

The main similarity between path-based approaches and the graph indexing

schemes (discussed in §2.3) is that the root path of each node is stored in a

separate path index (sometimes referred to as path summary). Each distinct

root path can only occur once in the path index and many nodes in the base

data map to the same root path in the path index. Thus, regular path

expressions can be executed across the path index to prune search space for

linear path expressions. Additionally, Twig queries can often be evaluated

as multiple linear path expressions.

2.4.1 Path Indexing Approaches

XRel [69] is a relational implementation of a path-based index. Figure 2.4

illustrates how a source XML dataset (2.4a) can be indexed in a relational

database (2.4b and 2.4c). In XRel, each distinct root path (as described

earlier for the 1-index) is assigned an identifier and is stored along with its

path in a relation as shown in Figure 2.4c. Each node in the node relation

(as shown in Figure 2.4b) is stored along with its path identifier. In other

words, there is a many-to-one mapping from nodes in the node relation to

their root path in the path relation.

Example 3 (Linear XPath Expression)

/dblp/article/title.

21

0
<dblp>

1

2 3

4 5

6

7 8

9 10

11

12 13

<article> <article> <article>

<author> <author> <author><title> <title> <title>

<sub><sub> <i> <i>

a. (Source XML Dataset)

b. (Node Relation)

Pre Name Type PathID
0 dblp element p1
1 article element p2
2 author element p3
3 title element p4
4 sub element p5
5 i element p6
6 article element p2
7 author element p3
8 title element p4
9 sub element p5

10 i element p6
11 article element p2
12 author element p3
13 title element p4

PathID Path
p1 dblp
p2 dblp/article
p3 dblp/article/author
p4 dblp/article/title
p5 dblp/article/title/sub
p6 dblp/article/title/i

c. (Path Relation)

Figure 2.4: Relational Path Based Index

XRel divides a given XPath expression into one or more simple path expres-

sions (similar to regular expressions). These simple path expressions can

be executed across the path relation using the LIKE facility in the relational

database. The LIKE keyword in SQL syntax allows regular path expressions

to be executed across columns that contain character strings, such as the

Path column in Figure 2.4c. Thus, the path identifiers for each simple path

expression can be identified in the Path relation. After path identifiers have

been determined, a join predicated on these path identifiers in the node

relation will return all nodes associated with the simple path expression.

Example 3 shows an XPath expression. In the Path relation, this XPath

expression is mapped to the path identifier p4. All of the nodes in the node

relation that have the path identifier p4 can be identified (nodes {3, 8, 13}).

22

The search space is pruned because those nodes that do not have the path

identifier p4 are avoided.

The authors of [24] show how a path-index (identical to that of XRel) can

be exploited to evaluate multiple XPath steps in both forward axes (descen-

dant, child) and backward axes (ancestor, parent) directions. This means

that multiple contiguous descendant and child steps, which are called path

fragments, can be evaluated simultaneously, as can contiguous ancestor and

parent path fragments. In contrast, XRel can only evaluate path fragments

that contain the child and descendant axes [24].

Example 4 (XPath Twig Query)

/dblp//title[./sub].

Critical Evaluation

There are a number of inefficiencies associated with path-based approaches.

Firstly, if the XPath expression is a Twig query as in Example 4, the ex-

pression must be separated into multiple simple path expressions. In Exam-

ple 4 there are two simple path expressions, these are: /dblp//title and

/dblp//title/sub. In this instance, the path relation is used to determine

the path identifiers associated with each of the path expressions in turn.

The nodes associated with each of the path identifiers are located in the

node relation resulting in two separate node sets. Inefficient node-at-a-time

evaluations are then required between these two node sets. Earlier in this

Chapter, we explained why this type of node evaluation is inefficient.

As discussed in §2.1, traditional node based approaches must perform this

type of inefficient join once for each step in the XPath expression. Thus,

path-based approaches provide query performance benefits over traditional

node based approaches as there will be fewer joins when there are fewer

simple paths than there are steps in the query expression. However, the

experiments described in Chapter 7 show that large numbers of these node

23

comparisons are often required. In fact, we identify a category of XPath

queries in which these approaches cannot provide any optimisation.

According to the authors of [28], another inefficiency inherent in these ap-

proaches is that SQL can support exact string matching (across path in-

dexes) efficiently using equijoins and B+-trees tree indexes on strings. How-

ever, they cannot efficiently support the regular expressions that are required

to evaluate XPath’s descendant or ancestor axes. Additionally, [28] noted

that regular path expressions associated with path-based approaches can

produce incorrect results when recursion exists in the XML data. Reversed

path approaches [18,56] minimise these issues by reversing and then encod-

ing the root paths associated with each node, but we believe that the much

greater issue is the performance of inefficient join operations between path

fragments (or their encoded alternatives).

2.5 Substituting Equijoins for Non-Equijoins

As discussed, the largest inefficiency associated with node based and path-

based approaches is related node-at-a-time comparisons. These node com-

parisons are usually based on node ranges such as those in the pre/post

plane. The authors of [40–42] pointed out that much of the inefficiency is

a result of using non-equijoins to perform these range comparisons. In this

section, a number of approaches are presented that substitute non-equijoins

with more efficient equijoins where possible.

2.5.1 XParent and the Ancestor/Leaf Index

To optimise XPath axes, XParent [34] proposed that the transitive closures

of the XML tree can be precomputed and stored. In other words, one

map from each node to its set of ancestor nodes and a second map to its

set of descendant nodes are pre-materialised in the index. XParent uses a

24

a. Node Relation (Base Data)

pre post par att tag cdata
0 13 null no dblp null
1 4 0 no article null
2 0 1 no author null
3 3 1 no title S. Manegold.
4 1 3 no sub null
5 2 3 no i null
6 9 0 no article null
7 5 6 no author null
8 8 6 no title null
9 6 8 no sub null

10 7 8 no i null
11 12 0 no article null
12 10 11 no author T. Grust.
13 11 11 no title null

a d
0 0
1 0
1 1
2 0
2 1
2 2
3 0
3 1
3 3
4 0
4 1
4 3
4 4
5 0
5 1
5 3
5 5
6 0
6 6
7 0
7 6
7 7
8 0
8 6
8 8
9 0
9 6
9 8
9 9
10 0
10 6
10 8
10 10
11 0
11 11
12 0
12 11
12 12
13 0
13 11
13 13

a d
2 0
1 1
2 2
4 0
4 1
4 3
4 4
5 0
5 1
5 3
5 5
7 0
7 6
7 7
9 0
9 6
9 8
9 9
10 0
10 6
10 8
10 10
12 0
12 11
12 12
13 0
13 11
13 13

b. XParent

c. Ancestor/Leaf

0
<dblp>

1

2 3

4 5

6

7 8

9 10

11

12 13

<article> <article> <article>

<author> <author> <author><title> <title> <title>

<sub><sub> <i> <i>

a. (Source XML Dataset)

Figure 2.5: Comparing XParent and Ancestor/Leaf

25

relational database to deploy the index, therefore the transitive closures are

stored in a relation as shown in Figure 2.5(b); in this relation, the left column

contains ancestor nodes, and the right column contains their descendants.

Query performance is gained because the ancestor and descendant XPath

axes can be evaluated using equijoins across this relation, which are more

efficient than non-equijoins [18,42] (range comparisons); range comparisons

are used in the node-based approaches described earlier.

However, the size of the transitive closures is typically too large to be used

in practice [28]. This is because many nodes in an XML document share

the same ancestors and descendants, and thus, the XParent approach leads

to a large amount of duplicated (redundant) storage.

The Ancestor/Leaf index [41] provides a more compact equijoin evaluation

strategy. In this instance, each leaf node is stored along with its ancestors

(in contrast to every node being stored with its ancestors and descendants)

as depicted in Figure 2.5(c). This leads to less duplicated storage but since

many leaf nodes share common ancestors, the storage costs of this approach

are still significant.

Critical Evaluation

In practice, XParent and the Ancestor/Leaf indexes often incur prohibitive

storage costs. However, it was shown that the Ancestor/Leaf outperforms

the node-based approaches [40], which validates the use of equijoins over

non-equijoins where possible. For this reason, the approach presented in this

dissertation uses equijoins rather than non-equijoins for mapping between

branch partition classes described later in Chapter 6.

2.5.2 Proxy Indexes

ProxyReach [41] focuses on reducing the duplicated storage resulting from

the XParent and Ancestor/Leaf indexes. In this instance, a single proxy

26

node can be selected anywhere on the root-to-leaf path in an XML tree to

represent a larger group of nodes. The proxy node is then stored along

with all its ancestors and descendants. For example, if the proxy node is

specified to be every leaf node, then the proxy index will be identical to

the Ancestor/Leaf index. However, if proxy nodes are selected higher on

the path, then the proxy can represent multiple root-to-leaf paths; thus,

decreasing the storage requirements. Xeek [42] is a variant of ProxyReach

in that it only requires that the ancestors of each proxy node are stored,

thus further reducing the storage requirements.

Critical Evaluation

While proxy indexes have a benefit where storage minimisation is crucial,

there is a trade-off between query performance and storage requirements.

The reason for this is that many of the ancestors and descendants of proxy

nodes represent false hits for the XPath step. In fact, the higher on the

root-to-leaf path that proxy nodes are selected, the higher the number of

false hits, that is, there will be fewer false hits in the Ancestor/Leaf index.

These false hits must be removed using costly node comparisons such as

those described for node based approaches earlier. In the case of these

proxy indexes, pre/post labels are used (as with the XPath Accelerator). In

summary, proxy indexes reduce storage requirements but to the detriment

of query performance.

2.6 Node Partitioning Approaches

Node partitioning approaches segment documents into disjoint subsets. As

there are fewer partitions than nodes in an XML dataset, a more efficient join

operation can be performed between partitions, which reduces the workload

for the more costly task of node comparisons. To the best of our knowledge,

27

[43] is the only major index-based approach in this area.
1 14
2 7
3 2
4 1
5 6
6 5
7 3
8 4
9 13

10 8
11 12 x (6, 5)6

8

10

12

14

16

po
st

or
de

r

12 11
13 9
14 10

0

2

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14
preorder

Figure 2.6: Partitioning factor N=4

In [43], the pre/post plane is partitioned based on a user defined partitioning

factor. Figure 2.6 illustrates the pre/post plane partitioned into parts using

a partitioning factor of 4. For each node, the pre/post identifier of its part

is the lower bound of its x and y values respectively. For example, in Figure

2.6, the part P associated with node x(6, 5) is P(4, 4). The ancestors of

node x can only exist in the parts that have a lower bound x value ≤ 4

and a lower bound y ≥ 4, that is, the shaded parts (Figure 2.6). Similar

is true for the other major XPath axes, for example, descendant, following

and preceding.

Critical Evaluation

The problem with this approach is that an ideal partitioning factor is not

known in advance and requires rigorous experimentation to identify. For

example, in reported experiments each XML document was evaluated for

the partitioning factors 1, 2, 4 up to 256 [43]. This type of experimenta-

tion is infeasible even for relatively small XML documents. Additionally, as

XML data is often irregular, uniform partitioning of all nodes in an XML

document based on a single partitioning factor may not be optimal. Fi-

nally, although it is suggested in [43] that the partitioning approach may

28

be tailored to other encoding schemes such as order/size, it relies heavily

on the lower bound of each x and y value in the partitioned pre/post (or

order/size) plane. Therefore, this approach does not naturally lend itself to

prefix based encoding schemes such as [8, 10,55], which have become popu-

lar in recent years because they facilitate updates more easily than region

encoding approaches such as pre/post (discussed earlier in this Chapter).

2.7 Summary

In this Chapter, we have discussed related work in the area of XPath query

optimisation. Initially, traditional node-at-a-time query evaluation strate-

gies were discussed with their inefficiencies highlighted. We then discussed

approaches that eliminate these inefficiencies.

Native XML join algorithms (binary and n-ary) were then evaluated and

their benefits discussed. We stated the reasons why these approaches cannot

be deployed in a relational database without significant changes to its kernel,

which suggests that an index-based approach that performs at the same

level as their native counterparts may be a more preferable solution. For

this reason, the remainder of the Chapter was dedicated to index-based

solutions that can be deployed in a relational database.

We presented graph indexing schemes (for example, 1-index, F&B index)

and described the subsets of the XPath language that they cover. We showed

that these approaches often result in an index that is too large to be efficient.

Also, it was stated that these approaches are not suitable for deployment in

a relational database, but their concepts are used in path-based approaches

which can be deployed in a relational database.

In terms of search space pruning, we described how path-based approaches

provide significant performance gains over step-at-a-time processing of XPath

expressions. However, these approaches often require inefficient node-at-a-

time comparisons between path fragments, which are costly.

29

Between individual steps in an XPath expression or between path fragments,

XParent and similar approaches show how inefficient non-equijoins can be

converted to more efficient equijoins by explicitly storing the transitive clo-

sures of nodes. However, we described why the size of the transitive closures

is often too large to be used in practice. Additionally, some approaches that

reduce the size of the transitive closures were introduced, but it was shown

that they are either still too large to be used in practice or they trade query

performance for reduced storage costs.

Finally, we showed an alternative approach that uses disjoint node parti-

tions. As there are fewer partitions than there are nodes, the partitions that

contain the target nodes can be identified more efficiently, which reduces the

number of costly node-at-a-time comparisons. However, this approach of-

ten requires significant preprocessing to identify suitable partitioning factors

and it is heavily dependent on the properties of a single encoding scheme,

which limits its possible application areas.

30

Chapter 3

The BranchClassIndex:

An Overview

This chapter begins by introducing the architecture of the entire XML in-

dexing and query processing system. The goal of this chapter is to provide a

high level overview of the different steps in XML document processing and

querying. Thus, it will provide the reader with a brief description of each of

the system’s components.

While we benchmark our work against that of others using standard XML

datasets and queries, we focus our attempts at query performance on a real

world dataset to demonstrate the wider impact of our work. In §3.2, we

provide an introduction to this real world XML dataset (the City Bikes

XML repository).

3.1 Architectural Overview

In this section, a description of each of the processes is provided. Our

objective is to familiarise the reader with each of these. We begin with an

explanation of the overall system, which details the system’s components

and the order in which each process and indexing construct is created and

31

executed, respectively.

The overall architecture is illustrated in Figure 3.1. Initially, an XML docu-

ment (d1) is received by the partitioning process (p2). Thus, the partitioning

process creates the index of node partitions: the branch index (i3). Process

p2 also identifies the properties of each node, such as name, type and level,

which serve as input to the process that creates the node repository (p5).

The node repository (sometimes referred to as the base data [35]) contains an

entry for each node in the XML document. In other words, it is a complete

representation of the original XML tree.

Due to the fine granularity of our partitioning process, the branch index

will, for many XML documents, be too large. In other words, the branch

index is exploited to prune the search space for queries, but searching the

branch index provides an undesirable performance overhead. Therefore, we

compact the branch index using a branch classification process (p4). The

output of this classification process is the branch class index (i9) in which

a single branch class represents many branch instances - the classification

process (p4) is the focus of Chapter 5. The class index is a compact version

of the branch index.

Using the properties of each node that is received from the partitioning

process (p2) and the branch class information received from the classification

process (p4), process p5 generates the node repository (i6). Process (p7)

subsequently generates the NCLT (Name/Class/Level/Type) index (i8). As

the node repository is deployed in a relational database, the NCLT index can

be generated using simple SQL expressions. Process (p7) generates the NCLT

index (i8) by selecting distinct name, class, level, and type from the node

repository. Later, we will show how, based on the specific properties of our

partitioning process, the NCLT index can act as a covering index [35] for

XPath steps that contain hierarchical axes. A covering index contains all of

the attributes that are required by the query (or sub-query in this instance),

32

XML
Document

Branch
Index

XPath
Query

Result Set

Node Properties

SQL
Query

Query
Transformation

Node
Repository

Classification
Process

Index
Selection

Reduce Search Space

Compact Index

Node
Avoidance

Cannot Avoid
Nodes

Partitioning
Process

(p2)

(i3)

(p4)

(i9)

(i6)

(i8)
(p11)

(q12) (p14)

Identify
Classes

(p13)

(d1)

(q10)

(r15)

Generate
NCLT

(p7)

Branch Class
Information

Create Node
Repository

(p5)

Class
Index

NCLT
Index

Legend
d: XML Document
p: Process
i: Index

q: Query
r: Result

Figure 3.1: Indexing and Query Processing Architecture

therefore the entire query can be evaluated in the index. In [31], they created

a covering index for XPath steps by exploiting partitioned B-tree facility in

a standard relational database [31] (as discussed in Chapter 2). In contrast,

the NCLT index is a covering index that is specifically designed to optimise

the hierarchical XPath axes and the improvement achieved using the NCLT

index is substantial as we will show in Chapter 7.

Upon receiving an XPath query (q10), the XPath-to-SQL transformation

process (p11) transforms the XPath query to its SQL equivalent (q12). The

33

SQL corresponding to each step in the XPath expression is an SQL sub-

expression. Each of these sub-expressions in turn uses the class index (i9)

to reduce the search space. The index selection process (p14) then chooses

when to query the high performance NCLT index (i8) where possible, or else

the node repository (i6) will be selected. Finally, when each sub-clause is

complete, the result set (r15) is returned.

Name Chapter

Partitioning Process (p2) Chapter 4

Classification Process (p4) Chapter 5

Node Repository Creation Process (p5) Chapters 4 5

Generate the NCLT (Name/Class/Level/Type) Index (p7) Chapter 5

XPath-to-SQL Transformation Process (p11) Chapter 6

Branch Class Identification Process (p13) Chapter 6

Index Selection Process (p14) Chapter 6

Table 3.1: Overview of the System Components

Table 3.1 provides a summary of the system’s processes and indicates the

chapters in which more details can be found.

3.2 The City Bikes XML Repository

The use of sensors in the physical-world is constantly increasing and could

now be regarded as widespread. The number of applications built on top

of such sensor data is also increasing. Examples are urban traffic watch;

weather monitoring; tracking of goods.

Recently the city of Dublin, like many other European cities, deployed a

bike sharing scheme in which the public can rent (and return) a bike from

stations located throughout the city centre. Stations are equipped with sen-

sors that monitor bike availability and publish such data to the DublinBikes

website (www.dublinbikes.ie). Users can connect to the website (through a

PC or mobile application) to check where stations are, how many bikes are

available, how many spaces are available to return bikes, and what type of

34

payment methods are available.

Using this data providers can understand at which station it is better to pick

up or return bikes for maintenance in order to minimise service disruption.

In effect, the web service offers an efficient mechanism for determining the

current status of bike or space availability.

There are many situations in which it is advantages to be able to access

historical data, or look for trends and patterns over time. For example,

city planners or the companies offering the rental service must determine

the location for new sites; determine those sites that require expansion; or

reduce or close sites that are unpopular. Furthermore, this analysis must

take place over time to avoid any bias that could result from poor weather

patterns or other varying factors.

City Country Stations Data Size

Aix-en-Provence France 16 8 KB
Amiens France 25 8 KB
Besancon France 30 8 KB
Lyon France 340 80 KB
Mulhouse France 35 12 KB
Nancy France 25 8 KB
Nantes France 89 24 KB
Plaine-Commune France 44 12 KB
Rouen France 18 8 KB
Dublin Ireland 40 12 KB
Toyama Japan 16 8 KB
Luxembourg Luxembourg 46 12 KB
Santander Spain 13 4 KB

Table 3.2: Bicycle Rental Data Collection

The bicycle rental application [49] records information on bike availability

in cities and towns across the world. The data is collected from each loca-

tion at regular intervals (see Table 3.2) and the dataset at the time of our

experiments (Chapter 7) was 2.06 GB in size.

A typical XML document for a single station in the city of Lyon (France)

is shown in Figure 3.2. It shows that an entry was taken from Lyon on the

01/06/2010 at 19:59:50. The entry also illustrates the weather conditions

and the unit of measurement. Finally, for each bicycle station, information

35

<bikes>
<city>

<Lyon day='01' month='06' year='2010'>
<stations>
<time>
<hour>19</hour>
<minute>59</minute>
<second>50</second>

</time>
<timeOfDay>19:59:50 01-06-2010</timeOfDay>
<timeUnit>milliseconds</timeUnit>
<timeStart>1275418790000</timeStart>
<weather>
<time>Tue, 01 Jun 2010 8:30 pm CEST</time>
<wind>

<chill>63</chill>
<direction>40</direction>
<speed unit="mph">7</speed>

</wind>
<humidity>59</humidity>
<pressure unit="inches">29.97</pressure>
<temp unit="degrees farenheit">63</temp>
<condition>Partly Cloudy</condition>
<weatherTimeTaken>75</weatherTimeTaken>

</weather>
<station>
<id>9052</id>
<timeTaken>2853</timeTaken>
<available>2</available>
<free>20</free>
<total>22</total>
<ticket>1</ticket>
<error>0</error>

</station>
</stations>

</lyon>
</city>

</bikes>

Figure 3.2: Single Station Sample for Lyon

related to availability such as the number of free spaces and available bikes

is provided. A segment of the bicycle rental dataset will be used to provide

examples throughout the remainder of this dissertation.

36

Chapter 4

XML Document Partitioning

The motivation for document partitioning is that there will be fewer parti-

tions in the XML document than there are nodes. Thus, the partitions that

contain target nodes can be identified more efficiently; and the nodes that

comprise all of the other partitions are eliminated from the search space. In

§4.1, the new constructs that are used in the node partitioning process are

introduced. This is followed in §4.2, with a step-by-step description of how

the initial node partitions are created. The initial partitions are disjoint

sets of nodes, which collectively contain every node in the XML document.

However, we will show that the initial partitions act merely as a platform

for XML optimisation and can be improved by avoiding unnecessary false

hits [31]. Thus, the partitioning process is updated in §4.3 to create parti-

tions of more desirable sizes with respect to the hierarchical XPath axes. In

§4.4, a description of the query process for each of the hierarchical XPath

axes is provided. Finally in §4.5, a summary of the concepts introduced in

this chapter is provided.

37

4.1 Partitioning Constructs

This section introduces constructs that form part of the partitioning process.

In [48], we defined a disjoint partition of nodes within an XML document

as a branch. A branch construct and its sub-types are now described -

illustrated examples of these constructs will follow in §4.2 and §4.3.

Definition 1 A branch is a set of connected node identifiers within an XML

document, where node identifiers are unique proxies for nodes in an index,

for example pre/post labels.

A branch is the abstract data type used to describe a partition of nodes. In

our work, we will deal with the local-branch and path-branch sub-types of

a branch.

Definition 2 A local-branch is a branch, such that its members represent

a single branching node and the nodes in its subtree. A local-branch cannot

contain a member that represents a descendant of another branching node.

The local-branch uses the branching node to form each partition. Our pro-

cess uses the rule that each local-branch must not contain nodes that are

descendants of another branching node to create primary partitions.

Definition 3 A path-branch is a branch with a single path.

The path-branch is an abstract type with no branching node. Each member

is a child member of the preceding node. Its three sub-types (orphan-path,

branchlink-path and leaf-path) are used to partition the document.

Definition 4 An orphan-path is a path-branch such that its members cannot

belong to a local-branch.

The orphan-path definition implies that members of the orphan-path cannot

have an ancestor that is a branching node. The motivation is to ensure that

each node in the XML document is now a member of some partition.

38

Definition 5 A branchlink-path is a path-branch that contains a link to a

single descendant partition of its local-branch.

In any local-branch, there is always a single branching node and a set of non-

branching nodes. With the non-branching nodes, we must identify those that

share descendant relationships with other partitions. These are referred to

as branchlink-path partitions and each member occupies the path linking

two branching nodes (i.e. two partitions).

Definition 6 A leaf-path is a path-branch that contains a leaf node inside

its local-branch.

A leaf-path differs from a branchlink-path in that it does not contain a link

to descendants partitions. In other words, it contains a single leaf node and

its ancestors.

4.2 The Initial Partition Set

In the first attempt at partitioning, the goal is to include all nodes in local-

branch or path-branch partitions. Path-branches are abstract types and at

this point, all path-branch instances will be orphan-paths. Throughout this

section, we describe the partitioning process with respect to element nodes.

In all cases, attribute and text nodes in an XML dataset are placed in the

same branch as their associated element node. This results in fewer branches

which can be exploited to boost query process.

The algorithms for encoding an XML document using a pre/post encoding

scheme were provided by the authors of [29]. In brief, each time a starting

tag is encountered a new object is instantiated with the following attributes

of an element node: name, type, level, and preorder. Subsequently, the new

element object is pushed onto a stack structure: the element stack. Each

time an end tag is encountered an element is popped from the element stack

and is assigned a postorder identifier.

39

Once an element has been popped from the stack, we call it the current

node, and the waiting list is a set in which elements reside temporarily prior

to being indexed. The first step in the process is to determine if the current

node is a branching node by checking if it has more than one child node.

The next steps are as follows:

1. If the current node is non-branching and does not reside at level 1

(one level greater than the level at which the document node resides),

it is placed on the waiting list until step three (below).

2. If the current node is branching, it is assigned to the next local-branch

in sequence. Also, the nodes on the waiting list that are its descendants

are placed in the same local-branch and are removed from the waiting

list.

3. If the current node is non-branching, but a node at level 1 is en-

countered, the current node does not have a branching node ancestor.

Therefore, the current node is assigned to an orphan-path. For the

same reason, any node currently on the waiting list is assigned to the

same orphan-path.

At the end of this process, only the document node is unassigned. As the

document node is a generic ancestor of all other nodes in the XML document,

it can be ignored during the partitioning process. Indexing of the document

node is described as part of the final index structure in Chapter 5. Figure

4.1 illustrates the set of local-branches LB-1 to LB-8 and orphan-paths OP-9

and OP-10.

40

0

287

6

5

4

9

8

3531

30

29

33

32

34

36 41

37 40

38 39

42

43

1411

10

13

12

2117

16

15

19

18

20

23

24 27

25 26

22

1

2 3

44

46

45

LB-1

LB-2

LB-3

LB-4

LB-5

LB-6

LB-7

LB-8

OP-9

OP-10

Document Node orphan-path

Branching Node

Non-branching
Node

local-branch

Figure 4.1: Primary Partition Possibilities

4.2.1 Initial Partitions and False Hits

While Figure 4.1 shows the layout of branch instances in a hypothetical

situation, we will now illustrate the layout of the primary partitions using a

small segment from the real world bicycle rental dataset that was introduced

in Chapter 3. The authors of [31] described false hits as the visiting of

unnecessary nodes during the query process. In particular, they showed

how false hits can be reduced by avoiding nodes at specific levels in the

XML document that cannot contain target nodes. We will now illustrate

the problem of false hits relative to the primary partitions and their impact

on query performance before demonstrating (in §4.3) how a refinement of

the primary partitions leads to fewer false hits, and thus, improves query

performance.

41

Figure 4.2 illustrates the primary partitions for a small segment of the bicycle

rental dataset. In this instance, there are four local-branches and no orphan-

paths. To illustrate the concept of false hits, we will analyse the query

process for the ancestor axis. Given a sequence of context nodes, we must

identify the branch instances that the context nodes belong to, and their

ancestor branches. If the sequence of context nodes contains nodes 11 and

12 (Figure 4.2), local-branches LB-2 and LB-4 will be identified. The search

space is pruned at this point because nodes 5, 6, 7, 8, 18, 19, 20 and 21 do

not reside in LB-2 or LB-4 and thus, are not visited during query processing.

However, there are only three nodes within local-branch LB-4 that can be

hierarchically related to context nodes from LB-4, these are nodes 1, 9 and

10. This means that nodes 2, 3, 4, 15, 16, and 17 are guaranteed false hits.

False hits can be eliminated using individual node comparisons (e.g. using

pre/post labels), but this is inefficient (as discussed in Chapter 2).

0

6

2

87

<bikes>

<city>

<Dublin>

5<station>

<id>

<free>

<total>

3
@day='01'

4<stations>

12

9

1413

<Lyon>

11<station>

<id>

<free>

<total>

10<stations>

19

15

2120

18<station>

<id>

<free>

17<stations>

<total>

<Dublin>

1

16
@day='02'

LB-1 LB-2 LB-3

LB-4

Figure 4.2: Primary Partitions for Bicycle Rental Dataset

4.3 Partition Refinement

We have identified a principle that minimises the number of false hits: only

hierarchically related nodes are permitted in each branch and local-branches

can contain nodes that do not have a hierarchical association (i.e. an ances-

42

tor/descendant relationship). When nodes within branches do not share a

hierarchical association, the false hits previously described will occur (caus-

ing inefficiencies for the hierarchical XPath axes).

Each local-branch instance has a single branching node root which may have

many (non-branching node) descendants. It is the non-branching descen-

dants of the root that are examined to determine if they share a hierarchical

association as we want to ensure that only nodes that are hierarchically re-

lated reside in the same partition. Thus, we partition the non-branching

nodes (in each local-branch) into disjoint path-branches (Definition 3). As

orphan-paths and local-branches are disjoint, each of these path-branch in-

stances will be a branchlink-path or a leaf-path.

The RefinePartitions (Algorithm 1) replaces all steps outlined for creat-

ing the primary index (above). The new branch partitions are created by

processing two local-branches simultaneously. All current nodes (see creat-

ing primary partitions above) up to and including the first branching node

are placed in the first waiting list (wList1) where they wait to be indexed.

Subsequently, the next set of current nodes, up to and including the sec-

ond branching node, are placed on the second waiting list (wList2). At

this point, wList1 and wList2 contain the nodes that comprise the first and

second local-branches respectively.

If a node at level 1 is encountered, the nodes that comprise wList2 are

an orphan-path (line 2). If a branchlink-path exists, RefinePartitions

identifies it as the non-branching nodes in wList2 that are ancestors of the

root node in wList1 (lines 6-7). If one or more leaf-paths exist, they will

be the nodes in wList2 that are not ancestors of root node in wList1 (lines

8-9). The remaining nodes that comprise the first local-branch (wList1) are

then moved to the index (line 12); this will be the single branching node

root of the first local-branch only. At this point, the only node that remains

in wList2 is the root node of the second local-branch. This local-branch

43

Algorithm 1 RefinePartitions

1: if node at level 1 encountered then
2: move nodes that comprise wList2 to orphan-path;
3: end if
4: move non-branching nodes from wList1 to leaf-path;
5: for each node n in wList2 do
6: if n = ancestor of wList1.ROOT ∧ n 6= branching node then
7: move n to branchlink-path;
8: else if n 6= ancestor wList1.ROOT then
9: move n to leaf-path;

10: end if
11: end for
12: move local-branch from wList1 to local-branch;
13: move local-branch from wList2 to wList1 ;

is then moved to wList1 (line 13) and thus, wList2 is emptied. The next

local-branch is placed in wList2 and the process is repeated until all nodes

are processed. When this process has completed, the result will be many

more partitions, with the benefit of increased pruning.

A second function of this process is to track and index the ancestor-descendant

relationships between branch partitions. This is achieved by maintaining the

parent-child mappings between branches. Given two branch instances: B1

and B2, B2 is a child of B1 if and only if the parent node of a node that

is in B2 belongs to B1. When the RefinePartitions process is complete,

the ancestor-descendant relationships between branches are determined us-

ing a recursive function across these parent-child relationships, that is, by

selecting branch’s children, then its children’s children recursively.

The layout of the final branch possibilities is illustrated in Figure 4.3. In

particular, notice that the nodes within each branch instance are hierarchi-

cally related and branching nodes always end up in a single node branch,

which is important for the query process, which we describe next.

44

0

287

6

5

4

9

8

3531

30

29

33

32

34

36 41

37 40

38 39

42

43

1411

10

13

12

2117

16

15

19

18

20

23

24 27

25 26

22

1

2 3

44

46

45

OP-25
OP-26

BLP-14

Document Node

LP-1 LP-2

LP-4 LP-5
LP-6

LP-7
LP-8

LP-10

LP-15

LP-17 LP-18

LP-20

LP-16

LB-3

LB-13

LB-9

LB-11

LB-19

LB-21

LB-23

LB-24

LP-22

BLP-12

Figure 4.3: After Splitting Large Partitions

4.4 Query Processing

The branch index (which we refer to as BranchIndex) has some very useful

properties which can be exploited for the purpose of query performance.

This is illustrated in Figure 4.4. Notice how the BranchIndex is exploited

to prune the search space by limiting the region of the node repository

that must be evaluated. Moreover, these properties are fundamental to the

approach described in the subsequent sections and are thus explained here.

Consider the six hierarchical XPath axes: ancestor, ancestor-or-self, descen-

dant, descendant-or-self, parent and child. We described in Chapter 2 how

a step in an XPath expression receives a sequence of context nodes. Then,

from an initial sequence of target nodes (the entire XML document), the

45

XML
Document

Partitioning
Process

Branch
Index

XPath
Query

Result Set

SQL
Query

Query
Transformation

XML Document
Representation

Parse Document

Create Queryable Document
Representation

Search Space
(Before Partitioning)

Search Space

Figure 4.4: Search Space Pruning using the BranchIndex

sequence of actual target nodes are located by performing a join between

the two sequences. This join operation is based on the step’s axis, NodeTest

and predicates. In our approach, we achieve performance improvements by

firstly (before the join operation) identifying the set of branch instances

associated with the sequence of context nodes. The branch instances that

are identified are based on the step’s axis as follows:

• ancestor, ancestor-or-self axes. Identify the ancestor-or-self branches

associated with each context node.

• descendant, descendant-or-self axes. Identify the descendant-or-self

branches associated with each context node.

• parent axis. Identify the parent-or-self branches associated with

each context node.

• child axis. Identify the child-or-self branches associated with each

context node.

46

In each case, the self branch is the branch in which the context node resides

and the remaining branches are those that are hierarchically related based

on the step’s axis. Thus, the identified branches will always contain the tar-

get nodes. It is important to note that, after the identification of the branch

instances associated with the sequence of context nodes, a node’s level at-

tribute is the only additional attribute required to determine the remaining

hierarchical information for the step. Thus, the following attributes can be

used to create a covering index for an entire XPath step:

Example 5 (covering index attributes)

name, {branches}, level, type.

These attributes are different from traditional approaches as node labels

such as pre/post or Dewey decimal [55, 62] are not required to satisfy the

hierarchical relationships between nodes. If they were required, the covering

index would be at least as large as the original XML document as pre/post

or Dewey decimal labels are always unique for each node. To exemplify how

name, {branches }, level and type are exploited to satisfy hierarchical

relationships, consider the single context node sequence containing node 8

(Figure 4.3). If the step contains the descendant axis, the query process is

as follows:

1. Idetify the descendant-or-self branches: LP-4, LP-5, LP-6, LP-7,

LP-8, LB-9, LP-10, LB-11, BLP-12, LB-13.

2. Check the name, level and type of each node in these branches to

determine the sequence of target nodes.

At this point, there are still too many branch instances for this system

to be very efficient for most purposes. This provides the motivation for

reducing the size of the BranchIndex in Chapter 5. After the size of the

BranchIndex is reduced, we will show how the name, {branches }, level,

47

type attributes become the basis of a highly optimised covering index for

XPath steps.

4.5 Summary

In this chapter, we introduced the constructs that are used in the partition-

ing process (a branch and its sub-types). The creation of primary partitions

demonstrated that partitions can be created based on the occurrence of

branching nodes within an XML document, which avoids preprocessing to

identify suitable partitioning factors; an issue we identified for the approach

most similar to ours [43] (see Chapter 2). We then showed how an index of

primary partitions can result in a large number of false hits for the hierar-

chical XPath axes (as nodes within an individual branch partition may not

share a hierarchical association), and discussed their associated performance

overhead. To address the issue of false hits, we discussed how partitions can

be resized. For this purpose, a new strategy that uses the RefinePartitions

algorithm was presented, which creates branch partitions using the rule that

nodes within a branch must be hierarchically related.

48

Chapter 5

Classification of Partitions

The BranchIndex, resulting from the branch partitioning approach presented

in Chapter 4, provides a search space pruning method for XPath steps. How-

ever, as we pointed out, this technique has a large index storage cost because

the fine granularity of the partitioning process results in a large number of

branch instances. Thus, traversals of the BranchIndex have a performance

overhead that reduces the gains achieved through search space pruning. In

this chapter, we describe a technique which reduces the size of the BranchIn-

dex using a branch classification process. The BranchClassIndex, which is

a specialised version of the BranchIndex, maintains all of the benefits for a

reduction of the storage and therefore index traversal costs. In addition to

search space pruning, (as an additional benefit of the branch classification

process), we will introduce our node bypassing strategy for XPath steps.

This chapter is structured as follows: in §5.1, the branch classification pro-

cess is introduced; §5.2 describes how the BranchClassIndex is exploited to

optimise XPath queries; in §5.3, we describe how the classification process

can be extended to achieve further query performance gains; finally in §5.4,

we conclude by demonstrating that the integrity of result sets is maintained

after the classification process.

49

5.1 Branch Classification

The final phase in constructing the index is to reduce its size while maintain-

ing the same degree of search space pruning - this is process p4 in the system

architecture (Classification Process). To achieve this, branch instances are

classified into branch classes which are used to construct the final index

(the BranchClassIndex). In the BranchClassIndex, a single branch class

represents many branch instances.

Before presenting the classification process, we will discuss how the prop-

erties of the BranchIndex migrate to its specialised version (the Branch-

ClassIndex). Recall from Chapter 4 that based on the special properties of

the branch partitioning process and given a sequence of context nodes, the

hierarchical XPath axes can be satisfied using the following attributes of a

node:

Example 6 (original covering index attributes)

name, {branches}, level, type.

In the same chapter, we also demonstrated how these properties can be

exploited to create a covering index for steps in an XPath expression that

contains a hierarchical XPath axis. The problem that was noted however, is

that there will usually be too many branch instances in an XML document

to realise significant performance gains. In contrast, now based on the clas-

sification of branch instances, an optimised covering index for hierarchical

axes can be achieved using the following attributes of a node:

Example 7 (new covering index attributes)

name, {branch classes}, level, type.

We refer to the index that is based on these attributes as the NCLT (Name,

Class, Level, Type) index. In the NCLT index, a single branch class proxy rep-

resents many branch instances. Therefore, we will show how large numbers

50

of nodes can be bypassed during the query process. The overall optimisation

strategy can now be viewed in two phases:

1. For hierarchical XPath steps that must access the base data, the search

space is pruned by exploiting the branch information that is implicit

in the branch classes that are indexed.

2. For instances in which the NCLT covering index can be exploited to op-

timise an XPath step, large numbers of nodes can be bypassed because

a single branch class proxy can be evaluated in place of a large num-

ber of branch instances. This chapter will show that, when the NCLT

index is used, search space pruning and node bypassing are achieved

simultaneously.

Definition 7 (Generic Ancestor)

A generic ancestor is a node that is an ancestor of all nodes in an XML

document with the exception of the root and other generic ancestor nodes.

For example, in Figure 5.1 (below), node 1 is a generic ancestor because it

is an ancestor of all nodes except the root node. As will be shown shortly,

the root node, and generic ancestor nodes, can be ignored during the branch

classification. Therefore nodes can be indexed earlier (removed from main

memory) making the classification process more efficient.

5.1.1 Branch Classification

The branch classification process will place every branch instance in a single

branch class. To achieve this, each XML document is treated as a set of

disjoint sub-documents where each sub-document is rooted at the first level

that contains a non-generic ancestor. In Figure 5.1, the root node resides at

level 0. The only generic ancestor in this example resides at level 1. Thus,

sub-documents 1-4 are rooted at level 2.

51

1

<c> 2

3

4 5

6

<d>

<e> <f>

<g> C5
B1

7

8 9

<h>

<j><i>

iValue1 jValue1

0
<a>

<c> 10

11

12 13

14

<d>

<e> <f>

<g> C5
B2

15

16 17

<h>

<j><i>

iValue2 jValue2

<c> 18

19

20 21

22

<d>

<e> <f>

<g> C6
B3

23

24 25

<h>

<j><i>

iValue3 jValue3

26<k>

kValue1

<c> 27

28

29 30

31

<d>

<e> <f>

<g> C6
B4

32

33 34

<h>

<j><i>

iValue4 jValue4

35<k>

kValue2

Figure 5.1: XML Tree Showing Branch Classifications

The classification process we are about to present is in some ways similar

to the concept of forward and backward bisimulation [1, 35]. The first ma-

jor difference is that we are classifying branch instances rather than node

instances. Secondly, paths leading to element and attribute node names are

considered in the branch classification process, but those leading to their

text values are not. For example, in Figure 5.1, the text values (e.g. iValue1,

kValue1) are not included in the classification process, therefore they do not

reside inside a sub-document.

Example 8 (Forward Paths of Node 3)

/c/d/e-{}, /c/d/f-{/g, /g/h, /g/h/i, /g/h/j}, /c/d/f/g-{/h, /h/i, /h/j},
/c/d/f/g/h-{/i, /j}, /c/d/f/g/h/i-{}, /c/d/f/g/h/j-{}

The steps in the branch classification process for each sub-document are as

follows:

Step 1: Calculate Forward Path Identifiers. Traverse each element

node in the sub-document and assign to it, a forward path identifier. We

calculate this identifier for each element node using the dash separated pair

[root path-{ordered outgoing paths}]. For instance, the forward path for node

52

3 in Figure 5.1 is shown in Example 8.

Recall from Chapter 4 (XML Document Partitioning) that the partitioning

process exploits a stack structure to process element nodes. In short, when

an opening tag is encountered the new element is pushed onto an element

stack. When a closing tag is encountered, the element on the top of the

element stack is popped (removed from the stack) because the end of the

node has been reached. Using the same stack based approach, the steps in

calculating the forward bisimulation are as follows:

1. When an opening tag is encountered, add the root path (the path

containing the names of the nodes from the root of the sub-document

to this node) of this new node to the set of forward paths of each node

currently on the element stack.

2. When a closing tag is encountered:

• The top element is popped from the stack, and its [root path-

{outgoing paths}] pair (described above) is added to the set of

forward paths that each node on the element stack maintains.

• Assign a unique forward identifier to the forward paths of the

node just popped from the stack, or, get the previously assigned

identifier if the same path was encountered before.

This process has worst case O(N*M) complexity, where N is the number

of nodes in the sub-document and M is the maximum depth of the tree

structure (the maximum possible number of nodes on the element stack).

Theoretically, M can be large, but it is common for the maximum depth

of an XML document to be less than 10 levels, for example DBLP [21] (6

levels), Protein Sequence Database [58] (7 levels). In fact, the XPathMark

benchmark [67] for stress testing the performance of XPath queries against

synthetic XML data uses just 13 levels.

53

Step 2: Calculate Backward Path Identifiers. Traverse each element

node in the sub-document one more time and assign to it, a backward path

identifier. A node’s backward path identifier is calculated using its root path’,

where the root path’ is the path of containing the forward path identifier of

each node (calculated in the previous step) from the root node, within the

sub-document, to this node.

As with forward path identification, this process has worst case O(N*M)

complexity because the element stack is traversed for each node in the sub-

document to find the root path’ of the node.

Step 3: Classify Branch Instances. For each branch, its branch class

identifier is calculated as backward path identifier of each element node in

the branch, in document order.

5.1.2 Typical Build Times and Storage Costs.

The build times for the four XML datasets evaluated in this dissertation

are shown in Table 5.1 - these datasets are formally introduced in Chapter

7. The build times for the same datasets using SQL Server 2008 and Mon-

etDB/XQuery are also shown for comparison purposes. MonetDB/XQuery

took the least amount of time across all datasets, followed by the Branch-

ClassIndex and SQL Server, respectively. SQL Server has the least efficient

indexing process across all of the XML datasets. Also, for SQL Server, a

build time is not shown for the Computer Science Bibliography (DBLP)

because it had difficulty processing and XML document with an associated

DTD (Document Type Definition).

Dataset Size BCI SQLS MonetDB Unit

DBLP 676 MB 4.70 —— 1.56 Minutes
XMark 1.33 GB 9.93 36.73 3.34 Minutes
Protein 683 MB 7.86 37.28 1.69 Minutes
Bikes 2.06 GB 22.55 146.62 18.30 Minutes

Table 5.1: Build Times

54

The BranchClassIndex took more time than MonetDB/XQuery to build

the index; the difference for each dataset in minutes is: 3.14 (DBLP), 6.59

(XMark), 6.17 (Protein), 4.25 (Bikes). In other words, for the four datasets

respectively, MonetDB/XQuery is 100.30%, 99.32%, 129.21%, 20.8% more

efficient at building the index. However, MonetDB requires ‘modifications to

the internals of the underlying RDBMS kernel’, whereas the BranchClassIn-

dex can be deployed in an ‘Off-the-Shelf’ relational database [31].

Dataset XML Doc. BaseData BCI

DBLP 676 MB 951 MB 269.40 KB
XMark 1.33 GB 1.22 GB 117.23 MB
Protein 683 MB 853 MB 149.76 MB
Bikes 2.06 GB 2.56 GB 80.04 KB

Table 5.2: BranchCLassIndex Storage Costs

The layout of the BranchClassIndex is detailed in Chapter 6. Table 5.2 shows

the storage cost (size on disk) of the BranchClassIndex. The BaseData is

the representation of the original XML dataset within Oracle 11g relational

database and BCI is the storage costs of the BranchClassIndex. For each

XML dataset, the BaseData is larger than the original XML document.

This is because it contains the encoded (pre/post) structure of the XML

document and indexing attributes associated with the BranchClassIndex,

such as the branch class identifier of each node, are stored in the BaseData.

Crucially however, for each dataset the storage costs of BranchClassIndex

is smaller than the BaseData, for example, 269.40 kilobytes (DBLP), 117.23

megabytes (XMark).

0<a>

<i>

1

2 5

<d> <e>

3 4
<h> <k>

6 7
<j> <m>

8

9 12
<f> <g>

10 11
<l> <o>

13 14
<n>

<c>

Figure 5.2: Full Binary Tree with Distinct Path for each Node

55

5.1.3 Worst Case Storage Costs for BranchClassIndex

Recall, from Chapter 4, that the BranchIndex contains the ancestor/descendant

and parent/child relationships between branch instances. Therefore, because

the BranchClassIndex is a compact version of the BranchIndex it must con-

tain the ancestor/descendant and parent/child relationships between branch

classes.

In the worst case, there will be as many branch instances as there are nodes

in the XML document. For instance, a full binary tree (sometimes called a

proper binary tree) is a tree in which each non-leaf node has exactly two child

nodes. According to our definition of branch instances, branching nodes

always reside in a single node partition. Thus, if there are no attribute nodes

in the XML tree (because they reside in the same branch as their parent

element) and it is a full binary tree, each branch instance will contain exactly

one node (a single branching node or a single leaf node). Furthermore, if

each node in this XML tree has a distinct root path (that is, it does not

share its root path with any other node in the tree), there will be as many

branch classes are there are nodes in the XML document - such an XML

tree is shown in Figure 5.2.

To index the relationships between branch classes in a relational database,

we adopted the approach similar to that proposed by XParent [34] (see

Chapter 6 for details). In XParent, the relationships between nodes - or

the transitive closures of nodes - are stored explicitly in an Ancestor ta-

ble. This ancestor table allows XPath steps to be answered using equi-joins

rather than θ-joins (nonequi-joins). Thus, if there are as many branch classes

as there are nodes in the XML document, the performance of the Branch-

ClassIndex reduces to that of XParent.

As our approach in its worst case can, like XParent, use equi-joins rather

than θ-joins, hash-join algorithms are an option of the query optimiser. A

Hash join has O(N+M) complexity. However, the inner row of a hash-join

56

must be loaded into memory. Thus, in our worst case scenario, the query

optimiser may choose nested-loops, which has a worst case complexity of

O(N*M).

5.2 Exploiting Branch Classification to Optimise

XPath Queries

In Chapter 4, we described how branch instances are exploited to prune

the search space during query processing. In particular, a description was

provided of how the branch instances (that prune the search space) are iden-

tified for each XPath step based on its axis and sequence of context nodes.

We now show how this process is optimised using the BranchClassIndex. For

this purpose, we introduce the concept of a ClassChain. This is followed by

a description of how ClassChains are exploited to improve the performance

of XPath steps. The section is completed with a worked example which illus-

trates how the query process associated with the BranchClassIndex differs

from that used by other approaches.

Definition 8 (ClassChain)

For any branch class (which we will call the self-class), a ClassChain con-

tains the self-class and its hierarchically related classes in root-to-leaf order.

The ClassChain is sub-divided into the following three components:

1. Ancestor-Component - contains the classes that are ancestors of the

self-class. Contained within this component is the Parent-Component

which contains the classes that are the self-class’ parents.

2. Class-Component - contains the self-class only.

3. Descendant-Component - contains the classes that are descendants of

the self-class. Contained within this component is the Child-Component

which contains the classes that are children of the self-class.

57

C3

C2

C1

C4

C6

C5

C7

C3

C2

C1

C4

C6

C5

C7

a. ClassChain Components b. ClassChain Usage

Figure 5.3: ClassChain Components and Usage

Figure 5.3a shows the ClassChain components associated with self-class C4.

Figure 5.3b illustrates how these components are exploited to evaluate the

hierarchical XPath axes:

• A combination of the Class-Component and the Ancestor-Component

is used for the ancestor and ancestor-or-self XPath axes.

• Components Parent-Component and Class-Component are used for

the parent axis.

• Components Class-Component and Child-Component are used for the

child axis.

• Components Class-Component and Descendant-Component are used

for the descendant axis.

The Parent-Component and the Child-Component are optional indexing

constructs. They provide additional performance across the parent and child

axes because they eliminate a larger number of branch classes from the query

process.

58

5.2.1 Modelling the Indexing Constructs

In this section, we describe how the optimisation constructs are modelled.

The Class Diagram in Figure 5.4 shows that each Node has a NodeLabel.

A NodeLabel captures a node’s relationship to other nodes. In this in-

stance, we chose preorder and postorder labels (i.e. pre/post encoding).

However, as our approach is encoding scheme independent, all XML en-

coding schemes are permitted in the NodeLabel. For example, ORDPATH

encoding [55] is more appropriate for systems that require frequent updates,

whereas pre/post encoding is best suited to read only XML databases. A

Node has the additional attributes: name (the node’s name), value (text

values), type (element/attribute), and level (distance from the document

node), which capture its properties within the document.

NodeLabel
pre : Integer
post : Integer

Node
label : NodeLabel
name : String
value : String
type : Integer
level : Integer
branch : Branch

1

1

1

1

Branch
id : Integer
nodeList [] : Node
ancestorList [] : Branch
descendantList [] : Branch

classify()

1..n 11..n 1

 File: C:\Users\Gerard\Desktop\TKDE Journal\IndexModel - 03.mdl 12:46:12 03 June 2010 Class Diagram: Logical View / Main Page 1

Figure 5.4: Optimisation Constructs

In the storage model, one or more nodes belong to a single branch instance

and a branch instance has one or more nodes (its nodeList[]). Each branch

instance has a classify() function that places the branch in the relevant

branch class. Thus, id in Branch will be the branch class identifier of the

branch after it has been classified. In the ClassChain (Figure 5.3), this id is

59

the Class-Component. In the Branch class the two attributes ancestorList[]

and descendantList[] contain the set of ancestor branch instances and de-

scendant branch instances respectively (before the classify() function has

been called). After classification, they contain the ancestor branch classes

(Ancestor-Component in the ClassChain) and descendant branch classes

(Descendant-Component in the ClassChain) respectively.

5.2.2 Worked Example

We will now provide a worked example to illustrate how optimisation is

achieved for hierarchical XPath steps using the BranchClassIndex. Figure

5.5 depicts a small segment taken from the bicycle rental repository. Each

node in the XML tree is identified by its preorder label. The branch class

for each node is also shown; for example, nodes 2, 3, 4, 15, 16, and 17 are

in branch class C5.

0

6

2

87

<bikes>

<city>

<Dublin>

5<station>

<id>

<free>

<total>

3
@day='01'

4<stations>

12

9

1413

<Lyon>

11<station>

<id>

<free>

<total>

10<stations>

19

15

2120

18<station>

<id>

<free>

17<stations>

<total>

<Dublin>

1

16
@day='02'

C1 C1
C2 C2C3 C3

C4 C4

C5 C5

C6 C7
C8

C9

C10

C11

Figure 5.5: Bicycle Rental Repository Subset

The following example contrasts our query process to that of similar ap-

proaches [29, 31]. The goal is to illustrate the two key concepts of the

BranchClassIndex: (1) search space pruning and (2) node bypassing.

Example 9 Return all bicycle stations in Dublin.

//Dublin/stations/station

60

pre post name class level type

2 6 Dublin 5 2 1
4 5 stations 5 3 1
5 4 station 4 4 1
15 19 Dublin 5 2 1
17 18 stations 5 3 1
18 17 station 4 4 1

Table 5.3: Extract from the Node Repository (Base Data)

The XPath query in Example 9 contains three steps, each of which locates

nodes within the XML tree as follows:

//Dublin. The first step contains the descendant-or-self axis. As it is

the first step in the expression, the nodes that are descendant (or self) of

the document node (node 0) must be located. The NodeTest specifies that

those nodes must be element nodes that have the name Dublin.

• Traditional Approach. Identify a sequence of element nodes called

Dublin, which is the sequence of nodes: (2, 15) - see Table 5.3.

• BranchClassIndex Approach. The proxy for class C5 in the NCLT

index is shown in Table 5.4. Thus, in an instance of node bypassing, the

NCLT index is exploited to identify a single proxy: p1, which represents

both node 2 and node 15. Proxies p1-p3 are placed in Table 5.4 for

illustration purposes only; these identifiers do not appear in the index.

Essentially, in the first XPath step, the traditional approach identifies two

nodes in the node repository, whereas the BranchClassIndex approach iden-

tifies a single proxy node in the much smaller NCLT index that represents

both nodes.

/stations. Identify the element nodes called stations that are children of

the nodes identified at the first step.

61

id name class level type

p1 Dublin 5 2 1
p2 stations 5 3 1
p3 day 5 3 2

Table 5.4: Extract from the NCLT Covering Index

• Traditional Approach. The context node sequence is (2, 15). There-

fore, using pre/post labels (see Table 5.3), node 2 is evaluated to find

all nodes in the node repository that have a preorder identifier greater

than that of node 2 and a postorder label less than that of node 2.

Then, make sure it is a child node using the node’s level attribute -

the node is a child if it resides at one level greater than that of the

context node. The process is then repeated for node 15. The target

node sequence (4, 17) is identified.

• BranchClassIndex Approach. This is the first step in which the

ClassChain is utilised. As the step contains the child axis, ClassChain

components: 2 (Class-Component) and 3(a) (Child-Component) are

selected (recall ClassChain component usage Figure 5.3); these com-

ponents contain branch classes 4 and 5 (C4 and C5 in Figure 5.5). It

must now be determined if it is necessary to access the base data or to

use the NCLT covering index. The query process uses these ClassChain

components to prune the search space in either case because all classes

that are not in the class chain are avoided. The index selection process

is detailed in Chapter 6; in this particular instance, it will choose the

NCLT index.

The input to this step was the sequence of proxy identifiers: (p1).

Thus, using the attributes of proxy p1 (Table 5.4), in an instance of

node bypassing, the query process will query the NCLT index and find

the nodes called (Name) stations; that are in (Class) class 4 or 5; that

have a level (Level) greater than that of Dublin (i.e. must be greater

62

than 2); and finally (Type), it must be of type 1 (an element node).

The output is therefore the sequence (p2), which represents both node

4 and node 17.

The traditional approach processes each node in the context node sequence

and identifies all target nodes for every step in the expression. In contrast,

for the BranchClassIndex, the query process receives a sequence of proxy

representatives and (1) prunes the search space using the ClassChain, and

(2) bypasses nodes by identifying a sequence of target proxy representatives,

rather than a sequence of target nodes. In this instance, the sequence (p2)

represents nodes 4 and 17 in the base data. In practice, a proxy will often

(see Chapter 7 for details) represent thousands and even millions of nodes

in large XML datasets.

/station. Identify the element nodes called: station that are children of

the nodes identified at the previous step.

• Traditional Approach. The context node sequence is (4, 7). Again,

each node is evaluated in turn and using the context node’s attributes

(e.g. preorder, postorder, level); target nodes (5, 18) are identified.

As this is the rightmost step in the expression, nodes 5 and 18 are

returned.

• BranchClassIndex Approach. The sequence of context proxies

contains p2. As it is the rightmost step in the expression, the NCLT

index cannot be used as the actual nodes must be retrieved and re-

turned as the result set. In other words, node bypassing is not possible

for the rightmost step in any XPath expression (see index selection -

Chapter 6 - for more details).

However, the ClassChain can be exploited to prune the search space.

As the axis is child, ClassChain components associated with the classes

63

in the context node sequence (p2) must be identified. Thus, the com-

ponents that are associated with class 5 (C5 - Figure 5.5) are selected:

2 (Class-Component) and 3(a) (Child-Component), which contain

classes 4 and 5 (C4 and C5 Figure 5.5). It remains to find all nodes in

the base data that have the name station; are in class 4 or 5; have a

level one greater than 3; and a type of 1 (an element node). The node

set {5, 18} is therefore returned.

5.2.3 Worked Example Summary

The result set for the XPath expression in Example 9 is {5, 18} and both ap-

proaches returned the same result. However, the traditional approach visited

nodes (2, 4, 5, 15, 17, 18) using inefficient pre/post/level node comparisons.

In contrast, the BranchClassIndex approach evaluated proxies (p1, p2) -

which represented nodes (2, 4, 15, 17) - and the search space was pruned

using the class chain in each case. Finally, nodes 5 and 18 are the result

nodes for the query, thus the NCLT index could not be used. When locating

these nodes in the base node repository, the BranchClassIndex pruned the

search space by evaluating only those nodes in classes C4 and C5 - all other

branch classes were avoided.

5.3 Extending the Branch Classification Process

In this section, we show how some XPath steps can be optimised by extend-

ing the classification process to include text values (recall that they were

omitted from the classification process to minimise the number of branch

classes). However, we only allow certain text values to be classified (those

that do not increase the size of the index significantly). Using the same ter-

minology as in [47], these text values can be categorised as high selectivity

and low selectivity text values.

64

If a text value has high selectivity, it will occur a small number of times

in the base data. Thus, in spite of the fact that the base data must be

evaluated (when an XPath query is predicated on a text value) text values

that have high selectivity lead to fewer node comparisons then if they have

low selectivity. In contrast, when an XPath expression is predicated on a

text value that has low selectivity, there will be a large number of inefficient

node comparisons. This is because text values that have low selectivity

occur many times in the base data.

1

<c> 2

3

4 5

6

<d>

<e> <f>

<g> C5
B1

7

8 9

<h>

<j><i>

iValue1 jValue1

0
<a>

<c> 10

11

12 13

14

<d>

<e> <f>

<g> C6
B2

15

16 17

<h>

<j><i>

iValue2 jValue2

<c> 18

19

20 21

22

<d>

<e> <f>

<g> C7
B3

23

24 25

<h>

<j><i>

iValue3 jValue3

26<k>

kValue1

<c> 27

28

29 30

31

<d>

<e> <f>

<g> C7
B4

32

33 34

<h>

<j><i>

iValue4 jValue4

35<k>

kValue2

Figure 5.6: XML Tree Showing Branch Classifications

To optimise the BranchClassIndex for queries that evaluate text nodes that

have low selectivity, the paths to certain text values are included in the

classification process. For example, in Figure 5.6, notice the how text val-

ues iValue1 and jValue1 are within SubDocument 1, which means that the

paths to these text values are included when calculating the forward paths of

element nodes in that sub-document. This has the effect of placing branches

B1 and B2 in different branch classes, whereas before (see Figure 5.1) they

where placed in the same branch class.

As we demonstrate empirically in Chapter 7, many text values that have

low selectivity can be classified while introducing only a small number of

additional branch classes. This has the effect of optimising XPath expres-

65

sions text values that have low selectivity for only a small increase to the

index size. Our goal is to create a situation where the only time the base

data is evaluated will be to evaluate text values that have high selectivity.

Therefore, improving the generic performance of the index and providing a

lever to control the space/time (index size/query performance) trade off.

//people//person[.//address//postcode = ‘ ’]//profile/education
NCLT NODE NCLT NODE NCLT NODE

Filter

Q3:

Filter

//people//person[.//address//name = ‘ ’]//profile/education
NCLT NODE NCLT NODE NCLT NODE

Filter

Q4:

Filter

Figure 5.7: Illustrating the Effect of Low Cardinality Text Values

To illustrate why optimisation is only achieved through the classification of

text values that have low selectivity, consider the two queries in Figure 5.7.

Query Q3 must access the base data at step two because the text value ‘17’

must be evaluated. In a real world scenario, there can be many thousands of

people living in the same postcode (e.g. at postcode 17). Thus, there can be

thousands of node comparisons as each person residing at postcode 17 will

be evaluated. In contrast, it is unlikely (see Q4) that there will be thousands

of people with identical names, i.e. M. Kersten, living in the same postcode.

In this situation, even though the base data must be accessed in step two of

Q4, there may be few node comparisons required (just one for each person

with the name M. Kersten).

5.3.1 Identifying Text Values that have Low Selectivity

In order to classify text values that have low selectivity, the classification

process must be able to detect them. We propose two ways in which in-

formation relating to these text values can be retrieved in advance of the

classification process:

66

1. Domain Knowledge. Knowledge of the data is known in advance.

For example, if one knows that the dataset contains an element called

gender, the classification process can be told to include text values

that have low selectivity such as male and female.

2. Text Value Identification Algorithms. These algorithms will

identify text values that are suitable for classification.

The first approach requires no further details, because prior knowledge of

data will already be available by some other means. Therefore, we will focus

on the second (identification algorithms) approach, which is applicable to

all XML datasets.

//people//person[.//address//postcode = ‘ ’]//profile/educationQ5:

//people//person[.//address//postcode > ‘ ’]//profile/educationQ6:

Figure 5.8: Examining Text Value Operations

There are a couple of considerations to be aware of when classifying text val-

ues that have low selectivity. For example query Q5 in Figure 5.8, specifies

that all postcodes with a text value equal to 17 are evaluated. Conversely,

in Q6 the range operator (‘>’) requires that all postcodes greater than 17

be evaluated. In order to perform range evaluations across text values as-

sociated with a given node, all of the text values for that node must be

classified (not just individual text values). In other words, it is not suffi-

cient to classify the text value ‘17 ’ for the element node postcode; all text

values associated with postcode must be classified.

Classifying all of the text values associated with a given node can lead to a

large increase in the number of branch classes and therefore, the size of the

overall index. In contrast, for evaluations based on the equality operator

(‘=’), it is sufficient to classify individual text values associated with a given

node (all of its text values do not have to be classified). Thus, the process

67

for identifying text values that have low selectivity is broken into two parts:

1. Range Based Classification. The classification of all text values

associated with a node if there is a small number of distinct text values

for a large number of nodes. For example, there can be a large number

of nodes called gender with only two distinct values male and female.

In this instance, all of the values associated with nodes called gender

are classified.

2. Equality Based Classification. Classification of individual text val-

ues that have a cardinality greater than some threshold (thresholds are

discussed below). Only the equality operator (‘=’) will be permitted

in XPath steps that evaluate these text values (range based text value

evaluations must still access the base node repository).

5.3.2 The Text Value Identification Algorithms

Firstly, the algorithm for identifying text values that are candidates for

range based classification is provided (IdentifyRangeBasedCandidates).

Secondly, the IdentifyEqualityBasedCandidates algorithm shows how

individual text values that are suitable for classification are identified. A

single pass of the XML document is required in advance of the classification

process to identify the input values for the algorithms. The performance of

both algorithms and the pass of the XML document are discussed at the

end of this section.

The Range Based Classification Algorithm

As discussed, to support range based evaluations across text values, all

of the text values associated with a node of a given name and type (ele-

ment/attribute) must be classified. The IdentifyRangeBasedCandidates

process is designed to identify nodes that can be classified while incurring

68

only a small increase to the number of branch classes.

Algorithm 2 IdentifyRangeBasedCandidates

1: NodeMap := (NodeName 7→ TextValues);
2: NodeCardinalityMap := (NodeName 7→ Cardinality);
3: for NodeName in NodeMap do
4: CardinalityOfTextValues := NodeMap.get(NodeName).size();
5: CardinalityOfTotalNodes := NodeCardinalityMap.get(NodeName);
6: if CardinalityOfTotalNodes ≥ (CardinalityOfTextValues * N) then
7: classify all text values associated with NodeName;
8: end if
9: end for

As stated earlier, the text value identification processes require one addi-

tional pass of the XML document in advance of the classification process.

In IdentifyRangeBasedCandidates, lines 1 and 2 are populated during

this pass of the XML document. NodeMap (line 1) is a map data structure

containing each NodeName mapped to its set of TextValues. For example,

if the XML document contains a node called gender, after document pass

the NodeMap could contain the entry: gender 7→ {male, female}. Similarly,

the NodeCardinalityMap contains each NodeName mapped to its Cardinal-

ity. Thus, if there were 23 males and 48 females in the XML document, the

NodeCardinalityMap would contain: gender 7→ 71.

For range based classification, we are only interested in nodes that have

a small number of distinct text values (such as male, female) for a large

number of nodes (such as gender) because their text values will have low

selectivity. Thus, to optimise the document pass, we quickly eliminate nodes

that have too many distinct values. For example, if an upper threshold of

100 distinct values is used, at the end of the document pass, the NodeMap

and the NodeCardinalityMap will only contain nodes that have fewer than

(or equal to) 100 distinct values. We discuss suitable thresholds in Chapter

7.

To determine if there is a small number of distinct text values for a large

69

number of nodes, for each node of a given name (NodeName) in the XML

document (line 3), the process identifies its total number of distinct text

values (CardinalityOfTextValues) (line 4) and the total number of nodes

with that name (CardinalityTotalNodes - line 5).

If the total number of nodes (CardinalityOfTotalNodes) that have a given

name and type is small, there is no point in classifying its text values. To

see why, consider the node gender again. If there are only 100 nodes called

gender in the document, there is no point in classifying the text values

associated with gender, even if there are only two values (male and female).

The reason for this (as discussed earlier) is that even if the base data must

be accessed to evaluate nodes called gender, it will be efficient because there

will be a maximum of 100 node comparisons.

To determine if the selectivity of the text values are low enough, a threshold

T must be known. T is time it takes to perform a join between nodes in

the base data, when an XPath query is predicated on a text value. Say CN

(Context Nodes) * TN (Target Nodes) is the total number of node joins that

can be performed when T is equal to 1000ms (one second). If we classified

all text values that occur more than N times in the base data, all of the text

values that are not indexed will occur less than N times in the base data.

Therefore, we would expect that any time the base data must be evaluated

(because of a text value in an XPath step) the join operation would be

performed in less than one second (we identify suitable T values empirically

in Chapter 7).

For example, if there are 10,000 nodes called gender which have two distinct

values: male and female, line 6 in IdentifyEqualityBasedCandidates would

be as follows: if 10,000 ≥ (2 * T). If for example, T is set to 3000, at line

7 the text values associated with nodes called gender will be classified. In

contrast, if CardinalityOfTotalNodes was 5,000, text values associated with

gender would not be classified.

70

The Equality Based Classification Algorithm

A node can have associated text values that have low selectivity while also

having text values that have high selectivity. In this instance, range based

classification is not suitable because classifying all of the node’s text values

(including those with high selectivity) could lead to a large increase to the

index size. However, it is easy to determine if the XPath step is performing

an equality evaluation or a range based evaluation across a text value. Thus,

we can extend the index further (and avoid the base data for a greater num-

ber of XPath steps) by classifying text values that are suitable for equality

evaluations only.

Algorithm 3 IdentifyEqualityBasedCandidates

1: NodeMap := (NodeName 7→ (TextValue 7→ Cardinality));
2: for NodeName in NodeMap do
3: for each TextValue associated with NodeName do
4: TextValueCardinality := NodeName.get(TextValue);
5: if TextValueCardinality ≥ N then
6: classify Text value for equijoin on NodeName;
7: end if
8: end for
9: end for

During the pass of the XML document, a NodeMap is populated which con-

tains each NodeName mapped to another map that contains its text values

mapped their cardinality (line 1). For each node name in the NodeMap

(line 2) and for each of its text values (line 3) the cardinality of the text

values (TextValueCardinality) is identified (line 4). If TextValueCardinality

is greater than some threshold N (line 5), it is classified for equality evalua-

tions in XPath expressions (line 6). In other words, if the number of times

the text value occurs in the XML document is greater than N (again this N

value is determined empirically in Chapter 7), it has low selectivity.

71

Efficiency Evaluation

We will now discuss the efficiency of the IdentifyRangeBasedCandidates

and IdentifyEqalityBasedCandidates processes.

Machine Platform CPU RAM

Dell Windows 7 Pro (32bit) 3.00GHz Intel Core Duo 4GB

Table 5.5: System Specification

Dataset Size Pass Time IRBC IEBC

Bicycle Rental 2.06 GB 2.7 min 1 ms 11 ms
DBLP 676 MB 0.7 min 0 ms 18 ms
XMark 1.33 GB 0.8 min 1 ms 20 ms
Protein 683 MB 0.6 min 0 ms 28 ms

Table 5.6: Efficiency of the Text Value Identification Algorithms

The processes were executed on a system with the specification shown in

Table 5.5 and they were implemented in the Java programming language.

Table 5.6 shows four datasets, their size, the document pass time in min-

utes, the IdentifyRangeBasedCandidates (IRBC) time in milliseconds,

and the IdentifyEqalityBasedCandidates (IEBC) time in milliseconds

respectively. The largest quantity of time is spent on the document pass,

which identifies the input values for both processes. After the document

pass is complete, the values in Table 5.6 show that the processes take very

little time (less than one second for each dataset).

5.4 Post Classification Integrity

At this point, we have described the branch classification process in full.

Additionally, in §5.2, we described how branch classes are used in the query

process, that is, how the ClassChain components are utilised at each step

in an XPath expression. The objective of this section is to ensure that the

integrity of query result sets are maintained after branch classification.

72

The BranchClassIndex works on the basis that name, {branch classes },
level, type, value (i.e. the NCLTV index) can be used to evaluate hier-

archical XPath steps. The NCLTV index contains a branch class proxy that

represents many branch instances. Thus, as the NCLTV index is used in place

of individual node labels such as pre/post, we must ensure that the following

IntegrityProposition holds:

IntegrityProposition. If a single branch instance in a branch class con-

tains target node(s), all branch instances in that class will contain equivalent

target node(s).

1

<c> 2

3

4 5

6

<d>

<e> <f>

<g> C5
B1

7

8 9

<h>

<j><i>

iValue1 jValue1

0
<a>

<c> 10

11

12 13

14

<d>

<e> <f>

<g> C6
B2

15

16 17

<h>

<j><i>

iValue2 jValue2

<c> 18

19

20 21

22

<d>

<e> <f>

<g> C7
B3

23

24 25

<h>

<j><i>

iValue3 jValue3

26<k>

kValue1

<c> 27

28

29 30

31

<d>

<e> <f>

<g> C7
B4

32

33 34

<h>

<j><i>

iValue4 jValue4

35<k>

kValue2

Figure 5.9: XML Tree Showing Branch Classifications

The use of the word equivalent in referring to one or more nodes in the

following deductions means: a set (sorted in document order) of nodes that

have the same name, type, level and value (value only includes the text

values that were selected for range or equality based classification).

Example 10 (Sample Linear XPath Expression)

/a//c//h/ancestor::f.

73

Case 1 (XPath Expressions). Given any linear XPath expression con-

taining one of the six hierarchical XPath axes (such as Example 10), we can

deduce that if a single branch instance (B3 Figure 5.9) contains a target node

(node 21), then all branch instances in the same class (B4) will also contain

a target node (nodes 30). The reason for this is that based on the branch

classification, all branch instances have equivalent forward and backward

structure.

Example 11 (Sample XPath Twig Query with Text Value)

/a//d//i[./@key = ‘iValue1’]/ancestor::f.

Case 2 (Twig Query with Text Value). When a Twig query contains

a low selectivity text value that has been selected for classification, the path

containing nodes from the root node to the text value itself is included in

the classification process. For example, branches B1 and B2 are placed in

different branches because text values ‘iValue1 ’ and ‘jValue1 ’ were classified.

Thus, for Example 11, the result node is node 5; node 13 was not returned

because B1 and B2 have different forward and backward structure.

5.5 Branch Classification Summary

In this chapter, we described how the BranchIndex can be compacted. To

achieve this, we showed how branch instances can be classified with the re-

sult that the performance benefits of the BranchIndex can be achieved for a

fraction of the storage (and therefore) index traversal costs. This specialised

version of the BranchIndex is called the BranchClassIndex. The classifica-

tion process was then detailed and a description of the query process that

exploits the BranchClassIndex for query performance was provided. For

this purpose, the concept of a ClassChain was introduced. In particular, we

illustrated how the ClassChain was used to provide a search space pruning

74

facility. We then introduced node bypassing based on the NCLT covering

index. Finally, it was shown how the classification process can be extended

to include text values that have low selectivity (to produce the NCLTV in-

dex). This leads to overall performance gains because the number of node

comparisons that will be required when the base data must be accessed is

reduced.

75

Chapter 6

Query Processing

At this point, we have presented a node partitioning process for XML doc-

uments and defined those partitions as branches. A description of how the

search space can be pruned by indexing branch instances was also provided.

In practice however, we showed how may be too many branch instances

(in an XML document) to achieve significant optimisation. Therefore, a

classification process for branch instances was provided in chapter 5. We

demonstrated how the resulting BranchClassIndex, which is a specialised

version of the BranchIndex, achieves search space pruning for reduced stor-

age costs. Additionally, it was demonstrated that the properties of branch

instances (that are implicit within the indexed branch classes) can be ex-

ploited to facilitate the concept of node bypassing using the NCLTV covering

index for XPath steps.

This chapter now describes how these concepts can be exploited to opti-

mise XPath expressions (processes p11, p13 and p14). There are two ways

of deploying this storage model, native XML indexing (non-relational) or

XML-enabled (relational) indexing. The second was chosen because, as we

will show, the BranchClassIndex is suitable for deployment in an off-the-

shelf relational database, the many advantages of which were discussed in

Chapter 2. Relational index deployment is detailed in §6.1. In §6.2, the

76

XPath-to-SQL transformation is presented. This is followed in §6.3, with a

worked example to illustrate the transformation process. Finally, an index

selection process is required to determine when the base data must be eval-

uated and when the covering index can be exploited; this index selection

process is presented in §6.4.

6.1 Index Deployment

Figure 6.2 illustrates how the XML document in Figure 6.1 is transformed

into four relations. The Node relation in Figure 6.2b1 is the base data

(construct i6 in the system architecture). Attributes pre and post are the

preorder and postorder labels of each node respectively. Attribute name is

the node’s name; type differentiates between element attribute and docu-

ment nodes; level is the node’s distance from the document node; and value

is the text value associated with the node (or null).

The NCLTV relation (6.2b2) is populated by selecting distinct name, class,

level, type and value from the Node relation (but value is included only

for low selectivity text values). The class attribute in the Node and NCLTV

relations is a node’s branch class identifier.

The Parent and Child ClassChain components are deployed in the PC REL

relation (6.2b3). The AD REL relation (6.2b4) contains the Ancestor and

Descendant components. In the PC REL relation, attribute pc contains the

parent-and-self branch classes (Parent-Component and Class-Component

combination) and attribute cc contains the child-and-self branch classes

(Child-Component and Class-Component combination). In the AD REL re-

lation, the attribute ac is the ancestor-and-self branch classes (Ancestor-

Component and Class-Component combination) and dc is the descendant-

and-self branch classes (Descendant-Component and Class-Component com-

bination).

77

0

6

2

8
7

<b
ik

es
>

<c
ity

>

<D
ub

lin
>

5
<s

ta
tio

n>

<i
d>

<f
re

e>

<t
ot

al
>

3
@

da
y=

'0
1'

4
<s

ta
tio

ns
>

12

9

14
13

<L
yo

n>

11
<s

ta
tio

n>

<i
d>

<f
re

e>

<t
ot

al
>

10
<s

ta
tio

ns
>

19

15

21
2018

<s
ta

tio
n>

<i
d>

<f
re

e>

17
<s

ta
tio

ns
>

<t
ot

al
>

<D
ub

lin
>

1

16
@

da
y=

'0
2'

C
1

C
1

C
2

C
2

C
3

C
3

C
4

C
4

C
5

C
5

C
6

C
7

C
8

C
9

C
10

C
11

F
ig

u
re

6.
1:

X
M

L
S

n
ip

p
et

fr
om

th
e

B
ic

y
cl

e
R

en
ta

l
D

at
as

et

78

ac
dc

1
1

2
2

3
3

4
1

4
2

4
3

4
4

5
1

5
2

5
3

5
4

5
5

6
6

7
7

8
8

9
6

9
7

9
8

9
9

10
6

10
7

10
8

10
9

10
10

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

11
10

11
11

p
c

cc
1

1
2

2
3

3
4

1
4

2
4

3
4

4
5

1
5

2
5

3
5

4
5

5
11

5
11

6
11

7
11

8
11

9
11

10
11

11

b1
. N

od
e

R
el

at
io

n
(B

as
e

D
at

a)

b2
. N

C
LT

V

b3
. P

C
_R

E
L

p
re

p
o

st
n

am
e

ty
p

e
le

ve
l

cl
as

s
va

lu
e

0
21

bi
ke

s
3

0
0

nu
ll

1
20

ci
ty

1
1

11
nu

ll
2

6
D

ub
lin

1
2

5
nu

ll
3

0
da

y
2

3
5

01
4

5
st

at
io

ns
1

3
5

nu
ll

5
4

st
at

io
n

1
4

4
nu

ll
6

1
id

1
5

1
nu

ll
7

2
fre

e
1

5
2

nu
ll

8
3

to
ta

l
1

5
3

nu
ll

9
12

Ly
on

1
2

10
nu

ll
10

11
st

at
io

ns
1

3
10

nu
ll

11
10

st
at

io
n

1
4

9
nu

ll
12

7
id

1
5

6
nu

ll
13

8
fre

e
1

5
7

nu
ll

14
9

to
ta

l
1

5
8

nu
ll

15
19

D
ub

lin
1

2
5

nu
ll

16
13

da
y

2
3

5
02

17
18

st
at

io
ns

1
3

5
nu

ll
18

17
st

at
io

n
1

4
4

nu
ll

19
14

id
1

5
1

nu
ll

20
15

fre
e

1
5

2
nu

ll
21

16
to

ta
l

1
5

3
nu

ll

n
am

e
cl

as
s

le
ve

l
ty

p
e

va
lu

e
id

1
5

1
nu

ll
fre

e
2

5
1

nu
ll

to
ta

l
3

5
1

nu
ll

st
at

io
n

4
4

1
nu

ll
st

at
io

ns
5

3
1

nu
ll

D
ub

lin
5

2
1

nu
ll

da
y

5
3

2
nu

ll
id

6
5

1
nu

ll
fre

e
7

5
1

nu
ll

to
ta

l
8

5
1

nu
ll

st
at

io
n

9
4

1
nu

ll
st

at
io

ns
10

3
1

nu
ll

Ly
on

10
2

1
nu

ll
ci

ty
11

1
1

nu
ll

b4
. A

D
_R

E
L

F
ig

u
re

6.
2:

N
o
d

e
R

el
at

io
n

an
d

th
e
N
C
L
T
V

In
d

ex
R

el
at

io
n

s

79

6.2 The Transformation Method

In this section, we describe how an XPath expression is transformed into its

SQL equivalent. We begin with a desciption of our Transformation Template

and then describe the method used to construct the SQL expression using

this template to extract the necessary information from the XPath query

expression.

The indexing constructs are used to improve the performance of XPath steps

that contain one of the six hierarchical axes. Although optimisation specific

to other axes in not currently provided, we discuss the future inclusion

of these axes (such as following and preceding) as part of our future work.

Thus, the axes shown in Table 6.1 constitute the subset (the most commonly

used axes) of the XPath 2.0 language covered here

XPath Axis Description

ancestor Ancestors of x.
ancestor-or-self Nodex and its ancestors.
descendant Descendant of x.
descendant-or-self Node x and its descendants.
parent The parent of x.
child The children of x.

Table 6.1: XPath 2.0 Language Coverage

The transformation template (Figure 6.3) represents an SQL expression,

which we refer to as the BranchClass expression. It is divided into sub-

expressions. These sub-expressions are populated from an expression using

a series of transformations rules, which are now described.

Name Component

C1 SELECT

C2 cn−1.classop
C3 FROM

C4 [indexop ix, CLASS cx]+

Table 6.2: The Generic Expression Components

80

2

Variables
classop ::= ac|dc -- class index column options
equalop ::= >|=|<|≤|≥ -- equality options
indexop ::= NODE|NCLT -- index options

1. SELECT * FROM NODE stepn
2. WHERE [stepn.NAME = ‘name-prop’ AND]? stepn.TYPE = ‘type-prop’
3. [AND stepn.LEVEL = 0]?

[
4. AND stepn.CLASS IN (

5. SELECT cn−1.classop FROM [indexop ix, CLASS cx]+

6. WHERE [i1.NAME = ‘name-prop’ AND]? i1.TYPE = ‘type-prop’
7. [AND i1.LEVEL = 0]?
8. AND c1.classop = i1.CLASS
9. [AND EXISTS (<predicate-statement>)]*

[
10. AND [ix.NAME = ‘name-prop’ AND]? ix.TYPE = ‘type-prop’
11. AND ix.CLASS = cx−1.classop
12. [AND ix.LEVEL equalop ix−1.LEVEL [adlevel]?]?
13. [ix.PRE equalop ilnaStep.PRE ∧ ix.POST equalop ilnaStep.POST]?
14. AND cx.classop = ix.CLASS
15. [AND EXISTS (<predicate-statement>)]*

]*

16. [AND stepn.LEVEL equalop ix−1.LEVEL [adlevel]?]?
17. [stepn.PRE equalop ilnaStep.PRE ∧ stepn.POST equalop ilnaStep.POST]?
18.)

]?

19. [AND EXISTS (<predicate-statement>)]*

20. ORDER BY PRE

<predicate-statement> ::= 21 SELECT null FROM indexop pstepn
22 line 2
23 line 3

[
24 line 4
25 SELECT pcn−1.classop FROM CLASS pc1, [indexop pix, CLASS pcx]*
26 WHERE pc1.classop = indexIn.CLASS
27 [lines 10-15]*
28 line 16
29 line 17
30 line 18

]?
31 line 19

Fig. 1: XPath-to-SQL Transformation Template

/A /B/C/D /E

Leaf Opening Expression

Leaf Closing Expression

Generic Expression

Initial Step Expression

Interim Step Expression

Figure 6.3: The XPath-to-SQL Transformation Template

81

6.2.1 Generic Expression

Within the transformation template and unlike all other expressions, the

generic expression is constructed using properties from all steps in the XPath

expression. Its four components are shown in Table 6.2. We will now de-

scribe how the generic expression is populated

In the SQL expression, the required tuples are selected from relevant rela-

tions using the keywords in components C1 and C3. The tuples that must

be returned are specified by C2 and the relations that contain these tuples

are specified in C4. The classop (class options variable) in C2 is populated

by looking ahead to the last step in the XPath expression and extracting

its axis. The LastAxisProperty (the axis at the rightmost step) is used for

this purpose:

LastAxisProperty. The XPath axis associated with the last step. This

enables the branch classes that must be evaluated at the last step to be

identified. Using the LastAxisProperty, the class options are as shown in

Table 6.3.

classop Selected when...

dc LastAxisProperty is the:
descendant, descendant-or-self, or child axis.

ac LastAxisProperty is the:
ancestor, ancestor-or-self, or parent axis.

Table 6.3: Populating the Class Option Variable

As shown in Table 6.3, if the LastAxisProperty is the descendant axis, the

classop will be dc, thus C2 will be: cn−1.dc. Therefore, the Descendant-

Component and Class-Component combination (i.e. the descendant-or-self

branch classes of the previous step) will be the only branch classes evaluated

at the last step.

For the first step in the XPath expression, the Node or the NCLTV relation

82

must be accessed to identify the first set of context nodes or their prox-

ies, respectively. The index selection process that chooses between these

two relations is detailed in §6.4. For each subsequent step (excluding the

rightmost), the ClassChain components are used to prune the search space.

Then, the Node or the NCLTV relation is evaluated to locate the target nodes

(or their proxies). Finally, the ClassChain components are used one more

time (to return the relevant branch classes in C2). In other words, compo-

nent C4 is repeated n-1 times, i.e. one less than the number of steps in the

expression1.

Component C4 contains two variables. The first variable: indexop (index

options) is populated with Node or NCLTV. The second variable: x denotes

the number of repetitions of C4. For example, if there are 5 steps in the

expression, C4 is repeated 4 times. Thus, the x variable will be 1 for the

first repetition of C4, 2 for the second and so on (up to 4).

6.2.2 Transforming the Initial XPath Step

This Initial Step expression (see Template - Figure 6.3) maps directly to

the first step in the XPath expression. It filters those tuples associated with

aliases i1 and c1 (these aliases were discussed for C4 above). In order to

transform the first step in an XPath expression, three additional properties

(AxisProperty, NameProperty and TypeProperty) are extracted from the

first step in the XPath expression. We will now describe the method that

uses these properties to construct the Initial Step expression.

AxisProperty. The XPath axis. The supported axes are: ancestor, ancestor-

or-self, parent, descendant, descendant-or-self and child (the hierarchical

XPath axes).

1Square brackets and other BNF symbols (i.e. ‘+’ and ‘?’) are not part of the SQL
statement.

83

NameProperty. The name of the target nodes. The name property can

also be an XPath wildcard (denoted by ‘*’)

TypeProperty. The type of the target node. The type of the target node

can be element or attribute.

NextAxisProperty. The XPath axis associated with the next step in

left-to-right order. This enables us to identify the branch classes that must

be evaluated at the next step. This is crucial in managing the dependency

between steps in an XPath expression. Using the NextAxisProperty, the

class options are as shown in Table 6.5.

Name Component

C5 WHERE

C6 [i1.NAME = ‘name-prop’ AND]?
C7 i1.TYPE = ‘type-prop’
C8 [AND i1.LEVEL = 0]?
C9 AND c1.classop = i1.CLASS
C10 [AND EXISTS (<predicate-statement>)]*

Table 6.4: The Initial Step Expression Components

The Initial Step expression (lines 6-9 in the transformation template) con-

tains the components shown in Table 6.4. The first component (C5) is

the where clause, which is required. The where clause filters the sets of

nodes represented by aliases ‘i1’ and ‘c1’ (in component C4). Component

C6 may be included zero or one times and has one variable (name-prop).

If the NameProperty is a wildcard C6 is omitted (so that nodes of any

name are evaluated), otherwise the name-prop variable is populated with

NameProperty. Component C7 is compulsory and contains a single variable

type-prop, which is populated with the TypeProperty.

An XPath expression that begins with ‘/ ’ evaluates the document node at

the first step. The document node is the only node that resides at level

84

classop Selected when...

ac NextAxisProperty is the:
descendant, descendant-or-self, or child axis.

dc NextAxisProperty is the:
ancestor, ancestor-or-self, or parent axis.

Table 6.5: Populating the Class Option Variable

0 in our system. Thus, in this situation component C8 is included to en-

sure that the document node is the only node that is evaluated. If the

XPath expression begins with ‘// ’, nodes at all levels must be evaluated,

i.e. descendant-or-self nodes of the document node, thus C8 is omitted.

Component C9 is used to set the branch classes that are related to the

set of nodes located by step one in the XPath expression because their

hierarchically-related branch classes will be required at the next step. Com-

ponent C9 contains a single variable classop, which is populated based on

the NextAxisProperty, the class options in Table 6.5.

In XPath, a predicate filter removes some of the nodes identified at its as-

sociated step and leaves others [68]. An XPath step may have one or more

predicate filters. Component C10 is used for each such filter. As component

C10 is generic to all steps (it appears at lines 9, 15 and 19 respectively in

the Transformation Template) we will detail C10 later in §6.2.5.

In instances where the XPath expression contains only a single step, the

process described in this section and the processes described in §6.2.1 and

§6.2.3 do not take place. Instead, processing moves directly to the final step

transformation described in §6.2.4.

6.2.3 Transforming Interim Steps

The Interim Step expression is used in the transformation of the second

step through to the second last step. With the exception of variable x (the

step number) the expression at line 10 is identical to components C5-C7.

Line 14 is identical to C9 and line 15 is identical to C10. Therefore, it is

85

not necessary to repeat the explanations. The x variable is incremented for

each step. For example, in the second step x will be 2. The components

within the interim step expression (lines 11, 12 and 13 in the template) are

shown in Table 6.6.

Name Component

C11 AND ix.CLASS = cx−1.classop
C12 [AND ix.LEVEL equalop ix−1.LEVEL [adlevel]?]?
C13 [ix.PRE equalop ilnaStep.PRE ∧ ix.POST equalop ilnaStep.POST]?

Table 6.6: The Interim Step Expression Components

classop Selected when...

dc AxisProperty is the:
descendant, descendant-or-self, or child axis.

ac AxisProperty is the:
ancestor, ancestor-or-self, or parent axis.

Table 6.7: New Class Options

Component C11 locates the ClassChain components that must be exam-

ined. In C11, variable x is the step number and x-1 denotes the previous

step number. In this instance, the classop variable is populated based on

the AxisProperty as shown in Table 6.7. Component C12 is required if

the AxisProperty is the parent or child axis (to differentiate between an-

cestor/parent and descendant/child axes respectively). Additionally, C12 is

required when the indexop is the NCLTV relation, in which case C13 is omit-

ted. Based on the current XPath axis, the equalop in C12 is populated as

shown in Table 6.8.

In addition to the equalop variable in C12, the variable adlevel (additional

level constraint) is added for the parent and child axes. If the axis is parent

the adlevel variable is populated with -1 ; for the child axis it is populated

with +1. If the indexop is the Node relation, C13 must be included, but C12

omitted for all but the parent and child axes. In C13, lnaStep is the number

of the last step that evaluated the Node relation (the lnaStep is detailed in

86

Axis Option

ancestor ‘<’
ancestor-or-self ‘≤’
descendant ‘>’
descendant-or-self ‘≥’
parent ‘=’
child ‘=’

Table 6.8: Equality Options for Component C12

§6.4). The two equality option (equalop) variables in C13 are shown, with

ordering, based on the XPath axis in Table 6.9.

Axis Option

ancestor ‘<’ ‘>’
ancestor-or-self ‘≤’ ‘≥’
descendant ‘>’ ‘<’
descendant-or-self ‘≥’ ‘≤’
parent ‘<’ ‘>’
child ‘>’ ‘<’

Table 6.9: Equality Options for Component C13

6.2.4 Transforming the Final XPath Step

The Leaf Opening and Leaf Closing expressions are used in the transforma-

tion of the final (or leaf) step in the XPath query expression. This final step

(stepn) is always the rightmost step in the XPath expression. In the leaf

opening expression, with the exception that alias i1 is replaced with stepn,

line 2 contains components C5, C6 and C7 (explained earlier). Similarly, by

substituting the same aliases (stepn for i1), line 3 is identical to C8.

The distinct components in the leaf opening expression are C14 and C15

(Table 6.10). Component C14 is static (i.e. it contains no variables) and

selects all tuples from the Node relation (the result set). If there is more

than one step in the expression, the static component C15 is included to

ensure that the branch classes identified at the preceding step are the only

87

ones that are evaluated in stepn. This has the effect of providing a final

pruning phase at the point of generating the final result set.

Name Component

C14 SELECT * FROM Node stepn
C15 AND stepn.CLASS IN (
C16)
C17 ORDER BY PRE

Table 6.10: Leaf Path Expression Components

The second requirement for transforming stepn is to construct the leaf closing

expression. Within the leaf closing expression, lines 16 and 17 are identical

to C12 and C13 respectively, with the exception that each occurrence of

alias ix is replaced with alias stepn and its distinct components are C16 and

C17 (Table 6.10). Component C16 terminates the sub-query (which begins

at C15) and C17 ensures that the result’s nodes are returned in document

order, as required by the XPath [66] specification.

6.2.5 Transforming XPath Predicate Filters

Within the main transformation template, lines 9, 15 and 19 contain an

EXISTS sub-expression that filters nodes based on XPath predicates. In

XPath, a predicate filter contains a nested XPath expression, i.e. it consists

of a number of steps and each step has an Axis, NodeTest and zero or more

(sub) Predicates.

The <predicate-statement> (lines 21-31 in the transformation template)

differs from the main template in two ways. Firstly, all of the alias names

are given the prefix p (e.g. pstepn) so that alias names in the sub-statements

do not conflict with the alias names in the main statement. Secondly, each

line in the <predicate-statement> that refers back to a line in the main

template is identical to that line, with the exception of the prefix on each

alias. The new components within the <predicate-statement> are shown in

Table 6.11.

88

Name Component

C18 SELECT null
C19 FROM indexop pstepn
C20 SELECT pcn−1.classop
C21 FROM CLASS pc1
C22 WHERE pc1.classop = indexIn.CLASS

Table 6.11: Components within the <predicate-statement>

Component C18 is required and does not contain a variable. In compo-

nent C18, null is selected as we do not require the result set from the sub-

expression (this is the approach used by the authors in [25]). Component

C19 is also required and contains the single variable indexop. This forms

the index selection process, described later in this Chapter, and is a crucial

component of the optimisation. Component C20 is the same as C1 and C2,

which were explained earlier.

Lines 6-9 do not appear in the predicate statement as these are used to

identify the first set of context nodes for the XPath expression. Conversely,

in an XPath predicate filter the nodes that must be filtered have already

been identified; these nodes are the context nodes for the first step in the

predicate filter. The ClassChain components that are associated with these

context nodes are identified using component C21. The addition of C21 is

the only difference between line 25 and line 5.

The ClassChain components associated with the context nodes at which the

predicate is applied are identified using C22. The classop variable (in C22)

is populated using the AxisProperty from the step to which the predicate

filter applies and the class options from Table 6.7. The indexIn variable is

the alias for the relation (which will be Node or NCLTV based on indexop) at

the step to which the filter applies. For example, if the filter applies to step

three in the XPath expression, indexIn will be: i3.

89

6.3 Sample Transformation

We will now present a sample transformation to illustrate how the transfor-

mation template is populated for an XPath query (Example 12).

Example 12

/site/closed auctions/closed auction//keyword

6.3.1 Transforming the Generic Expression

The following property is required to populate the generic expression:

• LastAxisProperty is the descendant axis, therefore dc (descendant

or self branch classes) is selected.

Name Component

C1 SELECT

C2 c3.dc
C3 FROM

C4 NCLT i1, AD REL c1, NCLT i2, AD REL c2, NCLT i3, AD REL c3

Table 6.12: Generic Expression Components

The components in the Generic Expression are populated as shown in Ta-

ble 6.12. Components C1 and C3 are constant (do not contain variables).

The classop variable in C2 is populated using the LastAxisProperty and

the options in Table 6.3. Component C4 contains three variables: indexop

is populated based on the index selection process described later in §6.4;

CLASS will be the PC REL (if the axis is parent or child and the optional

Parent and Child ClassChain components are available) or else it will be the

AD REL relation; variable x is the step number. For our current purposes, it

is assumed that the Parent and Child ClassChain components are not avail-

able, therefore AD REL is used. As there are four steps in the expression,

component C4 is repeated three times.

90

6.3.2 Transforming the Initial XPath Step

To transform the first step in the XPath expression, the following three

properties are required:

• NameProperty = site.

• TypeProperty = 1 (element).

• NextAxisProperty is the child axis, therefore classop variable is ac

(ancestor-or-self branch classes).

Name Component

C5 WHERE

C6 i1.NAME = ‘site’ AND
C7 i1.TYPE = 1
C8 AND i1.LEVEL = 0
C9 AND c1.ac = i1.class
C10 AND EXISTS (<predicate-statement>)

Table 6.13: Initial Step Expression Components

The components within the Initial Step expression are populated as shown

in Table 6.13. The NameProperty populates the name-prop variable in C6;

the TypeProperty populates the type-prop variable in C7 and the NextAxis-

Property populates the classop variable in C9. There are no predicate filters

at the initial step, therefore C10 is omitted.

6.3.3 Transforming Interim Steps

There are two interim steps in Example 12, which are now described.

Transforming the First Interim Step

To transform the first interim step, the following four properties are required:

• AxisProperty = is the child axis, therefore classop variable is dc (descendant-

or-self branch classes).

91

• NameProperty = closed auctions.

• TypeProperty = 1 (element).

• NextAxisProperty is the child axis, therefore classop variable is ac

(ancestor-or-self branch classes).

Name Component

C5 AND

C6 i2.NAME = ‘closed auctions’ AND
C7 i2.TYPE = 1
C11 AND i2.class = c1.dc
C12 AND i2.LEVEL = i1.LEVEL+1
C13 i2.PRE equalop ilnaStep.PRE ∧ i2.POST equalop ilnaStep.POST
C9 AND c2.ac = i2.class
C10 AND EXISTS (<predicate-statement>)

Table 6.14: First Interim Step Expression Components

As stated when describing the transformation process, components C5, C6

and C7 are repeated for each interim step. The only difference from their

earlier description is that the step number, NameProperty and TypeProp-

erty are updated. Component C11 is populated by selecting the branch

classes associated with the AxisProperty; in C12 the x variable is populated

with the current step number (step 2) and the previous step number (step

1) respectively. Component C13 is omitted as there were no previous base

data evaluations (see index selection §6.4 for more details). Component C9 is

populated with the NextAxisProperty (as it was in the initial step transfor-

mation), and the x variable is populated with step 2. There are no predicate

filters at this step, thus component C10 is omitted.

Transforming the Second Interim Step

To populate the second interim step the following properties are used:

• AxisProperty = is the child axis, therefore classop variable is dc (descendant-

or-self branch classes).

92

• NameProperty = closed auction.

• TypeProperty = 1 (element).

• NextAxisProperty is the descendant axis, therefore classop variable is

ac (ancestor-or-self branch classes).

Name Component

C5 AND

C6 i3.NAME = ‘closed auction’ AND
C7 i3.TYPE = 1
C11 AND i3.class = c2.dc
C12 AND i3.LEVEL = i2.LEVEL+1
C13 i3.PRE equalop ilnaStep.PRE ∧ i3.POST equalop ilnaStep.POST
C9 AND c3.ac = i3.class
C10 AND EXISTS (<predicate-statement>)

Table 6.15: The Second Interim Step Expression Components

The only difference between the first and the second interim steps is that: (1)

the step numbers are updated, where x is now step 3 and x-1 is step 2 and

(2) The NameProperty is now closed auction rather than closed auctions.

6.3.4 Transforming the Final XPath Step

To populate the final step expression, the following properties are used:

• AxisProperty = is the descendant axis, therefore classop variable is dc

(descendant-or-self branch classes).

• NameProperty = keyword.

• TypeProperty = 1 (element).

In the Leaf Opening expression, components C5, C6 and C7 are updated with

the relevant step numbers and properties as shown in Table 6.16. Compo-

nent C8 is not required because it is not a single step XPath expression.

Component C14 completes the Leaf Opening expression.

93

Name Component

C14 SELECT * FROM Node stepn
C5 WHERE

C6 stepn.NAME = ‘keyword’ AND
C7 stepn.TYPE = 1
C8 [AND stepn.LEVEL = 0]?

C15 AND stepn.class IN (
C12 AND stepn.LEVEL > i3.LEVEL
C13 i3.PRE equalop ilnaStep.PRE ∧ i3.POST equalop ilnaStep.POST
C16)
C17 ORDER BY PRE

Table 6.16: Leaf Opening and Closing Components

In the Leaf Closing expression component C15 is constant. In component

C12, variable x is populated with the previous step number (step 3). Compo-

nent C13 is not reqiured because there are no provious base data evaluations

(see index selection §6.4) for more details. Finally, components C16 and C17

are static and C17 ensures that the result set is returned in XML document

order. The completed SQL expression is shown in Figure 6.4.

94

C:\Users\Gerard\Desktop\Thesis Separate Chapters Updates\Thesis - 96\thesqlstatement.sql 23 December 2010 08:14

-- Begin Leaf Opening Expression
SELECT * FROM Node stepN

WHERE stepN.NAME = 'keyword'
AND stepN.TYPE = 1
AND stepN.class IN (
-- End Leaf Opening Expression

-- Begin Generic Expression
SELECT c3.dc FROM

NCLT i1, AD_REL c1, NCLT i2, AD_REL c2, NCLT i3, AD_REL c3
-- End Generic Expression

-- Begin Initial Step Expression
WHERE i1.NAME = 'site' AND i1.TYPE = 1
AND i1.LEVEl = 0
AND c1.ac = i1.class
-- End Initial Step Expression

-- Begin First Interim Step Expression
AND i2.NAME = 'closed_auctions'
AND i2.TYPE = 1
AND i2.class = c1.dc
AND i2.LEVEL = i1.LEVEL+1
AND c2.ac = i2.class
-- End First Interim Step Expression

-- Begin Second Interim Step Expression
AND i3.NAME = 'closed_auction'
AND i3.TYPE = 1
AND i3.class = c2.dc
AND i3.LEVEL = i2.LEVEL+1
AND c3.ac = i3.class
-- End Second Interim Step Expression

-- Begin Leaf Closing Expression
AND stepN.LEVEL > i3.LEVEL

)

ORDER BY PRE
-- End Leaf Closing Expression

-1-

Figure 6.4: The Completed SQL Expression

95

6.4 Index Selection

Our optimization strategy includes a number of rules that determine when

the index can be used, as the alternative is to access the base data to compare

individual nodes. Therefore, the goal of the index selection phase is to

maximize usage of the index. This is achieved though a series of rules. We

now describe how the query process decides when the index can be used

and when the base data must be evaluated (that is, we describe the decision

making process for selecting the indexop variable in the transformation).

//people//person[.//address//postcode = ‘ ’]//profile/education
NCLTV NODE NODE NODE

Filter

Q1:

Filter

//people//person[.//address//name = ‘ ’]//profile/education
NODE NODE NODE

Filter

Q2:

Filter

NCLTV NCLTV

NCLTV NCLTV NCLTV

Figure 6.5: Index Selection

6.4.1 Base Index Selection Rules

When an XPath step evaluates a text value that has not been classified, the

base data must be accessed. For all Twig queries that do not evaluate a text

value (that has not been classified), the following index selection rules are

used:

Rule 1. If the step being processed is the rightmost step in each XPath

expression, then the base data (the Node relation) must be used to evaluate

the expression. This rule supersedes all other rules and remaining rules are

applied only if Rule 1 does not hold.

Rule 2. If the step does not evaluate a text value or if the step evaluates

a classified text value, then the index is used.

96

Rule 3. For any step that evaluates a non-classified text value, e.g. //postcode

= ‘17’ (Q1), the base data is used.

Rule 4. For a step that contains a predicate filter that evaluates a non-

classified text value or contains the following or preceding axis, the base

data is used. For example, step two (Q2) contains a predicate filter that

evaluates a text value.

That completes the base rules, next we present the advanced index selection

rules.

6.4.2 Advanced Index Selection Rules

Before presenting the index selection process, we must introduce the concept

of a context shift.

Definition 9 A Context Shift occurs when it cannot be guaranteed that the

context nodes associated with a step are within the (pre/post) range of the

previous predicate filter.

For the index selection process it is crucial that the nodes that must be

evaluated at the current step are within the range of the previous predicate

filter (Definition 9). This is because this filter (which requires a base data

evaluation) does not have to be applied to steps if it can be guaranteed that

they are within the range of the previous predicate filter. A context shift

can only occur after the first step to which rule 4 applies. For example, in

Q2 (Figure 6.5), the predicate filter that is applied to step two is not applied

to step three, but it is applied to step four. Using XPath logic, a base data

evaluation is avoided at step three because it can be determine that all nodes

that could possibly be evaluated at step three are within the range of the

predicate filter (there is no context shift).

The following three cases result in a context shift:

97

A B C[. D E F = ‘ ’] G H B I J[. K L M] N O

A B C[. D E F = ‘ ’] G H I J[. K L M N O] P Q

Q3:

Q4:

Figure 6.6: Index Selection (Context Shift)

Case 1. A step contains an axis in an opposite hierarchical direction to

the previous step, for example, a step that contains the descendant or child

axis followed by a step that contains ancestor or parent. This is exemplified

in the sixth step (/ancestor::B) of Q3 (Figure 6.6), that is, the fifth step

contains the descendant-or-self axis and the sixth step contains the ancestor

axis.

Case 2. A step that contains the preceding or following axis is encoun-

tered. For example, if we replaced the ancestor axis in the sixth step of Q3

with following or preceding, the result would still require a context shift.

Case 3. Rule 4 (of the base index selection rules) applies to a step. This is

exemplified in the seventh step of Q4 as the predicate filter associated with

this step contains the following axis.

In Figure 6.6, an asterisk above a step denotes a base data evaluation. When

a base data evaluation is required, the unique node labels (e.g. pre/post) of

the nodes must be compared. For all other steps it is sufficient to evaluate

name, class, level, type and value (i.e. the NCLTV index may be used instead).

Each time a context shift occurs based on case 1 or case 2, a join operation

(that compares node labels) is performed between the step immediately

preceding the step to which the context shift applies and the step that

required the previous base data evaluation. For example, the join between

the third and fifth steps in Q3. Next, the step to which the context shift

applies is joined with the step to its immediate left, such as, the join between

98

the fifth and sixth steps in Q3.

If a context shift occurs based on case 3, the step to which this context

shift applies is joined with the step that required the previous base data

evaluation - the Last Node Access Step (lnaStep) variable described in the

transformation process. In Q4, a context shift (based on case 3) occurs at

step seven, therefore it is joined with step three. Finally, the rightmost step

is always joined with the Last Node Access Step (if such a step exists).

6.5 Summary

In this section, we discuss the integrity of query results and provide a sum-

mary of the chapter.

6.5.1 Integrity Checking for Transformation Process

In §6.3, we described our Transformation Template, a construct used to

construct SQL queries from XPath expressions. This process is designed

to benefit from concepts such as partitions, classification of partitions and

indexing low selectivity text nodes. In §6.3, we provided a detailed workflow

for a sample XPath expression. Our final transformation process is a result of

many iterations of converting XPath expressions to SQL expressions suitable

for our indexing system. Initial transformations were fairly simple [46],

different optimisations were then introduced in [47] and in [48]. At each

point in the development of the transformation algorithms, we developed an

integrity check to ensure that our transformations were correct.

Our early algorithms (before partitions) were based on the work of [29]. As

such, we used the transformation algorithms and the processes of established

researchers in the area. After we developed our own approach, we adopted a

two-phase quality check. Firstly, we compared the results from each new it-

eration with the results from the previous iteration. Secondly, we compared

99

with an existing implementation (MonetDB/XQuery), by running identical

queries on both systems. In this phase, we checked that: a) the node counts

were identical, and (b) the name, type (element/attribute) were also iden-

tical, as the SQL query is based on ‘name’ and ‘type’. In both phases, the

check was performed on all 51 queries presented in the experiments chapter.

6.5.2 Final Summary

In this chapter, we described a deployment of the BranchClassIndex within

a relational database. To evaluate XPath expressions using an index that is

deployed in a relational database, an XPath-to-SQL transformation process

is required to transform XPath expressions to their SQL equivalents. Thus,

we described the large subset of the XPath language that our system cov-

ers and described the XPath-to-SQL transformation process in detail and

provided a worked example. Finally, as some text values were not included

in the classification process that was described in Chapter 5, there are in-

stances where the NCLTV covering index cannot be exploited to optimise a

step. Therefore, this Chapter is completed with a description of the in-

dex selection process that determines whether the index can be used for an

XPath step and when the base data must be evaluated because text values

appear in the XPath expression.

100

Chapter 7

Experiments

This chapter provides details of the experiments used to evaluate the Branch-

ClassIndex. In doing so, we evaluate the performance of a traditional node-

based approach [31]. However, as the evidence in this evaluation shows,

node-based approaches (such as [29, 31]) cannot scale to XML datasets of

the size used in our study. Thus, in a separate evaluation using a rela-

tively small dataset and queries taken from XPathMark benchmark [67], we

evaluate node-based approaches at the end of the chapter in §7.5.

This chapter is structured as follows: §7.1 describes the evaluation method;

in §7.2 we specify low cardinality text values empirically; in §7.3, we evaluate

the real world XML case study. For reasons of experimental repeatability

[44,45], we evaluate the same XML datasets and queries as other researchers

in §7.4; finally, in §7.5, we evaluate node-based approaches.

7.1 Evaluation Method

In the main evaluation, the BranchClassIndex is compared to one of the more

recent path-based approaches [24], which we refer to as the PathBasedIndex.

MonetDB/XQuery [12] is also evaluated because it uses the native Staircase

Join algorithm [32] and because it was evaluated in [24] (the path-based

101

approach used in our evaluation). Finally, the commercial XML database,

SQL Server 2008, is evaluated because it uses the relational XML index-

ing techniques described in [57], which were subsequently discussed by the

authors of [31] (the node-based approach used in our evaluation).

The BranchClassIndex, the PathBasedIndex, SQL Server 2008, and Mon-

etDB/XQuery were deployed on identical servers with a 2.66GHz Intel(R)

Core 2 Duo CPU and 4GB of RAM. The BranchClassIndex and the Path-

BasedIndex were deployed in an Oracle 11g relational database. Oracle

11g and MonetDB/XQuery version 4.34.4 were both deployed on Fedora 12

Linux (64bit) platforms; SQL Server was deployed on a Windows 7 (64bit)

platform.

For queries executed across the vendor systems, we call the count() function

to ensure that any overhead associated with document reconstruction [15]

is not included in the query response times. This approach was also used

in [25] for evaluating the comparative query response times of vendor sys-

tems. In order to conduct a balanced evaluation, we also called the count()

function on the SQL queries executed across the BranchClassIndex and the

PathBasedIndex.

Each XPath query used in the experiments was run twenty one times. Using

the same approach as [26, 60], the first run was ignored to ensure hot cache

response times and the remaining twenty runs were averaged to provide

the final result in milliseconds. A timeout of ten minutes was placed on

each query to allow us to perform the evaluation in a reasonable amount of

time. Each query that took longer than ten minutes is tagged as >10mins.

Additionally, to calculate average query response times, each query that is

tagged as >10mins is counted as 600,000 milliseconds.

102

7.1.1 Implementation and Deployment Decisions

We made the following practical decisions when implementing the Branch-

ClassIndex and the PathBasedIndex:

• For performing node comparisons, pre/post labels are used in both

the BranchClassIndex and the PathBasedIndex (both approaches are

node label independent).

• Schema-oblivious [24] node storage was used in both approaches as the

BranchClassIndex is a schema-oblivious approach. The authors of the

PathBasedIndex described a schema-aware and a scheme-oblivious ver-

sion of their PathBasedIndex. We chose schema-oblivious node storage

because schema-aware approaches may incur inefficiencies when wild-

cards exist in XPath queries, i.e. SQL Splitting [24] is required.

• In both approaches, attribute nodes are stored as separate nodes that

are differentiated from element nodes using the type column. The au-

thors of the PathBasedIndex map attribute nodes to relational columns.

• For the BranchClassIndex and the PathBasedIndex, a B-tree index

was built on each column of each relation.

• Oracles’s cost based optimiser is allowed to chose the best query ex-

ecution plan. In other words, we did not supply optimiser hints (to

manually control query executions plans).

The following options where selected when deploying SQL Server and Mon-

etDB/XQuery:

• In SQL server, we built the primary index, and the secondary indexes

PATH and VALUE, which are the optimisation techniques described in

[57].

103

• In MonetDB/XQuery, the read only storage option was selected in

order to exclude any performance overhead associated with updateable

storage options.

7.1.2 Query Categories

The following five query categories enable us to be precise about the type

of query each approach evaluates most efficiently.

QC1. Linear Path Queries. This type of query does not contain predicate

filters.

QC2. Twig Queries without Text Values. This type of query does not

evaluate text values, but contains predicate filters.

QC3. Twig Queries with Low Selective Text Values. This type of query

contains predicated filters and evaluates text values that have low selectivity.

QC4. Twig Queries with High Selective Text Values. This type of query

contains predicate filters and evaluates text values that have high selectivity.

QC5. Single Step Path Fragment Queries. This type of query does not

contain a primary path fragment (PPF), as defined for the PathBasedIndex

[24], that spans more than one step in the XPath expression. This query

category is used to highlight a class of XPath queries in which path-based

approaches do not improve performance.

7.2 Specifying Low Selectivity Text Values

In Chapter 5, we presented two algorithms that identify low selectivity text

values that are suitable for classification (i.e. suitable for indexing). The

IdentifyRangeBasedCandidates algorithm identifies nodes that can have

104

all of their values indexed, therefore range based evaluations (e.g. year >

‘1985’ and year < ‘2000’) can be performed in the index. If a node, such as

year, contains a large number of distinct text values, all of its text values may

not be suitable for indexing (because of increased index size). In which case,

the IdentifyEqualityBasedCandidates algorithm may identify individual

text values as being suitable for indexing, but only equality evaluations

(e.g. year = ‘1985’) are for such values.

Both text value identification algorithms depend on time T; the number of

context nodes (CN); and the number of initial target nodes (TN): T = CN *

TN, where T was determined after a number of experiments.

As a starting point, we performed a number of experiments to determine

when T is 1000ms (one second). For this purpose, we created temporary node

repositories of various sizes and counted the maximum number of individual

node comparisons that could be performed based solely on pre/post node

labels in less than one second. Using the same system on which the Branch-

ClassIndex was deployed (described earlier), we found that T is 1000ms when

CN is 3100 and TN is 3100. In other words, (3100 * 3100) is the maximum

number of pre/post node comparisons that can be performed in less than

one second.

However, the threshold of N equal to 3100 acts only as a guideline due to

the fact that, if there are a very large number of text values that occur

more than N times, then it can lead to a degradation in query performance.

Later on, we will demonstrate the performance of the BranchClassIndex for

a number of text value subsets.

7.3 The Bicycle Rental Dataset

A real world dataset with genuine user requirements was chosen to determine

the wider impact of our work. One of our research group’s other projects

includes a smart city project, which provided us with this dataset and a

105

No. Cat XPath Query Nodes

Q01 QC1 Return all information recorded for stations in Nantes. 1,411,451
/bikes/city/Nantes/stations/station

Q02 QC1 Return the number of bikes that are free across all stations, and all days, in Dublin. 634,320
/bikes/city/Dublin/stations/station/free

Q03 QC2 Return all stations, from all cities, that have bicycle availability information. 191,680
//city//stations[./station/available]

Q04 QC2 Return all stations, from all cities, that have weather information including: wind direction 191,680
and speed; and the date and time it was received.
//city//stations[.//weather/time][.//weather//wind/direction][.//weather//wind/speed]

Q05 QC3 Return all information regarding stations in Luxembourg in which there were no free bikes. 13,046
//Luxembourg/stations[./station/available = ‘0’]

Q06 QC3 Return the id (identifier) of each station that had no bikes available. 429,585
//stations/station[./available = ‘0’]/id

Q07 QC3 Return the cities that had a wind speed greater than 6 miles per hour. 145
//stations[.//wind/speed > ‘6’]/parent::*

Q08 QC5 Return the stations that had a wind direction of 40. 192,755
//direction[.= ‘40’]/ancestor::stations /station

Q09 QC4 Return all entries for Lyon on the date 01/06/2010. 1
//Lyon[./@day = ‘01’][./@month = ‘06’][./@year = ‘2010’]

Q10 QC4 Return the wind chill in Lyon on the date 01/06/2010. 642
//Lyon[./@day = ‘01’][./@month = ‘06’][./@year = ‘2010’]//chill

Table 7.1: Bicycle Rental Queries

number of specified queries [49]. A copy of the bicycle rental dataset (2.06

GB) is available on our website1 and the ten queries used in the evaluation

are shown in Table 7.1.

7.3.1 Query Analysis

The BranchClassIndex does not contain text values (i.e. the branch classi-

fication process was not extended to include text values). For each of the

ten queries, Table 7.4 shows the query response time for the BranchClassIn-

dex (BCI), the PathBasedIndex (PBI), MonetDB/XQuery (MDB) and SQL

Server 2008 (SQLS). For each query category, the average query response

time is shown and the fastest time is highlighted with the colour blue. Ad-

ditionally, the total average query response time across all query categories

is shown and again the fastest time is highlighted in blue.

For the bicycle rental dataset, Table 7.5 shows: the number of nodes in

the Node relation; the number of actual branch classes; the number of rows

in the NCLTV relation; and the number of branch class relationships in the

PC REL and AD REL relations.

1http://computing.dcu.ie/˜isg/BicycleRental

106

Query Cat BCI PBI MDB SQLS

Q01 QC1 1,130ms 3,110ms 5,662ms 258ms
Q02 QC1 1,084ms 1,070ms 3,152ms 166ms

AVG 1,107ms 2,090ms 4,407ms 212ms

Q03 QC2 812ms >10mins 19,498ms >10mins
Q04 QC2 325ms >10mins 16,766ms >10mins

AVG 569ms 600,000ms 18,132ms 600,000ms

Q05 QC3 87,385ms 157,090ms 11,890ms >10mins
Q06 QC3 >10mins >10mins 108,192ms >10mins
Q07 QC3 96,143ms >10mins 107,629ms >10mins

AVG 261,176ms 452,363ms 75,904ms 600,000ms

Q09 QC4 31ms 140ms 162ms 1ms
Q10 QC4 484ms 68,690ms 5,215ms 166ms

AVG 258ms 34,415ms 2,688ms 84ms

Q08 QC5 >10mins >10mins 105,129ms error

Total AVG 138,739ms 323,010ms 38,329ms 333,399ms

Table 7.2: Results for the Bicycle Rental Dataset

NAME Nodes Branch Classes NCLTV PC REL AD REL

BranchClassIndex 85,965,102 1,067 1,224 2,133 5,032

Table 7.3: Branch Index Statistics

Linear Path Expressions (Q01, Q02)

Queries Q01 and Q02 are linear path queries. Both SQL Server and the

PathBasedIndex process all steps in linear path queries simultaneously. Con-

versely, the BranchClassIndex and MonetDB/XQuery perform step-at-a-

times evaluations.

SQL Server (SQLS) performed best overall in this category followed by the

BranchClassIndex, PathBasedIndex and MonetDB/XQuery respectively. We

believe that SQL Server performed well in this category because its PATH in-

dex [20,57] is optimised for linear path queries. MonetDB/XQuery performs

a Staircase Join [32] between each step in linear path expressions. The fact

that SQL Server and the PathBasedIndex outperformed MonetDB/XQuery

indicates that, for linear path queries, path-based approaches are more ef-

107

QC1
BCI 1,107
PBI 2,090
MDB 4,407
SQLS 212

100

1,000

10,000

Linear Path Expressions

1

10

BCI PBI MDB SQLS

QC1

Figure 7.1: Average Linear Path Expression Performance

fective for this dataset.

Similar to MonetDB/XQuery, the BranchClassIndex also performs a join at

each step in the XPath expression. However, the size of the BranchClassIn-

dex is small (see Table 7.5) for this dataset (in comparison to later datasets),

which may be why it outperformed the PathBasedIndex. Later in this chap-

ter, we show that (when evaluating other datasets) the PathBasedIndex can

in some instances outperform the BranchClassIndex for linear path queries.

Twig Queries without Text Values (Q03 and Q04)

The BranchClassIndex performed best overall for Twig queries that do not

evaluate text values (QC2) - see Figure 7.2. This is because the NCLTV

covering index can be exploited to optimise all steps in the XPath expres-

sion (the rightmost step excepted). In contrast, the PathBasedIndex must

perform a costly join between each primary path fragment (PPF). For ex-

ample, query Q03 has two primary path fragments: //city//stations and

/station/available, whereas query Q04 has four PPFs. One join operation is

required for Q03 and four joins are required for Q04, which leads to a sig-

nificant performance overhead for the PathBasedIndex. SQL Server’s PATH

index suffers the same drawback. Thus, the PathBasedIndex and SQL Server

show very similar query response times and they are the slowest approaches

108

QC2
BCI 569
PBI 600000
MDB 18132
SQLS 600000

10000

100000

1000000

Twig Queries without Text Values

1

10

100

1000

BCI PBI MDB SQLS

QC2

Figure 7.2: Average for Twig Queries without Text Values

for queries in QC2
2.

MonetDB/XQuery performed better than the PathBasedIndex and SQL

Server. This indicates that when node comparisons are required between

path fragments, even though MonetDB/XQuery performs more joins (one

between each XPath step rather than each path fragment), the Staircase

Joins may perform more efficiently overall.

Twig Queries with Low Selectivity Text Values (Q05, Q06, Q07)

For queries in QC3, the PathBasedIndex and SQL server suffer the same

drawback as they did in QC2 (joins are required between path fragments).

The BranchClassIndex cannot exploit the NCLTV index at every step because

queries in QC3 contain text values. Before branch classification extensions,

the BranchClassIndex must access the base data to evaluate text values

(because they do not exist in the index). MonetDB/XQuery performs best

overall in this category indicating that, for the bicycle rental dataset, the

Staircase Join is more consistent across all Twig queries. However, Mon-

etDB/XQuery took more than 100 seconds to evaluate both Q06 and Q07,

2In our earlier work [46], we optimised this inefficiency associated with path-based
approaches by extending path fragments to some leaf nodes within predicate filters if they
have high selectivity and working backwards, thus reducing the number of nodes that
must be processed in the join between path fragments. In this work, statistics including
the selectivity of nodes are generated and indexed in advance of the query process.

109

which makes this its least efficient category.

QC3
BCI 261176
PBI 452363
MDB 75904
SQLS 600000

T i Q i i h L S l i i T V l

1000

10000

100000

1000000

Twig Queries with Low Selectiveity Text Values

1

10

100

000

BCI PBI MDB SQLS

QC3

Figure 7.3: Average for Twig Queries with Low Selectivity Text Values

QC4
BCI 258
PBI 34415
MDB 2688
SQLS 84

1000

10000

100000

Twig Queries with High Selectivity Text Values

1

10

100

BCI PBI MDB SQLS

QC4

Figure 7.4: Average for Twig Queries with High Selectivity Text Values

Twig Queries with High Selectivity Text Values (Q09, Q10)

Even though the BranchClassIndex does not contain text values, the high

selectivity of the text values in QC4 ensures that few node comparisons.

The BranchClassIndex performed better than the PathBasedIndex because

step two (//chill) in query Q10 requires a base data evaluation in both

approaches (to locate the result nodes), but for the BranchClassIndex the

query process exploits branch classes to prune the search space. The Branch-

ClassIndex outperforms MonetDB/XQuery, indicating that it bypasses a

110

larger number of nodes during the query process. SQL Server performed

best overall, which may be attributed to its VALUE index, which optimises

text value evaluations (particularly for values that have high selectivity [20]).

Single Step Path Fragment Queries (Q08)

QC5 is used to illustrate a category of queries in which PathBasedIndex’s

primary path fragments and SQL Server’s PATH index cannot be exploited.

In other words, root path indexes are redundant if each path fragment (such

as simple path expression in XRel [69] or primary path fragments in [24])

spans just one step each and thus no optimisation is achieved. The low se-

lectivity of the text value ‘40 ’ in Q08 is responsible for the inefficiency of the

BranchClassIndex. However, the PathBasedIndex performs poorly in this

category even when the queries do not contain text values. This is because

each primary path fragment spans just one XPath step and therefore per-

forms at the same level as node-based approaches (node-based approaches

are evaluated later in §7.5). For example, we ran the same query with-

out the text value (//direction/ancestor::stations/station) and the

PathBasedIndex took more than ten minutes to return a result, whereas the

BranchClassIndex took just three seconds.

QC5
BCI 600000
PBI 600000
MDB 105129

Single Step Path Fragment Queries

1000

10000

100000

1000000

Single Step Path Fragment Queries

QC5

1

10

100

BCI PBI MDB

QC5

Figure 7.5: Average Single Step Path Fragment Queries

111

SQL Server does not support the ancestor axis, which is why no result is

shown for Q08. MonetDB/XQuery is the most efficient approach for Q08,

and combining this with the fact that it is also the most efficient for queries

in QC3 (Twig queries with low selectivity text values), indicates that it is

the most efficient approach for Twig queries that contain low selectivity text

nodes. There is overlap between QC3 and QC5 because Q08 can belong to

either category; category QC5 is only used to illustrate a category of queries

that path-based approaches cannot optimise.

Overall Performance

Across all queries, the average performance of each approach is illustrated

in Figure 7.6. These averages show that MonetDB/XQuery is the most

highly optimised approach overall, followed by the BranchClassIndex, the

PathBasedIndex and SQL Server respectively. However, we now show how

the BranchClassIndex can be optimised further by classifying text values.

Average
BCI 138,739
PBI 323,010
MDB 38,329
SQLS 333,399

10,000

100,000

1,000,000

Overall Performance

1

10

100

1,000

BCI PBI MDB SQLS

Average

Figure 7.6: Average Performance across all Query Categories

112

Q
u

e
ry

C
a
t

B
C

I
1

B
C

I
2

B
C

I
3

B
C

I
4

B
C

I
5

B
C

I
6

P
B

I
M

D
B

S
Q

L
S

Q
01

Q
C
1

1,
13

0m
s

1,
12

0m
s

5,
71

8m
s

12
,2

88
m

s
1,

04
1m

w
4,

10
4

3,
11

0m
s

5,
66

2m
s

25
8
m

s
Q

02
Q

C
1

1,
08

4m
s

1,
08

3m
s

3,
91

3m
s

7,
59

0m
s

1,
66

6m
s

2,
15

9
1,

07
0m

s
3,

15
2m

s
16

6
m

s

A
V

G
1
,1

0
7
m

s
1
,1

0
2
m

s
4
,8

1
6
m

s
9
,9

3
9
m

s
1
,3

5
4
m

s
3
,1

3
2
m

s
2
,0

9
0
m

s
4
,4

0
7
m

s
2
1
2
m

s

Q
03

Q
C
2

81
2m

s
10

3m
s

12
,2

49
m

s
13

,5
82

m
s

26
9m

s
31

7
>

10
m

in
s

1
9,

49
8
m

s
>

10
m

in
s

Q
04

Q
C
2

32
5m

s
40

5m
s

72
,3

72
m

s
70

,9
32

m
s

2,
07

8
3,

04
6

>
10

m
in

s
1
6,

76
6
m

s
>

10
m

in
s

A
V

G
5
6
9
m

s
2
5
4
m

s
4
2
,3

1
1
m

s
4
2
,2

5
7
m

s
1
,1

7
4
m

s
1
,6

8
2
m

s
6
0
0
,0

0
0
m

s
1
8
,1

3
2
m

s
6
0
0
,0

0
0
m

s

Q
05

Q
C
3

87
,3

85
m

s
87

,9
72

2,
00

2m
s

2,
40

4m
s

15
7m

s
24

5
15

7,
09

0m
s

1
1,

89
0
m

s
>

10
m

in
s

Q
06

Q
C
3

>
10

m
in

s
>

10
m

in
s

14
,4

79
m

s
8,

23
2m

s
1,

18
0m

s
1,

24
1

>
10

m
in

s
10

8,
19

2m
s

>
10

m
in

s
Q

07
Q

C
3

96
,1

43
m

s
96

,1
43

1,
43

3m
s

1,
77

9m
s

63
m

s
10

2
>

10
m

in
s

10
7,

62
9m

s
>

10
m

in
s

A
V

G
2
6
1
,1

7
6
m

s
2
6
1
,3

7
1
m

s
5
,9

7
1
m

s
4
,1

3
8
m

s
4
6
6
m

s
5
2
9
m

s
4
5
2
,3

6
3
m

s
7
5
,9

0
4
m

s
6
0
0
,0

0
0
m

s

Q
09

Q
C
4

31
m

s
14

7m
s

19
7m

s
15

6m
s

8m
s

36
9

14
0m

s
16

2
m

s
1m

s
Q

10
Q

C
4

48
4m

s
61

4m
s

11
,6

58
12

,0
56

7,
95

7m
s

7,
02

6
68

,6
90

m
s

5,
21

5m
s

16
6
m

s

A
V

G
2
5
8
m

s
3
8
1
m

s
5
,9

2
8
m

s
6
,1

0
6
m

s
3
,9

8
3
m

s
3
,6

9
8
m

s
3
4
,4

1
5
m

s
2
,6

8
8
m

s
8
4
m

s

Q
08

Q
C
5

>
1
0
m

in
s

>
1
0
m

in
s

1
,3

8
8
m

s
1
,3

9
1
m

s
2
,0

4
3
m

s
2
,1

7
5
m

s
>

1
0
m

in
s

1
0
5
,1

2
9
m

s
e
rr

o
r

T
o
ta

l
A

V
G

1
3
8
,7

3
9
m

s
1
3
8
,7

5
8
m

s
1
2
,5

4
0
m

s
1
3
,0

4
1
m

s
1
,6

4
6
m

s
2
,0

7
8
m

s
3
2
3
,0

1
0
m

s
3
8
,3

2
9
m

s
3
3
3
,3

9
9
m

s

T
ab

le
7.

4:
B

ic
y
cl

e
R

en
ta

l
D

at
as

et
R

es
u

lt
s

(a
ft

er
T

ex
t

V
al

u
e

C
la

ss
ifi

ca
ti

on
)

113

7.3.2 Query Analysis after Text Value Classifications

The BranchClassIndex is now evaluated under a number of separate condi-

tions to highlight the benefit of its individual components. The query re-

sponse times are shown before and after the classification process has been

extended to include text values. In addition, the query response times are

shown with and without the inclusion of the Parent and Child ClassChain

components, which (as discussed in Chapter 5) are optional.

For the bicycle rental dataset, the text value identification algorithms iden-

tified a total of 519 low selectivity text values as being suitable for clas-

sification. Of these, we classified a large subset (227) for the experiments

described in this section (this subset includes the low selectivity text val-

ues in query categories QC3 and QC5). The following six versions of the

BranchClassIndexes are now evaluated:

BCI 1. The BranchClassIndex before classification of text values and in-

cluding Parent and Child ClassChain Components.

BCI 2. The BranchClassIndex before classification of text values and not

Parent and Child ClassChain Components.

BCI 3. The BranchClassIndex with 227 text values and including the Par-

ent and Child ClassChain Components.

BCI 4. The BranchClassIndex with 227 text values and not including the

Parent and Child ClassChain Components.

BCI 5. The BranchClassIndex with 100 text values and including the Par-

ent and Child ClassChain Components.

BCI 6. The BranchClassIndex with 100 text values and not including

Parent and Child ClassChain Components.

114

QC3
BCI_1 261176
BCI_2 261371
BCI_3 5971
BCI_4 4138
BCI_5 466
BCI 6 529BCI_6 529
PBI 452363
MDB 75,904
SQLS 600000

1000000

Twig Queries with Low Selectiveity Text Values

100

1000

10000

100000

1000000

QC3

1

10

BCI_1 BCI_2 BCI_3 BCI_4 BCI_5 BCI_6 PBI MDB SQLS

Figure 7.7: Average for Twig Queries with Low Selectivity Text Values

NAME Nodes Branch Classes NCLTV PC REL AD REL

BCI 1/2 85,965,102 1,067 1,224 2,133 5,032
BCI 3/4 85,965,102 2,303,622 2,351,127 4,607,241 11,583,109
BCI 5/6 85,965,102 143,888 147,503 287,775 699,188

Table 7.5: Branch Index Statistics

For each BranchClassIndex, the variations in the number of branch classes

and the size of the NCLTV, PC REL and AD REL relations are shown in Table

7.5. These variations are important as they are responsible for the perfor-

mance deviations described in this section.

Twig Queries with Low Selectivity Text Values (Q05, Q06, Q07)

The performance value of branch classification extensions is clear for queries

that evaluate text values that are of low selectivity (QC3). Figure 7.7 shows

that the BranchClassIndex performs significantly better when text values

are indexed (BCI 3, BCI 4, BCI 5, BCI 6) than when they are not (BCI 1,

BCI 2). Even when a large subset (227) of text values are classified (BCI 3,

BCI 4) significant performance gains are achieved. However, when fewer

text values are classified (100), the BranchClassIndex performs better.

In our earlier assessment of queries in category QC3, MonetDB/XQuery

performed best overall and queries that evaluate text values that are of low

115

QC1
BCI_1 1,107
BCI_2 1102
BCI_3 4,816
BCI_4 9,939
BCI_5 1,354
BCI 6 3 132

10,000

Linear Path Expressions

BCI_6 3,132
PBI 2,090
MDB 4,407
SQLS 212

10

100

1,000

QC1

1

BCI_1 BCI_2 BCI_3 BCI_4 BCI_5 BCI_6 PBI MDB SQLS

Figure 7.8: Average Linear Path Expression Performance

selectivity were identified as worst case queries for the BranchClassIndex.

In contrast, after classification extensions, the BranchClassIndex is the most

highly optimised approach even when a large subset of text values are clas-

sified (see Figure 7.7).

Linear Path Expressions (Q01, Q02)

Linear path queries only evaluate the base data at the rightmost step (to

locate the result set). For this reason, extending the classification process

to include text values cannot optimise linear path queries. In fact, they can

incur a performance overhead. This is illustrated in Figure 7.8, which shows

that BranchClassIndex before the inclusion of text values (BCI 1 and BCI 2)

performs better than after their inclusion (BCI 3, BCI 4, BCI 5, BCI 6).

Additionally, Figure 7.8 shows that when the classification process includes

100 text values (BCI 3, BCI 4) it performs better than when it contains

227 text values (BCI 5, BCI 6). This is because the number of branch

classes increases, and in particular, the PC REL and AD REL relations grow

significantly in size. There is therefore a trade off between the number of text

values that are included in the classification process and the performance

overhead they incur for linear path queries. However, a subset of 100 text

116

values (BCI 5) performs almost as well as the BranchClassIndex before the

extensions.

Note also that the optional Parent and Child ClassChain components min-

imise the effect of the increased index size (e.g. BCI 3 performs better than

BCI 4 and BCI 5 performs better than BCI 6), whereas when text values

are not classified these components do not have a query performance benefit

(BCI 1 and BCI 2 perform equally well). The reason for this is that the

Parent and Child ClassChain components are stored in the PC REL relation.

An examination of the size of the PC REL relation in contrast to the AD REL

relation (Figure 7.5) shows a much larger differentiation when text values

are classified. For example, for BCI 1 the AD REL relation contains around

3000 more relationships than the AD REL relation. In contrast, for BCI 3

the differential is around 7 million relationships, thus the Parent and Child

ClassChain components have a significant search space pruning effect.

Twig Queries without Text Values (Q03, Q04)

Figure 7.9 shows that the results for Twig queries that do not contain text

values are similar to those for linear path queries. Again, the reason for

this is that by specification, queries in QC2 do not evaluate text values.

Therefore, the inclusion of text values in the index has no value and may

incur a performance overhead due to the increased index size.

The only difference shown between queries in QC1 and those in QC2 is that

the benefit of the Parent and Child ClassChain components in QC2 is not

significant. The reason for this is that in total, the queries in QC1 contain

eleven parent or child axes, whereas those in QC2 contain only five. In other

words, the particular queries in QC2 cannot exploit the Parent and Child

ClassChain components as often as those in QC1.

117

QC2
BCI_1 569
BCI_2 254
BCI_3 42,311
BCI_4 42257
BCI_5 1174
BCI 6 1682BCI_6 1682
PBI 600000
MDB 18132
SQLS 600000

Twig Queries without Text Values

100

1000

10000

100000

1000000

QC2

1

10

100

BCI_1 BCI_2 BCI_3 BCI_4 BCI_5 BCI_6 PBI MDB SQLS

Figure 7.9: Average for Twig Queries without Text Values

QC4
BCI_1 258
BCI_2 381
BCI_3 5928
BCI_4 6106
BCI_5 3983
BCI 6 3698BCI_6 3698
PBI 34415
MDB 2688
SQLS 84

Twig Queries with High Selectivity Text Values

100

1000

10000

100000

QC4

1

10

BCI_1 BCI_2 BCI_3 BCI_4 BCI_5 BCI_6 PBI MDB SQLS

Figure 7.10: Average for Twig Queries with High Selectivity Text Values

Twig Queries with High Selectivity Text Values (Q09, Q10)

In category QC4, the high selectivity of the text nodes ensures that, even

though the base data must be evaluated (to access the text values), the text

values have high selectivity leading to few node comparisons. For queries

in QC4, the BranchClassIndex performed better than the PathBasedIndex

and MonetDB/XQuery, even after the classification of text values (see Figure

7.10).

118

Single Step Path Fragment Queries

For single path fragment queries, the BranchClassIndex is optimised because

the low cardinality text value (‘40 ’) in query Q08 was classified. Again,

MonetDB/XQuery was the most efficient approach in this category in the

earlier evaluation, but now the BranchClassIndex is more efficient (BCI 3,

BCI 4, BCI 5, BCI 6).

QC5
BCI_1 600000
BCI_2 600000
BCI_3 1388
BCI_4 1391
BCI_5 2043
BCI 6 2175BCI_6 2175
PBI 600000
MDB 105129

1000000

Single Step Path Fragment Queries

100

1000

10000

100000

QC5

1

10

BCI_1 BCI_2 BCI_3 BCI_4 BCI_5 BCI_6 PBI MDB

Figure 7.11: Average Single Step Path Fragment Queries

7.3.3 Overall Query Performance

In Table 7.4 the average (AVG) query response time (milliseconds) is shown

for each approach. The bar chart in Figure 7.12 illustrates these aver-

age times. The BranchClassIndex now performs best overall when a large

(BCI 3, BCI 4) or a small (BCI 5, BCI 6) subset of low selectivity text

values are indexed.

7.4 Comparison Using Standard Benchmarks

In this section, we evaluate the performance of each approach using the

XPathMark benchmark [67], the Computer Science Bibliography [21] and

the Protein Sequence Database [58]. In the following experiments, the

119

Average
BCI_1 138,739
BCI_2 138758
BCI_3 12,540
BCI_4 13,041
BCI_5 1,646
BCI 6 2 078BCI_6 2,078
PBI 323,010
MDB 38,329
SQLS 333,399

Overall Performance

100

1,000

10,000

100,000

1,000,000

Average

1

10

100

BCI_1 BCI_2 BCI_3 BCI_4 BCI_5 BCI_6 PBI MDB SQLS

Figure 7.12: Average Performance across all Query Categories

BranchClassIndex is evaluated (1) without text values and including the

Parent and Child ClassChain components (BCI 1), (2) without text values

and not including the Parent and Child ClassChain components (BCI 2),

and (3) including all of the text values identified as suitable for classification

(BCI 2).

No. Cat XPath Query Nodes

Q13 QC1 /site/regions/africa 1
Q14 QC4 /site/people/person[@id = ‘person0’] 1
Q15 QC1 //regions/africa//item/name 6,600
Q16 QC2 //person[profile/@income]/name 153,539
Q17 QC2 //people/person[profile/gender][profile/age]/name 38,583
Q18 QC1 /site//keyword/ancestor::listitem/text/keyword 373,260
Q19 QC1 /site/closed auctions/closed auction//keyword 15,0047
Q20 QC2 /site/closed auctions/closed auction[./descendant::keyword]/date 64,133
Q21 QC1 /site/closed auctions/closed auction/annotation/description/text/keyword 48,632
Q22 QC2 /site/closed auctions/closed auction[annotation/description/text/keyword]/date 31,773
Q23 QC2 /site//closed auction[annotation//text//keyword]/date 64,133
Q24 QC2 /site//item[.//description//listitem] 75,940
Q25 QC2 /site//item[.//description//listitem]//mailbox//text 72,748

Table 7.6: XMark Queries

7.4.1 The XPathMark Benchmark

The XPathMark benchmark has been widely used by the research commu-

nity to evaluate the performance of XPath processors [2, 9, 24, 54]. The

XMark [67] dataset is used in XPathMark and because it contains synthetic

120

Query Cat BCI 1 BCI 2 BCI 3 PBI MDB SQLS

Q13 QC1 3ms 2ms 12ms 12ms 120ms 1ms
Q15 QC1 470ms 3,628ms 713ms 21ms 128ms 147ms
Q18 QC1 3,144ms 4,431ms 8,925ms >10mins 9,620ms error
Q19 QC1 322ms 769ms 464ms 153ms 622ms 582ms
Q21 QC1 548ms 1,590ms 829ms 47ms 623ms 10ms

AVG 897ms 2,084ms 2,188ms 120,046ms 2,222ms 185ms

Q16 QC2 1,007ms 1,838ms 3,879ms >10mins 1,162ms 1,235ms
Q17 QC2 3,389ms 11,762ms 60,573ms >10mins 1,131ms 973ms
Q20 QC2 4,018ms 8,767ms 6,414ms >10mins 649ms 2,754ms
Q22 QC2 2,706ms 22,320ms 3,886ms >10mins 663ms 271ms
Q23 QC2 1,419ms 2,403ms 3,991ms >10mins 672ms >10mins
Q24 QC2 1,889ms 1,873ms 3,311ms >10mins 1,516ms >10mins
Q25 QC2 4,291ms 4,259ms 7,880ms >10mins 1,558ms >10mins

AVG 2,674ms 7,603ms 12,848ms 600,000ms 1,050ms 257,890ms

Q14 QC4 168ms 159ms 357ms 235ms 132ms 118ms

Total AVG 1,798ms 4,907ms 7,787ms 369,266ms 1,430ms 150,507ms

Table 7.7: Results for the Mark Queries

data it can be generated to any size. We chose an XMark dataset of 1.33

GB in size because it is the largest size XMark dataset that could be stored

as an xml type in SQL Server.

In Table 7.6, queries Q15-Q22 are taken directly from XPathMark; queries

Q13 and Q14 are taken from [31] (which is the node-based approach we

evaluate later in §7.5); and finally, we added queries Q23, Q24, and Q25

to illustrate some issues. Within the XMark dataset, a total of 132 text

values where identified as suitable for classification all of which are indexed

in BCI 3.

For linear path queries (QC1), SQL Server performed best overall (see Ta-

ble 7.13). We attribute this to SQL’s PATH index which is highly optimised

for non-branching queries. The BranchClassIndex outperformed the Path-

BasedIndex for linear path queries because query Q18 took the PathBasedIn-

dex more than ten minutes. The reason for this is that the ancestor axis in

step three splits the query into three separate primary path fragments and

inefficient node comparisons are required between each pair. This shows

that the PathBasedIndex can perform poorly for queries in category QC1

that consist of more than one primary path fragment (an issue that was not

121

highlighted in the bicycle rental experiments). The BranchClassIndex can

always exploit the NCLTV covering index for all but the rightmost step of

any linear path query, and therefore outperforms the PathBasedIndex. As

with the bicycle rental dataset, the BranchBasedIndex outperforms Mon-

etDB/XQuery for linear path queries, which suggests that it bypasses a

larger number of nodes during query processing.

NAME Nodes Branch Classes NCLTV PC REL AD REL

BCI 1/2 24,645,234 1,337,193 1,653,814 2,676,477 7,459,066
BCI 3 24,645,234 3,097,821 3,817,329 6,198,038 14,403,306

Table 7.8: BranchClassIndex Statistics (XMark)

MonetDB/XQuery performed better than the BranchClassIndex for Twig

queries that do not evaluate text values QC2, whereas in the bicycle rental

evaluation, the BranchClassIndex was the most efficient approach. We be-

lieve that the reason for this is that, for the XMark dataset, the Branch-

ClassIndex contains a larger number of relationships (see Table 7.8) than

it did for the bicycle rental dataset (see Table 7.5). The BranchClassIn-

dex is the second most efficient approach. The PathBasedIndex does not

perform well for Twig queries (unless they have high selectivity). This is

because costly joins are performed between each branching path (primary

path fragment).

SQL Server also did not perform well overall in category QC2, but it did

perform well in queries Q16, Q17, Q20 and Q22. We added queries Q23, Q24,

and Q25 (in addition to those in the XPathMark benchmark) to highlight a

limitation of SQL Server. Notice that Q23 is a slight variation of Q22 (the

predicate contains multiple ancestor-descendant relationships rather than

parent-child relationships). However, the query response time for Q22 is

271ms, whereas Q23 took longer than ten minutes. This suggests that SQL

Server’s PATH index is efficient for paths that contain multiple parent-child

relationships, but not for ancestor-descendant relationships. Queries Q24

122

and Q25 illustrate this point further.

For Q14 (the only query in QC4), all approaches took less than 1 second

to return the result. This shows again that all approaches performed well

for Twig queries that have high selectivity (QC1). Across all query cat-

egories, MonetDB/XQuery is the most efficient approach, followed closely

by the BranchClassIndex (368ms less efficient overall). SQL Server and

the PathBasedIndex are some orders of magnitude less efficient than Mon-

etDB/XQuery and the BranchClassIndex. Finally, SQL Server is more than

twice as efficient as the PathBasedIndex.

BranchClassIndex Evaluation

Indexing text values incurs an overhead for queries (BCI 3 is four time slower

overall than BCI 1). The reason for this is the increased index traversal costs

for BCI 3 as the index itself is larger than BCI 2 (see Table 7.8).

The inclusion of the Parent and Child ClassChain components has a clear

benefit (BCI 1 is almost three times more efficient then BCI 2). This is

because the PC REL relation contains significantly fewer relationships than

the AD REL relation (see Table 7.8). One factor that increases the number

of ancestor/descendant relationships is the nested-depth. For example, the

XMark dataset has 13 levels, whereas the bicycle rental has only 8. Another

factor that can impact the number of ancestor/descendant relationships is

text value classification (as pointed out in the bicycle rental evaluation).

7.4.2 The Computer Science Bibliography

Queries executed across the Computer Science Bibliography are mostly taken

from other published works in the area of XPath query optimisation [4, 13,

46, 47]. SQL Server 2008 is not included in this evaluation because it had

difficulty loading an XML file that has an associated DTD (Document Type

Descriptor). A total of 80 text values were identified as suitable for classifi-

123

No. Cat XPath Query Nodes

Q26 QC3 /dblp/article[year=‘1991’]/@key 8,126
Q27 QC1 /dblp/article/author 1,235,495
Q28 QC1 /dblp/article//sub 3,868
Q29 QC4 /dblp/article/title[sub=‘2’] 590
Q30 QC1 /dblp/inproceedings//booktitle 805,306
Q31 QC5 //sub/ancestor::inproceedings 698
Q32 QC2 /dblp/inproceedings//title[.//i]//sub 176
Q33 QC4 /dblp/inproceedings[title=’Semantic Analysis Patterns.’]/author 2

Table 7.9: Computer Science Bibliography Queries

Query Cat BCI 1 BCI 2 BCI 3 PBI MDB

Q27 QC1 762ms 782ms 876 1,048ms 3,542ms
Q28 QC1 13ms 13ms 78 16ms 1,230ms
Q30 QC1 194ms 192ms 236 669ms 1,837ms

AVG 323ms 329ms 397ms 577ms 2,203ms

Q32 QC2 18ms 18ms 95ms 423,647ms 1,943ms

Q26 QC3 326,457ms 326,457ms 157ms >10mins 13,127ms

Q29 QC4 540ms 536ms 673 >10mins 8,824ms
Q33 QC4 863ms 857ms 823 3,007ms 17,645ms

AVG 702ms 697ms 748ms 301,503ms 13,235ms

Q31 QC5 107ms 106ms 139ms 494,903ms 9,084ms

Total AVG 41,119ms 41,120ms 385ms 265,411ms 7,154ms

Table 7.10: Results for the Computer Science Bibliography

cation all of which are included in BCI 3.

NAME Nodes Branch Classes NCLTV PC REL AD REL

BCI 1/2 21,228,286 5,984 7,714 11,301 11,731
BCI 3 21,228,286 140,306 173,928 265,791 268,649

Table 7.11: Branch Index Statistics (DBLP)

For linear path queries (QC1), the BranchClassIndex performed best over-

all, followed by the PathBasedIndex and then MonetDB/XQuery (see Ta-

ble 7.10). Thus, again in this category, MonetDB/XQuery’s Staircase join

performs poorly when compared to approaches that exploit structured in-

formation for query processing.

For Twig queries without text values (QC2), the BranchClassIndex performs

best overall followed by MonetDB/XQuery and then the PathBasedIndex.

124

The PathBasedIndex performed three (costly) joins as Q32 (the only query

in this category) consists of three primary path fragments. It is our un-

derstanding that the join between steps two and three has a significant

performance overhead for MonetDB/XQuery as there are a large number of

inproceedings and title nodes in the computer science bibliography.

Queries in category QC3 are worst case queries for the BranchClassIndex

when text values are not classified. The benefit of classifying text values

that have low selectivity is clear as BCI 3 performs 2,079 times faster than

BCI 1 and BCI 2. In addition, for the computer science bibliography, there

is little performance overhead associated with classifying text values. This

is because, in spite of the fact that there is an increase in the size of the

BranchClassIndex after the inclusion of text values (see BCI 3 Table 7.11),

there are still fewer than 300,000 relationships in the PC REL and AD REL

relations.

Queries that have high selectivity (QC4) show some interesting results. The

BranchClassIndex outperforms MonetDB/XQuery and the PathBasedIndex

considerably. However, we expected much better results from both these

approaches as queries in QC4 are predicated in text values that have high

selectivity. Thus, join ordering or poor query execution plans may be re-

sponsible for these inefficiencies.

The only query in QC5 is Q31. The BranchClassIndex is the most effi-

cient approach (both before and after text values are indexed) followed by

MonetDB/XQuery. In Q31, the ancestor axis at step two ensures that each

primary path fragment for the PathBranchIndex approach only spans a sin-

gle step. Therefore, the PathBaseIndex reduces to the performance of a

node-based approach such as the XPath Accelerator.

The BranchClassIndex performs best overall across all categories when the

index contains all identified text values and for the computer science bib-

liography, there is little overhead associated with including the text values

125

across all categories. MonetDB/XQuery is second followed by the Path-

BasedIndex. The Parent and Child ClassChain components do not show a

performance benefit for this dataset.

No. Cat XPath Query Nodes

Q34 QC1 //reference/refinfo//author 5,668,287
Q35 QC1 //ProteinEntry//accinfo/xrefs 281,246
Q36 QC1 /ProteinDatabase/ProteinEntry//protein//name 262,525
Q37 QC1 /ProteinDatabase/ProteinEntry//protein//alt-name 42,615
Q38 QC1 /ProteinDatabase/ProteinEntry//year/ancestor::refinfo 314,763
Q39 QC1 /ProteinDatabase/ProteinEntry//reference//refinfo//year 314,763
Q40 QC1 /ProteinDatabase/ProteinEntry//year/ancestor::reference 314,763
Q41 QC1 /ProteinDatabase/ProteinEntry//classification//superfamily 186,700
Q42 QC1 /ProteinDatabase/ProteinEntry//reference/refinfo/authors/author 5,668,287
Q43 QC4 /ProteinDatabase/ProteinEntry[reference/accinfo/accession = ‘AE0077’] 1
Q44 QC2 /ProteinDatabase/ProteinEntry[reference//accession] 262,525
Q45 QC4 /ProteinDatabase/ProteinEntry[reference/refinfo/authors/author = ‘Massung, R.F.’] 404
Q46 QC2 /ProteinDatabase/ProteinEntry[reference/refinfo/authors/author] 258,216
Q47 QC4 /ProteinDatabase/ProteinEntry[organism/variety= ‘strain Marburg’]/reference/accinfo/xrefs 7
Q48 QC2 /ProteinDatabase/ProteinEntry[organism/variety]/reference/accinfo/xrefs 9,177
Q49 QC2 /ProteinDatabase/ProteinEntry[reference//note] 32,107
Q50 QC2 /ProteinDatabase/ProteinEntry[reference/accinfo/note] 27,429
Q51 QC3 /ProteinDatabase/ProteinEntry[reference/refinfo/year= ‘1988’]/reference 1,477

/accinfo[status= ‘preliminary’]/xrefs

Table 7.12: Protein Sequence Queries

7.4.3 The Protein Sequence Database

The queries executed across the Protein Sequence Database are largely taken

from the experiments presented in [25]. The text node identification algo-

rithms identified a total of 243 text values as being suitable for classification,

all of which are indexed in BCI 3.

For linear path queries (QC1), SQL Server performs marginally better than

the BranchClassIndex and MonetDB/XQuery respectively. The PathBasedIn-

dex took more than 10 minutes to evaluate queries Q38 and Q40. This

is because they both contain the ancestor axis, which splits each of these

queries into two primary path fragments and costly node comparisons are

required between each pair. As with the bicycle rental and XMark datasets,

the classification of text values has a performance overhead for linear path

queries (BCI 1 performs better than BCI 3).

For Twig queries that do not contain text values (QC2), the BranchClassIn-

dex performs best overall because all but the rightmost step can be evaluated

126

Query Cat BCI 1 BCI 2 BCI 3 PBI MDB SQLS

Q34 QC1 3,232ms 3,382ms 20,852ms 6,274ms 3,945ms 14,924ms
Q35 QC1 1,896ms 2,262ms 8,590ms 230ms 3,824ms 485ms
Q36 QC1 1,260ms 1,268ms 11,789ms 222ms 3,780ms 658ms
Q37 QC1 1,150ms 1,216ms 5,491ms 72ms 3,785ms 193ms
Q38 QC1 2,196ms 2,276ms 14,215ms >10mins 4,095ms error
Q39 QC1 3,925ms 3,882ms 29,520ms 261ms 3,877ms 618ms
Q40 QC1 2,066ms 2,100ms 10,100ms >10mins 4,111ms error
Q41 QC1 1,072ms 1,118ms 4,250ms 159ms 3,789ms 344ms
Q42 QC1 14,215ms 13,320ms 255,703ms 6,367ms 4,286ms 4,337ms

AVG 3,445ms 3,425ms 40,057ms 134,843ms 3,944ms 3,080ms

Q44 QC2 1,751ms 2,051ms 18,112ms >10mins 3,942ms >10mins
Q46 QC2 5,557ms 7,156ms 117,920ms >10mins 5,613ms 5,464ms
Q48 QC2 996ms 1,800ms 1,362ms >10mins 4,057ms 286ms
Q50 QC2 1,494ms 1,466ms 3,866ms >10mins 4,087ms 2,581ms
Q49 QC2 1,170ms 1,220ms 4,990ms >10mins 3,959ms >10mins

AVG 2,794ms 2,739ms 29,250ms 600,000ms 4,332ms 241,666ms

Q51 QC3 12,102ms 22,525ms 4,054ms >10mins 27,527ms 379,366ms

Q43 QC4 61ms 61ms 692ms 136ms 14,191ms >10mins
Q45 QC4 185ms 190ms 725ms 10,156ms 21,487ms 324,673ms
Q47 QC4 96ms 100ms 961ms 4,413ms 18,596ms >10mins

AVG 114ms 117ms 793ms 4,902ms 18,091ms 508,224ms

Total AVG 10,429ms 11,799ms 15,833ms 301,334ms 5,507ms 176,429ms

Table 7.13: Results for the Protein Sequence Database

NAME Nodes Branch Classes NCLTV PC REL AD REL

BCI 1/2 22,358,584 2,352,767 2,648,893 4,667,447 8,309,456
BCI 3 22,358,584 5,476,253 6,071,961 10,867,244 21,003,496

Table 7.14: Branch Index Statistics (Protein)

in NCLTV index. The PathBasedIndex and SQL Server have to perform a

join at each path fragment and do not perform well in this category because

there is at least one path fragment for each branching path (i.e. predicate

filter) in the query. MonetDB/XQuery shows the second best performance

in this category. This again indicates that when the PathBasedIndex or SQL

Server must perform joins, MonetDB/XQuery’s Staircase Join will perform

them more efficiently even though it may perform more of them (one at each

step rather than one between each path fragment pair).

Query Q51 is only one query that uses low selectivity text values (QC3). For

the first time, the BranchClassIndex performed best in this category (before

text value classification); MonetDB/XQuery performed best in all previous

127

cases. We believe that there are two reasons for this. Firstly, even though

the text value ‘1998 ’ is not indexed, it only occurs 25,773 times, which limits

the number of node comparisons. Secondly, there are nine steps in Q51 (the

most out of all queries considered here) and MonetDB/XQuery must perform

a Staircase join between each pair. As previously, the PathBasedIndex and

SQL Server perform at the same level in this category because of the large

number of path fragments. However, query Q51 is three times faster after

text values have been classified (BCI 3). The Parent and Child ClassChain

components result in increased performance for query Q51 because of the

large number of child axes and the fact that the PC REL relation contains

half as many relationships as the AD REL relation (see Table 7.14).

For queries that evaluate high selectivity text values (QC4), SQL Server

took more than ten minutes to return a result for Q43 and Q47. On all

previous experiments, SQL Server performed well in this category. The rea-

son for this is unclear to us, but it may be related to join ordering. The

BranchClassIndex performed best overall, which suggests that the query op-

timiser chooses better execution plans than it does for the PathBasedIndex.

For queries with high selectivity, the classification of text nodes and the in-

clusion of the Parent and Child ClassChain components show little benefit

(BCI 1, BCI 2, and BCI 3 perform at the same level).

Overall MonetDB/XQuery performs best, followed by the BranchClassIndex

(before text values are indexed (BCI 1)). This suggests that the inclusion

of all 243 text values (BCI 3) is not optimal. However, the classification of

text values significantly increases the performance of queries in QC3 (Q51

was reduced from 12 seconds to 4 seconds). Comparatively, SQL Server and

the PathBasedIndex are inefficient for the protein sequence dataset.

128

7.5 Node Based Approaches

In this section, we will evaluate the performance of a traditional node-based

approach to XPath optimisation [31], which is an optimised version of the

XPath accelerator [29]. Additionally, an evaluation of the node partitioning

approach that is most similar to ours [43] is provided. We will refer to [31]

as the NodeApproach and [43] as the PartitionApproach.

For the NodeApproach, we built the following three partitioned B-tree in-

dexes as suggested in [31]: Node(level,pre), Node(type,name,pre) and Node(type,name,level,pre).

Additionally we built indexes on size, name, level, value and type. For the

PartitionApproach, we used partitioning factors 20, 40, 60, and 100. As

suggested in [43], Node(pre) is a primary key; Node(part) is a foreign key ref-

erence to the primary key Part(part); and indexes were built on Node(post),

Node(name), Node(part), Part(pre), and Part(post).

Our overall finding for both approaches is that they do not scale well, even

for relatively small XML documents. As such, we had to evaluate these

approaches using a relatively small dataset. Thus, for the following exper-

iments, we generated an XMark dataset of just 115 MB in size and tested

both approaches against queries from the XPathMark [67] benchmark and

some queries taken from [31] (these queries are shown in Table 7.6).

Query Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

PartitionApproach(20) 211 223 >10mins >10mins 53,481 >10mins 5,198 >10mins 126,190 151,728
PartitionApproach(40) 263 307 >10mins >10mins 61,458 >10mins 9,168 >10mins 197,386 140,133
PartitionApproach(60) 260 1,452 >10mins >10mins 52,423 >10mins 10,492 >10mins 124,019 132,178
PartitionApproach(80) 262 1,200 >10mins >10mins 78,719 >10mins 10,215 21,281 114,020 161,539
PartitionApproach(100) 267 1,134 >10mins 259,528 53,596 >10mins 290,967 18,289 112,605 166,413
NodeAppraoch 136 259 >10mins >10mins >10mins >10mins 23,842 >10mins >10mins >10mins
BranchClassIndex 16 92 63 81 3,274 896 229 1,371 192 996

Table 7.15: Results for the Node Based Approaches

In Table 7.15, the query response time for each of these queries is shown.

These results show the following:

• The NodeApproach timed out on all but Q13, Q14, Q18.

• In the PartitionApproach, a partitioning factor of 100 returned re-

129

sults for the greatest number of queries (Q13, Q14, Q16, Q17, Q19,

Q20, Q21, Q22). Query Q19 shows an increase in processing times as

the partitioning factor increased, whereas Q21 shows a decrease. The

remaining results do not suggest such a pattern.

• The PartitionApproach returned results for a greater number of queries

then the NodeApproach across all partitioning factors.

• The BranchClassIndex is orders of magnitude faster across all queries.

Queries Q13 and Q14 have high selectivity as they return a single result node.

Also, the first two steps in Q19, that is, /site and /closed auctions, both

evaluate just a single node only. We attribute the fact that NodeApproach

returned results for queries Q13, Q14 and Q15 to the high selectivity of

these queries.

There is no consistent pattern between the incrementing partitioning fac-

tors indicating that no single partitioning factor per dataset is ideal. The

PartitionApproach provides superior results than the NodeApproach, both

in terms of query response times, and in terms of the number of queries that

returned a result within 10 minutes. However, the exhaustive experimenta-

tion required to identify suitable partition factors is infeasible (in terms of

index build times and query analysis). Both approaches do not scale well

for queries that have low selectivity, because even for relatively small XML

datasets (115 MB), the query response times are large relative to those of

the BranchClassIndex.

7.6 Summary

In this chapter, we evaluated the performance of the BranchClassIndex;

a path-based indexing approach (PathBasedIndex); a leading open-source

(MonetDB/XQuery); and a commercial (SQL Server 2008) XML database.

130

Linear path queries (QC1) do not contain predicate filters, therefore all

approaches are effective in this category. Across all datasets, SQL Server

performed marginally better than the BranchClassIndex, followed by the

PathBasedIndex and finally MonetDB/XQuery is the poorest performing

approach in this category.

The BranchClassIndex is the most effective approach for queries in QC2 for

all but the XMark dataset. For queries executed across the XMark dataset,

MonetDB/XQuery is more efficient. The reason for this is the increased

number of ancestor/descendant and parent/child relationships. We suggest

ways of minimising this increase to the index size in our discussion on future

research (Chapter 8).

For Twig queries that evaluate text values with low selectivity QC3, the

BranchClassIndex performs best for the protein sequence database, whereas

MonetDB/XQuery performs best for the bicycle rental and computer science

bibliography datasets (the XPathMark evaluation did not contain queries in

this category). However, for the bicycle rental dataset, the BranchClassIn-

dex is 162 times faster than MonetDB/XQuery when a small subset of text

values are indexed and 12 times faster when a large subset of text values are

indexed. For the computer science bibliography, the BranchClassIndex is

83 times faster than MonetDB/XQuery after all low selectivity text values

have been indexed.

For queries that evaluate text values that have high selectivity (QC4), SQL

Server performed best for the bicycle rental and XMark datasets, followed by

the BranchClassIndex, MonetDB/XQuery and the PathBasedIndex respec-

tively. For the computer science bibliography and protein sequence dataset,

the BranchClassIndex is the most efficient approach.

Overall for the bicycle rental dataset and protein sequence datasets, Mon-

etDB/XQuery is the most efficient approach. However, for the bicycle rental

dataset, the BranchClassIndex replaces MonetDB/XQuery as the most ef-

131

ficient approach when a small or a large subset of text values are indexed.

The overall averages for the XMark evaluation show that the BranchClassIn-

dex and MonetDB/XQuery perform at the same level, whereas the Path-

BasedIndex and SQL Server are less efficient by orders of magnitude. For the

computer science bibliography, the BranchClassIndex performs best overall

when all low selectivity text nodes are indexed.

These experiments show that the BranchClassIndex is a poor choice for

one query category (QC3). This is because queries in this category contain

text values that have low selectivity, thus leading to large numbers of node

comparisons. However, it was shown that indexing low selectivity text val-

ues improves the performance of the BranchClassIndex making it the most

efficient approach overall for the bicycle rental and computer science bibliog-

raphy datasets. For datasets where the BranchClassIndex did not perform

best overall (XMark and protein sequence datasets), its storage costs are

higher. Therefore, as part of our future work, we discuss ways in which the

BranchClassIndex can be compacted.

132

Chapter 8

Conclusions

This dissertation presented a node partitioning strategy for optimising XPath

queries. In this chapter, we restate the concepts that were introduced and

discuss future work. This chapter is structured as follows: in §8.1, a sum-

mary of the dissertation is provided and in §8.2, the future potential of this

work is discussed.

8.1 Thesis Summary

The partitioning approach, which to the best of our knowledge is shared

with just one other index-based approach [43], allows nodes of different

names and types (element and attribute) to reside in the same partition.

The hypothesis is based on the fact that there will always be fewer parti-

tions then there are nodes. Therefore, the partitions that contain target

nodes can be identified directly and all other partitions are eliminated from

the search space. In contrast to [43], however, our approach allows parti-

tions of different sizes within an XML document and avoids time-consuming

preprocessing to identify suitable partitioning factors.

The partitioning approach optimises the most commonly used XPath axes

(the six hierarchical axes). We began by defining a disjoint partition of nodes

133

as a branch because suitable partitions are identified based on the layout

of branching nodes (nodes that have at least two children) within the XML

document. It soon became clear that the most suitable partitioning strategy

for the hierarchical axes was to ensure that only nodes that are hierarchically

related can reside in the same branch. We showed that this has the effect

of reducing the number of false hits, thus improving the performance of the

hierarchical axes.

A side effect of using the rule that only hierarchically related nodes can share

the same branch is that there may be a large number of branch instances.

Thus, because the optimisation strategy is based on the fact that there will

be fewer partitions than nodes, the increased number of branch instances

may result in a performance overhead. To overcome this issue, we provided

a classification process for equivalent branch instances. After classification,

a single branch class represents any number of branch instances. In effect,

the index is compacted while maintaining its search space pruning benefits.

Based on the fact that a single branch class represents many branch in-

stances, we then showed that a single branch class proxy can be processed

in place of large numbers of branch instances for many steps in XPath ex-

pressions. As a result, we showed that for many XPath expressions the

majority of nodes are bypassed during the query process.

After the branch classification process, we described how the index can be

deployed in a relational database. We provided a detailed description of the

relations that were used in its deployment and detailed an XPath-to-SQL

transformation process for the core subset of the XPath language.

Finally, we demonstrated the performance of the index using four large XML

datasets. A real world dataset was used to demonstrate the wider impact of

our approach. Then, we exploited three datasets that are commonly used

by the research community for benchmarking purposes.

134

0

6

2

87

<bikes>

<city>

<Dublin>

5<station>

<id>

<free>

<total>

3
@day='01'

4<stations>

12

9

1413

<Lyon>

11<station>

<id>

<free>

<total>

10<stations>

19

15

2120

18<station>

<id>

<free>

17<stations>

<total>

<Dublin>

1

16
@day='02'

C1 C1
C2 C2C3 C3

C4 C4

C5 C5

C6 C7
C8

C9

C10

C11

(a) XML Snippet from the Bicycle Rental Dataset

ac dc
1 1
2 2
3 3
4 1
4 2
4 3
4 4
5 1
5 2
5 3
5 4
5 5
6 6
7 7
8 8
9 6
9 7
9 8
9 9
10 6
10 7
10 8
10 9
10 10
11 1
11 2
11 3
11 4
11 5
11 6
11 7
11 8
11 9
11 10
11 11

1 1
2 2
3 3
4 1
4 2
4 3
4 4
5 1
5 2
5 3
5 4
5 5
11 5
11 6
11 7
11 8
11 9
11 10
11 11

b1. Node Relation (Base Data)

b2. NCLTV

b3.
Parent/Self/Child

ClassChainComponents

pre post name type level class value
0 21 bikes 3 0 0 null
1 20 city 1 1 11 null
2 6 Dublin 1 2 5 null
3 0 day 2 3 5 01
4 5 stations 1 3 5 null
5 4 station 1 4 4 null
6 1 id 1 5 1 null
7 2 free 1 5 2 null
8 3 total 1 5 3 null
9 12 Lyon 1 2 10 null
10 11 stations 1 3 10 null
11 10 station 1 4 9 null
12 7 id 1 5 6 null
13 8 free 1 5 7 null
14 9 total 1 5 8 null
15 19 Dublin 1 2 5 null
16 13 day 2 3 5 02
17 18 stations 1 3 5 null
18 17 station 1 4 4 null
19 14 id 1 5 1 null
20 15 free 1 5 2 null
21 16 total 1 5 3 null

name class level type value
id 1 5 1 null
free 2 5 1 null
total 3 5 1 null
station 4 4 1 null
stations 5 3 1 null
Dublin 5 2 1 null
day 5 3 2 null
id 6 5 1 null
free 7 5 1 null
total 8 5 1 null
station 9 4 1 null
stations 10 3 1 null
Lyon 10 2 1 null
city 11 1 1 null

b4.
Ancestor/Self/Descedant
ClassChainComponents

(b) Relations in the BranchClassIndex

Figure 8.1: Relational Index Deployment Revisited

8.2 Future Work

In this section, we describe the long and short term goal of our on-going

research.

8.2.1 Reducing Redundancy

In this dissertation, we showed how the ClassChain components can be

stored in relations that are suitable for equijoin evaluations; these relations

135

are shown in Figure 8.1b3 and 8.1b4. We chose this approach because the

author of [41] showed us that relational databases can evaluate equijoins

efficiently (unlike non-equijoins).

An issue associated with a relational storage method that is suitable for

equijoin evaluation is redundancy (see Chapter 2 for more details). The

approach presented in this dissertation reduces redundancy to a large degree

through branch classification, but we believe it can be reduced further.

Consider node 1 in Figure 8.1a (city). This node’s branch class identifier

(C11) is an ancestor class of all other branch classes in the XML document

(except the class that the document node belongs to). Redundancy occurs

because C11’s descendant classes (highlighted in grey in Figure 8.1b3 and

8.1b4) also occur as descendants of other branch classes. For example, class

C9 is a descendant of class C11 and C10.

ac dc
1 1
2 2
3 3
4 1
4 2
4 3
4 4
5 1
5 2
5 3
5 4
5 5
6 6
7 7
8 8
9 6
9 7
9 8
9 9
10 6
10 7
10 8
10 9
10 10
11 1
11 2
11 3
11 4
11 5
11 6
11 7
11 8
11 9
11 10
11 11

1 1
2 2
3 3
4 1
4 2
4 3
4 4
5 1
5 2
5 3
5 4
5 5
11 5
11 6
11 7
11 8
11 9
11 10
11 11

a1.
Parent/Self/Child

ClassChainComponents

a2.
Ancestor/Self/Descedant
ClassChainComponents

ac dc
1 1
2 2
3 3
4 1
4 2
4 3
4 4
5 1
5 2
5 3
5 4
5 5
6 6
7 7
8 8
9 6
9 7
9 8
9 9
10 6
10 7
10 8
10 9
10 10
11 11

b2.
Parent/Self/Child

ClassChainComponents

b3.
Ancestor/Self/Descedant
ClassChainComponents

pc cc
11 5
11 10
11 11

pc cc
1 1
2 2
3 3
4 1
4 2
4 3
4 4
5 1
5 2
5 3
5 4
5 5
11 11

b1.
Parent/Self/Child
Special Cases

a.
Old Relations

b.
New Relations

Figure 8.2: Redundancy Reduction

Only branch classes that occur at low levels in the XML document that

cause significant redundancy issues. For example, the class for node city

(level one) in the bicycle rental dataset or regions (level one) in the XMark

136

dataset. We believe that it is possible to identify such branch classes within

the XML document and reduce the impact on redundancy for the following

reason.

A branch class such as C11 is an ancestor of classes C1-C11. Another way

of looking at it is that branch class C11 is a parent of classes C5 and C10,

and is an ancestor of C5 and C10’s descendants. Thus, we propose the new

relational layout shown in Figure 8.2. The special case branch classes that

are ancestors of a large number of branch classes can be placed in a separate

relation as shown for class C11 in Figure 8.2b1 and the redundant dupli-

cations can be removed from 8.2b2 and 8.2b3 as shown. We also propose

that this is the approach that will be used to include the document node in

future versions of the BranchClassIndex.

The XPath-to-SQL transformation process would need to be updated to

perform an additional check across such a new relation. However, we don’t

foresee this to be a difficult problem, and we project that the number of

special case nodes would be small within each XML document, thus the

additional check should not be too costly.

8.2.2 Other Future Directions

In this dissertation, we have described an optimisation strategy for the hi-

erarchical XPath axes. We focused on the hierarchical axes because, in our

experience, they are the most commonly used axes. However, integration

of other axes such as attribute should require only simple extensions to the

XPath-to-SQL transformation process. In fact, the attribute axis should

already benefit from our approach as attribute nodes are placed in the same

branch class as their parent element. Thus, identifying an element node’s

attributes will be the efficient task of identifying the attribute nodes in the

same branch class as itself.

In contrast, to date we have not seen any real world requirements for the

137

following and preceding XPath axes. Thus, we propose addressing these

axes in the future if we can motivate the problem based on further research.

Also, we intend to determine the benefit of our branch partitioning approach

for the broader XQuery language.

Finally, our ultimate goal is determine and overcome the overhead of main-

taining the BranchClassIndex upon XML updates. The BranchClassIndex

is encoding scheme independent, thus it can be used along with more up-

date friendly encoding schemes such as [10, 55]. However, the introduction

of new nodes may invalidate branch classes. Alternatively, it could be that

new nodes are inserted into already existing branch classes leading to little

index maintenance overhead.

138

Bibliography

[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web:

From Relations to Semistructured Data and XML. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2000.

[2] Loredana Afanasiev, Massimo Franceschet, and Maarten Marx.

XCheck: A Platform for Benchmarking XQuery Engines. In Proceedings

of the 32nd international conference on Very large data bases, VLDB

’06, pages 1247–1250. VLDB Endowment, 2006.

[3] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick

Koudas, and Divesh Srivastava. Structural Joins: A Primitive for Effi-

cient XML Query Pattern Matching. In ICDE, pages 141–, 2002.

[4] Toshiyuki Amagasa, Lianzi Wen, and Hiroyuki Kitagawa. Proximity

Search of XML Data Using Ontology and XPath Edit Similarity. In

DEXA, pages 298–307, 2007.

[5] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree

Pattern Query Minimization. The VLDB Journal, 11(4):315–331, 2002.

[6] Tim Anderson. The XML Files. In Personal Computer World, 2001.

[7] Andrei Arion, Angela Bonifati, Ioana Manolescu, and Andrea Pugliese.

Path Summaries and Path Partitioning in Modern XML Databases.

World Wide Web, 11:117–151, March 2008.

139

[8] N. A. Aznauryan, Sergei D. Kuznetsov, L. G. Novak, and M. N. Grinev.

SLS: A Numbering Scheme for Large XML Documents. Programming

and Computer Software, 32(1):8–18, 2006.

[9] Véronique Benzaken, Giuseppe Castagna, Dario Colazzo, and Kim

Nguyên. Type-Based XML Projection. In Proceedings of the 32nd

international conference on Very large data bases, VLDB ’06, pages

271–282. VLDB Endowment, 2006.

[10] Timo Bohme and Erhard Rahm. Supporting Efficient Streaming and

Insertion of XML Data in RDBMS. In in RDBMS. Proc. 3rd Int.

Workshop Data Integration over the Web (DIWeb), 2004, pages 70–81,

2004.

[11] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,

Jan Rittinger, and Jens Teubner. Pathfinder: Xquery—the relational

way. In Proceedings of the 31st international conference on Very large

data bases, VLDB ’05, pages 1322–1325. VLDB Endowment, 2005.

[12] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan

Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast XQuery Pro-

cessor Powered by a Relational Engine. In SIGMOD ’06: Proceedings

of the 2006 ACM SIGMOD international conference on Management

of data, pages 479–490, New York, NY, USA, 2006. ACM.

[13] Matthias Brantner, Sven Helmer, Carl-Christian Kanne, and Guido

Moerkotte. Full-fledged algebraic xpath processing in natix. In ICDE,

pages 705–716, 2005.

[14] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig

Joins: Optimal XML Pattern Matching. In SIGMOD ’02: Proceedings

of the 2002 ACM SIGMOD international conference on Management

of data, pages 310–321, New York, NY, USA, 2002. ACM.

140

[15] Artem Chebotko, Mustafa Atay, Shiyong Lu, and Farshad Fotouhi.

XML subtree reconstruction from relational storage of XML documents.

Data Knowl. Eng., 62(2):199–218, 2007.

[16] Qun Chen, Andrew Lim, and Kian Win Ong. D(k)-index: An Adaptive

Structural Summary for Graph-Structured Data. In Proceedings of the

2003 ACM SIGMOD international conference on Management of data,

SIGMOD ’03, pages 134–144, New York, NY, USA, 2003. ACM.

[17] Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung,

Divyakant Agrawal, and K. Selçuk Candan. Twig2Stack: Bottom-Up

Processing of Generalized-Tree-Pattern Queries Over XML Documents.

In VLDB ’06: Proceedings of the 32nd international conference on Very

large data bases, pages 283–294. VLDB Endowment, 2006.

[18] Yi Chen, Susan B. Davidson, and Yifeng Zheng. BLAS: An efficient

XPath processing system. In SIGMOD ’04: Proceedings of the 2004

ACM SIGMOD international conference on Management of data, pages

47–58, New York, NY, USA, 2004. ACM.

[19] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: An Adap-

tive Path Index for XML Data. In Proceedings of the 2002 ACM SIG-

MOD international conference on Management of data, SIGMOD ’02,

pages 121–132, New York, NY, USA, 2002. ACM.

[20] Michael Coles. Pro SQL Server 2008 XML. Apress, 2008.

[21] Computer Science Bibliography. Online Resource. http://dblp.uni-

trier.de.

[22] P. Dietz and D. Sleator. Two Algorithms for Maintaining Order in a

List. In STOC ’87: Proceedings of the nineteenth annual ACM sym-

posium on Theory of computing, pages 365–372, New York, NY, USA,

1987. ACM.

141

[23] Andrey Fomichev, Maxim Grinev, and Sergei D. Kuznetsov. Sedna: A

Native XML DBMS. In SOFSEM, pages 272–281, 2006.

[24] Haris Georgiadis and Vasilis Vassalos. Improving the Efficiency of

XPath Execution on Relational Systems. In EDBT, pages 570–587,

2006.

[25] Haris Georgiadis and Vasilis Vassalos. XPath on Steroids: Exploiting

Relational Engines for XPath Performance. In SIGMOD ’07: Proceed-

ings of the 2007 ACM SIGMOD international conference on Manage-

ment of data, pages 317–328, New York, NY, USA, 2007. ACM.

[26] Mark Roantree Gerard Marks and John Murphy. Classifi-

cation of Index Partitions. Technical report, Dublin City

University, 2010. http://www.computing.dcu.ie/[insert tilde

character]isg/publications/ISG-10-03.pdf.

[27] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query For-

mulation and Optimization in Semistructured Databases. In Matthias

Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky,

Pericles Loucopoulos, and Manfred A. Jeusfeld, editors, VLDB’97, Pro-

ceedings of 23rd International Conference on Very Large Data Bases,

August 25-29, 1997, Athens, Greece, pages 436–445. Morgan Kauf-

mann, 1997.

[28] Gang Gou and Rada Chirkova. Efficiently Querying Large XML

Data Repositories: A Survey. IEEE Trans. on Knowl. and Data Eng

(TKDE)., 19(10):1381–1403, 2007.

[29] Torsten Grust. Accelerating XPath Location Steps. In SIGMOD ’02:

Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, pages 109–120, New York, NY, USA, 2002. ACM.

142

[30] Torsten Grust, Maurice Van Keulen, and Jens Teubner. Accelerating

xpath evaluation in any rdbms. ACM Trans. Database Syst., 29(1):91–

131, 2004.

[31] Torsten Grust, Jan Rittinger, and Jens Teubner. Why off-the-shelf

RDBMSs are better at XPath than you might expect. In Proceedings

of the 2007 ACM SIGMOD international conference on Management

of data, pages 949–958, New York, NY, USA, 2007. ACM.

[32] Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase Join:

Teach a Relational DBMS to Watch Its (axis) Steps. In VLDB ’2003:

Proceedings of the 29th international conference on Very large data

bases, pages 524–535. VLDB Endowment, 2003.

[33] H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan,

A. Nierman, S. Paparizos, J.M. Patel, D. Srivastava, N. Wiwatwat-

tana, Y. Wu, and C. Yu. TIMBER: A Native XML Database. The

VLDB Journal, 11:274–291, 2002. 10.1007/s00778-002-0081-x.

[34] Haifeng Jiang, Hongjun Lu, Wei Wang, and Jeffrey Xu Yu. Path Ma-

terialization Revisited: An Efficient Storage Model for XML Data. In

Proceedings of the 13th Australasian database conference, pages 85–94,

Darlinghurst, Australia, 2002. ACM.

[35] Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, and Henry F

Korth. Covering Indexes for Branching Path Queries. In SIGMOD

’02: Proceedings of the 2002 ACM SIGMOD international conference

on Management of data, pages 133–144, New York, NY, USA, 2002.

ACM.

[36] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, and Ehud Gudes.

Exploiting Local Similarity for Indexing Paths in Graph-Structured

Data. In In ICDE, pages 129–140, 2002.

143

[37] Jiaheng Lu, Ting Chen, and Tok Wang Ling. Efficient Processing of

XML Twig Patterns with Parent Child Edges: A Look-ahead Approach.

In CIKM ’04: Proceedings of the thirteenth ACM international confer-

ence on Information and knowledge management, pages 533–542, New

York, NY, USA, 2004. ACM.

[38] Jiaheng Lu, Ting Chen, and Tok Wang Ling. TJFast: Effective Pro-

cessing of XML Twig Pattern Matching. In WWW ’05: Special interest

tracks and posters of the 14th international conference on World Wide

Web, pages 1118–1119, New York, NY, USA, 2005. ACM.

[39] Olli Luoma. Indexing xml data with a schema graph. In Databases and

Applications, pages 274–279, 2004.

[40] Olli Luoma. Modeling nested relationships in xml documents using

relational databases. In SOFSEM, pages 259–268, 2005.

[41] Olli Luoma. Supporting xpath axes with relational databases using a

proxy index. In XSym, pages 99–113, 2005.

[42] Olli Luoma. Xeek: An efficient method for supporting xpath evaluation

with relational databases. In ADBIS Research Communications, 2006.

[43] Olli Luoma. Efficient Queries on XML Data through Partitioning. In

WEBIST (Selected Papers), pages 98–108, 2007.

[44] Stefan Manegold. An empirical evaluation of xquery processors. Inf.

Syst., 33:203–220, April 2008.

[45] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich, S. Manegold, N. Poly-

zotis, K. Schnaitter, P. Senellart, S. Zoupanos, and D. Shasha. The

Repeatability Experiment of SIGMOD 2008. SIGMOD Rec., 37:39–45,

March 2008.

144

[46] Gerard Marks and Mark Roantree. Pattern Based Processing of XPath

Queries. In IDEAS ’08: Proceedings of the 2008 international sym-

posium on Database engineering & applications, pages 179–188, New

York, NY, USA, 2008. ACM.

[47] Gerard Marks and Mark Roantree. Metamodel-Based Optimisation of

XPath Queries. In BNCOD, 2009.

[48] Gerard Marks and Mark Roantree. Classification of Index Partitions to

boost XML Query Performance. In 29th International Conference on

Conceptual Modeling Vancouver, BC, Canada, 2010.

[49] Gerard Marks, Mark Roantree, and Dominick Smyth. Optimising

Queries for Web Generated Sensor Data. In The 22nd Australasian

Database Conference, Perth, Australia, 2011, 2011. To Appear.

[50] Dónall McCann, Mark Roantree, Niall Moyna, and Michael Whelan.

Synchronizing sensed data in team sports. ERCIM News, 2009(76),

2009.

[51] W Meier. Index-driven XQuery Processing in the eXist XML Database.

In XML Prague, (2006).

[52] Tova Milo and Dan Suciu. Index Structures for Path Expressions. In

ICDT ’99: Proceedings of the 7th International Conference on Database

Theory, pages 277–295, London, UK, 1999. Springer-Verlag.

[53] Matthias Nicola. Lessons Learned from DB2 pureXML Applications:

A Practitioner’s Perspective. In XSym, pages 88–102, 2010.

[54] Matthias Nicola, Irina Kogan, and Berni Schiefer. An XML Transaction

Processing Benchmark. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, SIGMOD ’07, pages

937–948, New York, NY, USA, 2007. ACM.

145

[55] Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon

Schaller, and Nigel Westbury. ORDPATHs: Insert-Friendly XML Node

Labels. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD inter-

national conference on Management of data, pages 903–908, New York,

NY, USA, 2004. ACM.

[56] Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo Giak-

oumakis, and Vasili Zolotov. Indexing xml data stored in a relational

database. In VLDB ’04: Proceedings of the Thirtieth international con-

ference on Very large data bases, pages 1146–1157. VLDB Endowment,

2004.

[57] Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo Giak-

oumakis, and Vasili Zolotov. Indexing XML data stored in a relational

database. In VLDB ’04: Proceedings of the Thirtieth international con-

ference on Very large data bases, pages 1146–1157. VLDB Endowment,

2004.

[58] Protein Sequence Database. Online Resource .

http://www.cs.washington.edu/research/xmldatasets/.

[59] Lu Qin, Jeffrey Xu Yu, and Bolin Ding. TwigList: Make Twig Pattern

Matching Fast. In DASFAA, pages 850–862, 2007.

[60] Mark Roantree, Colm Noonan, and John Murphy. Specifying and Op-

timising XML Views. In Richard Cooper and Jessie Kennedy, editors,

Data Management. Data, Data Everywhere, volume 4587 of Lecture

Notes in Computer Science, pages 138–146. Springer Berlin / Heidel-

berg, 2007.

[61] Mark Roantree and Mikko Sallinen. Introduction - The Sensor Web -

Bridging the Physical-Digital Divide. ERCIM News, 2009(76), 2009.

146

[62] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He,

David J. DeWitt, and Jeffrey F. Naughton. Relational Databases

for Querying XML Documents: Limitations and Opportunities. In

VLDB’99, Proceedings of 25th International Conference on Very Large

Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages

302–314. Morgan Kaufmann, 1999.

[63] J.X. Wong K.-F. Li J. Tang, N. Yu. Fast XML Structural Join Algo-

rithms by Partitioning. Journal of Research and Practice in Informa-

tion Technology, 40:33–54, 2008.

[64] Jens Teubner. The Relational XQuery Puzzle: A Look-Back on the

Pieces Found So Far. Computer Science - R&D, 24(1-2):37–49, 2009.

[65] Wei Wang, Haifeng Jiang, Hongzhi Wang, Xuemin Lin, Hongjun Lu,

and Jianzhong Li. Efficient Processing of XML Path Queries Using

the Disk-Based F&B Index. In VLDB ’05: Proceedings of the 31st in-

ternational conference on Very large data bases, pages 145–156. VLDB

Endowment, 2005.

[66] XML Path Language 2.0. Online Resource .

http://www.w3.org/TR/xpath20.

[67] XPathMark Benchmark. Online Resource.

http://sole.dimi.uniud.it/ massimo.franceschet/xpathmark/.

[68] XQuery 1.0 and XPath 2.0 Data Model (XDM). Online Resource .

http://www.w3.org/TR/xpath-datamodel.

[69] Masatoshi Yoshikawa and Toshiyuki Amagasa. XRel: A Path-Based

Approach to Storage and Retrieval of XML Documents Using Rela-

tional Databases. ACM Trans. Internet Technol., 1(1):110–141, 2001.

147

[70] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy

Lohman. On Supporting Containment Queries in Relational Database

Management Systems. In SIGMOD ’01: Proceedings of the 2001 ACM

SIGMOD international conference on Management of data, pages 425–

436, New York, NY, USA, 2001. ACM.

148

