3 research outputs found

    Mental State Prediction Using Machine Learning and EEG Signal

    Get PDF
    One of the most exciting areas of computer science right now is brain-computer interface (BCI) research. A conduit for data flow between both the brain as well as an electronic device is the brain-computer interface (BCI). Researchers in several disciplines have benefited from the advancements made possible by brain-computer interfaces. Primary fields of study include healthcare and neuroergonomics. Brain signals could be used in a variety of ways to improve healthcare at every stage, from diagnosis to rehabilitation to eventual restoration. In this research, we demonstrate how to classify EEG signals of brain waves using machine learning algorithms for predicting mental health states. The XGBoost algorithm's results have an accuracy of 99.62%, which is higher than that of any other study of its kind and the best result to date for diagnosing people's mental states from their EEG signals. This discovery will aid in taking efforts [1] to predict mental state using EEG signals to the next level

    Dynamic Fusion of Electromyographic and Electroencephalographic Data towards Use in Robotic Prosthesis Control

    Get PDF
    We demonstrate improved performance in the classification of bioelectric data for use in systems such as robotic prosthesis control, by data fusion using low-cost electromyography (EMG) and electroencephalography (EEG) devices. Prosthetic limbs are typically controlled through EMG, and whilst there is a wealth of research into the use of EEG as part of a brain-computer interface (BCI) the cost of EEG equipment commonly prevents this approach from being adopted outside the lab. This study demonstrates as a proof-of-concept that multimodal classification can be achieved by using low-cost EMG and EEG devices in tandem, with statistical decision-level fusion, to a high degree of accuracy. We present multiple fusion methods, including those based on Jensen-Shannon divergence which had not previously been applied to this problem. We report accuracies of up to 99% when merging both signal modalities, improving on the best-case single-mode classification. We hence demonstrate the strengths of combining EMG and EEG in a multimodal classification system that could in future be leveraged as an alternative control mechanism for robotic prostheses
    corecore