4 research outputs found

    Who is the director of this movie? Automatic style recognition based on shot features

    Get PDF
    We show how low-level formal features, such as shot duration, meant as length of camera takes, and shot scale, i.e. the distance between the camera and the subject, are distinctive of a director's style in art movies. So far such features were thought of not having enough varieties to become distinctive of an author. However our investigation on the full filmographies of six different authors (Scorsese, Godard, Tarr, Fellini, Antonioni, and Bergman) for a total number of 120 movies analysed second by second, confirms that these shot-related features do not appear as random patterns in movies from the same director. For feature extraction we adopt methods based on both conventional and deep learning techniques. Our findings suggest that feature sequential patterns, i.e. how features evolve in time, are at least as important as the related feature distributions. To the best of our knowledge this is the first study dealing with automatic attribution of movie authorship, which opens up interesting lines of cross-disciplinary research on the impact of style on the aesthetic and emotional effects on the viewers

    Classification of Cinematographic Shots Using Lie Algebra and its Application to Complex Event Recognition

    No full text
    In this paper, we propose a discriminative representation of a video shot based on its camera motion and demonstrate how the representation can be used for high level multimedia tasks like complex event recognition. In our technique, we assume that a homography exists between a pair of subsequent frames in a given shot. Using purely image-based methods, we compute homography parameters that serve as coarse indicators of the ambient camera motion. Next, using Lie algebra, we map the homography matrices to an intermediate vector space that preserves the intrinsic geometric structure of the transformation. The mappings are stacked temporally to generate vector time-series per shot. To extract meaningful features from time-series, we propose an efficient linear dynamical system based technique. The extracted temporal features are further used to train linear SVMs as classifiers for a particular shot class. In addition to demonstrating the efficacy of our method on a novel dataset, we extend its applicability to recognize complex events in large scale videos under unconstrained scenarios. Our empirical evaluations on eight cinematographic shot classes show that our technique performs close to approaches that involve extraction of 3-D trajectories using computationally prohibitive structure from motion techniques

    Classification Of Cinematographic Shots Using Lie Algebra And Its Application To Complex Event Recognition

    No full text
    In this paper, we propose a discriminative representation of a video shot based on its camera motion and demonstrate how the representation can be used for high level multimedia tasks like complex event recognition. In our technique, we assume that a homography exists between a pair of subsequent frames in a given shot. Using purely image-based methods, we compute homography parameters that serve as coarse indicators of the ambient camera motion. Next, using Lie algebra, we map the homography matrices to an intermediate vector space that preserves the intrinsic geometric structure of the transformation. The mappings are stacked temporally to generate vector time-series per shot. To extract meaningful features from time-series, we propose an efficient linear dynamical system based technique. The extracted temporal features are further used to train linear SVMs as classifiers for a particular shot class. In addition to demonstrating the efficacy of our method on a novel dataset, we extend its applicability to recognize complex events in large scale videos under unconstrained scenarios. Our empirical evaluations on eight cinematographic shot classes show that our technique performs close to approaches that involve extraction of 3-D trajectories using computationally prohibitive structure from motion techniques. © 2014 IEEE
    corecore