33 research outputs found

    Minimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs

    Full text link
    For digraphs GG and HH, a homomorphism of GG to HH is a mapping $f:\ V(G)\dom V(H)suchthat such that uv\in A(G)implies implies f(u)f(v)\in A(H).If,moreover,eachvertex. If, moreover, each vertex u \in V(G)isassociatedwithcosts is associated with costs c_i(u), i \in V(H),thenthecostofahomomorphism, then the cost of a homomorphism fis is \sum_{u\in V(G)}c_{f(u)}(u).Foreachfixeddigraph. For each fixed digraph H,theminimumcosthomomorphismproblemfor, the minimum cost homomorphism problem for H,denotedMinHOM(, denoted MinHOM(H),canbeformulatedasfollows:Givenaninputdigraph), can be formulated as follows: Given an input digraph G,togetherwithcosts, together with costs c_i(u),, u\in V(G),, i\in V(H),decidewhetherthereexistsahomomorphismof, decide whether there exists a homomorphism of Gto to H$ and, if one exists, to find one of minimum cost. Minimum cost homomorphism problems encompass (or are related to) many well studied optimization problems such as the minimum cost chromatic partition and repair analysis problems. We focus on the minimum cost homomorphism problem for locally semicomplete digraphs and quasi-transitive digraphs which are two well-known generalizations of tournaments. Using graph-theoretic characterization results for the two digraph classes, we obtain a full dichotomy classification of the complexity of minimum cost homomorphism problems for both classes

    Minimum Cost Homomorphisms to Reflexive Digraphs

    Full text link
    For digraphs GG and HH, a homomorphism of GG to HH is a mapping $f:\ V(G)\dom V(H)suchthat such that uv\in A(G)implies implies f(u)f(v)\in A(H).Ifmoreovereachvertex. If moreover each vertex u \in V(G)isassociatedwithcosts is associated with costs c_i(u), i \in V(H),thenthecostofahomomorphism, then the cost of a homomorphism fis is \sum_{u\in V(G)}c_{f(u)}(u).Foreachfixeddigraph. For each fixed digraph H, the {\em minimum cost homomorphism problem} for H,denotedMinHOM(, denoted MinHOM(H),isthefollowingproblem.Givenaninputdigraph), is the following problem. Given an input digraph G,togetherwithcosts, together with costs c_i(u),, u\in V(G),, i\in V(H),andaninteger, and an integer k,decideif, decide if Gadmitsahomomorphismto admits a homomorphism to Hofcostnotexceeding of cost not exceeding k. We focus on the minimum cost homomorphism problem for {\em reflexive} digraphs H(everyvertexof (every vertex of Hhasaloop).ItisknownthattheproblemMinHOM( has a loop). It is known that the problem MinHOM(H)ispolynomialtimesolvableifthedigraph) is polynomial time solvable if the digraph H has a {\em Min-Max ordering}, i.e., if its vertices can be linearly ordered by <sothat so that i<j, s<rand and ir, js \in A(H)implythat imply that is \in A(H)and and jr \in A(H).WegiveaforbiddeninducedsubgraphcharacterizationofreflexivedigraphswithaMin−Maxordering;ourcharacterizationimpliesapolynomialtimetestfortheexistenceofaMin−Maxordering.Usingthischaracterization,weshowthatforareflexivedigraph. We give a forbidden induced subgraph characterization of reflexive digraphs with a Min-Max ordering; our characterization implies a polynomial time test for the existence of a Min-Max ordering. Using this characterization, we show that for a reflexive digraph H$ which does not admit a Min-Max ordering, the minimum cost homomorphism problem is NP-complete. Thus we obtain a full dichotomy classification of the complexity of minimum cost homomorphism problems for reflexive digraphs

    Algebra and the Complexity of Digraph CSPs: a Survey

    Get PDF
    We present a brief survey of some of the key results on the interplay between algebraic and graph-theoretic methods in the study of the complexity of digraph-based constraint satisfaction problems

    On Constraint Satisfaction Problems below P

    Get PDF
    Symmetric Datalog, a fragment of the logic programming language Datalog, is conjectured to capture all constraint satisfaction problems (CSP) in L. Therefore developing tools that help us understand whether or not a CSP can be defined in symmetric Datalog is an important task. It is widely known that a CSP is definable in Datalog and linear Datalog iff that CSP has bounded treewidth and bounded pathwidth duality, respectively. In the case of symmetric Datalog, Bulatov, Krokhin and Larose ask for such a duality [2008]. We provide two such dualities, and give applications. In particular, we give a short and simple new proof of the result of Dalmau and Larose that "Maltsev + Datalog -> symmetric Datalog" [2008]. In the second part of the paper, we provide some evidence for the conjecture of Dalmau [2002] that every CSP in NL is definable in linear Datalog. Our results also show that a wide class of CSPs ---CSPs which do not have bounded pathwidth duality (e.g. the P-complete Horn-3Sat problem)--- cannot be defined by any polynomial size family of monotone read-once nondeterministic branching programs. We consider the following restrictions of the previous models: read-once linDat(suc) (1-linDat(suc)), and monotone readonce nondeterministic branching programs (mnBP1). Although restricted, these models can still define NL-complete problems such as directed st-Connectivity, and also nontrivial problems in NL which are not definable in linear Datalog. We show that any CSP definable by a 1-linDat(suc) program or by a poly-size family of mnBP1s can also be defined by a linear Datalog program. It also follows that a wide class of CSPs ---CSPs which do not have bounded pathwidth duality (e.g. the P-complete Horn-3Sat problem)--- cannot be defined by any 1-linDat(suc) program or by any poly-size family of mnBP1s

    Minimum Cost Homomorphism Dichotomy for Oriented Cycles

    Full text link

    Combinatorics

    Get PDF
    [no abstract available
    corecore