62 research outputs found

    Classification of flag-transitive Steiner quadruple systems

    Full text link
    A Steiner quadruple system of order v is a 3-(v,4,1) design, and will be denoted SQS(v). Using the classification of finite 2-transitive permutation groups all SQS(v) with a flag-transitive automorphism group are completely classified, thus solving the "still open and longstanding problem of classifying all flag-transitive 3-(v,k,1) designs" for the smallest value of k. Moreover, a generalization of a result of H. Lueneburg (1965, Math. Z. 89, 82-90) is achieved.Comment: 11 page

    Almost simple groups with socle Ln(q)L_n(q) acting on Steiner quadruple systems

    Get PDF
    Let N=Ln(q)N=L_n(q), {n2n \geq 2}, qq a prime power, be a projective linear simple group. We classify all Steiner quadruple systems admitting a group GG with N \leq G \leq \Aut(N). In particular, we show that GG cannot act as a group of automorphisms on any Steiner quadruple system for n>2n>2.Comment: 5 pages; to appear in: "Journal of Combinatorial Theory, Series A

    The classification of flag-transitive Steiner 3-designs

    Full text link
    We solve the long-standing open problem of classifying all 3-(v,k,1) designs with a flag-transitive group of automorphisms (cf. A. Delandtsheer, Geom. Dedicata 41 (1992), p. 147; and in: "Handbook of Incidence Geometry", ed. by F. Buekenhout, Elsevier Science, Amsterdam, 1995, p. 273; but presumably dating back to 1965). Our result relies on the classification of the finite 2-transitive permutation groups.Comment: 27 pages; to appear in the journal "Advances in Geometry

    A Census Of Highly Symmetric Combinatorial Designs

    Full text link
    As a consequence of the classification of the finite simple groups, it has been possible in recent years to characterize Steiner t-designs, that is t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong symmetry properties. However, despite the finite simple group classification, for Steiner t-designs with t > 2 most of these characterizations have remained longstanding challenging problems. Especially, the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of particular interest and has been open for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to 1965). The present paper continues the author's work [20, 21, 22] of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a complete classification of all flag-transitive Steiner 5-designs and prove furthermore that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the classification of the finite 3-homogeneous permutation groups. Moreover, we survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Steiner t-designs for large t

    Full text link
    One of the most central and long-standing open questions in combinatorial design theory concerns the existence of Steiner t-designs for large values of t. Although in his classical 1987 paper, L. Teirlinck has shown that non-trivial t-designs exist for all values of t, no non-trivial Steiner t-design with t > 5 has been constructed until now. Understandingly, the case t = 6 has received considerable attention. There has been recent progress concerning the existence of highly symmetric Steiner 6-designs: It is shown in [M. Huber, J. Algebr. Comb. 26 (2007), pp. 453-476] that no non-trivial flag-transitive Steiner 6-design can exist. In this paper, we announce that essentially also no block-transitive Steiner 6-design can exist.Comment: 9 pages; to appear in: Mathematical Methods in Computer Science 2008, ed. by J.Calmet, W.Geiselmann, J.Mueller-Quade, Springer Lecture Notes in Computer Scienc

    On the existence of block-transitive combinatorial designs

    Full text link
    Block-transitive Steiner tt-designs form a central part of the study of highly symmetric combinatorial configurations at the interface of several disciplines, including group theory, geometry, combinatorics, coding and information theory, and cryptography. The main result of the paper settles an important open question: There exist no non-trivial examples with t=7t=7 (or larger). The proof is based on the classification of the finite 3-homogeneous permutation groups, itself relying on the finite simple group classification.Comment: 9 pages; to appear in "Discrete Mathematics and Theoretical Computer Science (DMTCS)

    Block-Transitive Designs in Affine Spaces

    Full text link
    This paper deals with block-transitive tt-(v,k,λ)(v,k,\lambda) designs in affine spaces for large tt, with a focus on the important index λ=1\lambda=1 case. We prove that there are no non-trivial 5-(v,k,1)(v,k,1) designs admitting a block-transitive group of automorphisms that is of affine type. Moreover, we show that the corresponding non-existence result holds for 4-(v,k,1)(v,k,1) designs, except possibly when the group is one-dimensional affine. Our approach involves a consideration of the finite 2-homogeneous affine permutation groups.Comment: 10 pages; to appear in: "Designs, Codes and Cryptography

    The Classification of Flag-transitive Steiner 4-Designs

    Full text link
    Among the properties of homogeneity of incidence structures flag-transitivity obviously is a particularly important and natural one. Consequently, in the last decades also flag-transitive Steiner tdesigns (i.e. flag-transitive t-(v,k,1) designs) have been investigated, whereas only by the use of the classification of the finite simple groups has it been possible in recent years to essentially characterize all flag-transitive Steiner 2-designs. However, despite the finite simple group classification, for Steiner t-designs with parameters t > 2 such characterizations have remained challenging open problems for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to around 1965). The object of the present paper is to give a complete classification of all flag-transitive Steiner 4-designs. Our result relies on the classification of the finite doubly transitive permutation groups and is a continuation of the author's work [20, 21] on the classification of all flag-transitive Steiner 3-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics

    Computational complexity of reconstruction and isomorphism testing for designs and line graphs

    Get PDF
    Graphs with high symmetry or regularity are the main source for experimentally hard instances of the notoriously difficult graph isomorphism problem. In this paper, we study the computational complexity of isomorphism testing for line graphs of tt-(v,k,λ)(v,k,\lambda) designs. For this class of highly regular graphs, we obtain a worst-case running time of O(vlogv+O(1))O(v^{\log v + O(1)}) for bounded parameters t,k,λt,k,\lambda. In a first step, our approach makes use of the Babai--Luks algorithm to compute canonical forms of tt-designs. In a second step, we show that tt-designs can be reconstructed from their line graphs in polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound structural knowledge in design theory is required. Our results extend earlier complexity results about isomorphism testing of graphs generated from Steiner triple systems and block designs.Comment: 12 pages; to appear in: "Journal of Combinatorial Theory, Series A
    corecore