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FEATURE ARTICLE: AUTOMATIC ATTRIBUTION OF MOVIES TO DIRECTORS  

Who is the film’s director? 

Authorship recognition 

based on shot features 

We show how to perform automatic attribution of 

movie’s authorship by the statistical analysis of two 

simple formal features: the length of camera takes 

(shot duration), and the distance between the 

camera and the subject (shot scale). Experiments 

include 143 films by 8 distinguishable directors 

over 70 years of historiography of author cinema. 

The impression that film authors have very different and 

recognizable styles is very common: the omnipresence 

of one-point perspective scenes in Kubrick’s production, Almodovar’s obsession for red objects, 

Tarantino’s shots taken from inside car trunks, etc.. 

However, looking for features which are distinctive of a single director, and remain invariants in 

all author’s movies, is a hard task. Films from the same director can be in fact very different 

from both technical and stylistic point of view, taking into account that an author’s filmography 

may span for more than half a century (such as Bergman’s). Other reasons of stylistic changes 

within the production of a single director are, for example, the innovation in individual style, or 

differences in narrative or genre: think for example how different is Scorsese's Hugo from 2011 - 

an historical adventure drama film entirely shot in 3D – from his other work The Wolf of Wall 

Street - a biographical black comedy crime film - released just two years later.  

Due to these variations, a fascinating research question is whether it is possible to automatically 

isolate in movies those elements which are distinctive of a single author and remain constant 

through time and styles. Aiming to characterize these individual characteristics of a director, we 

should first analyze those formal features which appear both conspicuously and frequently, and 

are under her/his direct control,1 such as: shot duration, i.e., the length of camera takes; shot 

scale, i.e., the distance from the camera to the subject; shot transitions (cut, fades, wipes); cam-

era movement (pan, tilt, zooms); camera angle (high-angle, low-angle, bird’s eye, etc.).  

These formal features were thought of in the past as not having enough variety to become dis-

tinctive of a director. However, recent cinema studies revealed the presence of systematic pat-
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terns of one of these formal features (i.e., the shot scale) in the production of Michelangelo An-

tonioni.2-3  

Our hypothesis is that the statistical distribution and the temporal pattern of a basic set of fre-

quent formal features, namely shot duration and shot scale, might act as a fingerprint of a specif-

ic director, which enables to track the author’s production in time, despite individual style 

variability. The research questions we tackle are therefore the following:  

Q1. Are shot duration and shot scale a sufficient feature set to recognize a director?  

Q2. Which is the most distinctive feature for each director? 

Q3. Is it possible to determine the movie author using automatically computed shot fea-

tures? 

VISUAL FEATURES AND MOVIE AESTHETICS 

As compared to other art forms, research of quantitative analysis of recurrent formal features in 

film studies has not developed much, probably due to the medium’s increased sensory complexi-

ty. Back in the 1970s Salt started to manually annotate the presence of formal features,1 but it is 

only with the advent of automatic methods that researchers started to systematically investigate 

the visual and audio dimensions designed by film directors to emotionally impact the audience.4 

With respect to the visual sphere, different studies focused on conventional MPEG7 color fea-

tures which include structure, layout, dominant and scalable color. Researchers discovered that 

saturation and color difference are crucial for mood elicitation in subjects, and as well as color 

energy and lighting keys, which describe two aesthetic techniques often employed in films: chia-

roscuro (i.e., high contrast between light and dark areas), and flat lighting (i.e., low contrast). 

Also, light spectral composition used during shooting, namely illuminant, is also important for 

emotional connotation. Regarding motion dynamics, several algorithms unraveled camera mo-

tion parameters to assess pan, tilt, zoom, roll, and horizontal/vertical tracking. This is helpful to 

distinguish cinematographic shots into different classes such as Aerial, Bird-eye, Crane, Dolly, 

Establishing, Pan, Tilt, and Zoom. Other motion features such as optical flow, motion maps, and 

MPEG-7 motion activity, keep into account both global motion and its spatial distribution, with-

out distinguishing between camera and object motion. Motion computed in terms of structural 

tensor, is also used to evaluate the visual disturbance of scenes, with higher values for action 

films and less expected for dramatic/romantic ones.5  

Other variables under director’s control are depth of field, shot length, and shot scale. Depth of 

field is the range of acceptable sharpness when a lens focuses on a subject at a distance, and es-

timating it from single images is still a challenging problem. Shot duration and shot scale are 

also important formal aspects. Shot boundary detection has been a fundamental step of content 

analysis since early years of computer vision, and it is well known how it influences audience 

perception: longer durations relax connotation, whereas shorter shots contribute to a faster pace.6 

Varying camera distance (i.e., shot scale) is a common directing rule used to adjust the relative 

emphasis between the filmed subject and the surrounding scene.7  

Previously mentioned features are good indicators of different corpora of films such as drama, 

comedy, noir, etc.5 However, to the best of our knowledge, no previous research tackled the 

problem of automatic attribution of movie authorship. The only attempt in visual arts to recog-

nize authorship has been done on paintings by training a neural network for attributing previous-

ly unseen painting to the correct author.8 Automatic recognition of visual features in fine arts 

appears also in another work by Gatys et al.,9 who propose a method to separate (and recombine) 

content and style, which might be an authorship indicator. 

MOVIES AND GROUND-TRUTH DATA 

Our dataset includes the complete filmography by 8 different directors whose styles are consen-

sually considered highly unique and distinguishable in film historiography of author cinema: Mi-

chelangelo Antonioni, Ingmar Bergman, Robert Bresson, Federico Fellini, Jean-Luc Godard, 
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Martin Scorsese, Quentin Tarantino, and Bèla Tarr, for a total number of 143 movies directed 

over 70 years (from 1943 to 2013). The challenges posed by such artistic video content lie in the 

variety of experimental aesthetic situations, the richness of the scene composition, and the pres-

ence of unconventional and symbolic content. The number of representative authors is limited, 

but good enough to demonstrate the feasibility of authorship recognition. The full list of movies, 

approximately half black-and-white (b&w), half color, is given on the project website.10  

Ground truth values for shot scale (GT-scale) have been manually annotated, second by second, 

by a team of three cinema experts on the full filmographies of 6 directors (Antonioni, Bergman, 

Fellini, Godard, Scorsese, and Tarr) for a total of 120 movies. On a subset of 77 movies by the 

same 6 directors (movies indicated in the last column with their Cinemetrics ID in the list on the 

project website),10 the GT on shot duration (GT-duration) is also available by Cinemetrics,11 an 

online application populated by film scholars. For films by Bresson and Tarantino, which ac-

count for additional 23 movies, no GT shot features are considered, as they serve as pure testing 

movies. 

FEATURE SETS 

Shot duration features 

A shot is a series of consecutive frames from a camera take showing a continuous action in time 

and space. An accurate use of shot duration, and its coupling with motion, allow the filmmaker 

to control the viewers’ eye movements and modulate their attention.6,12  

We categorize shots into 7 classes according to their duration td (s): Very Short (VS), td ∈ [0, 2); 

Short (S), td ∈ [2, 4.5); Short Medium (SM), td ∈ [4.5, 7); Medium (M), td ∈ [7, 10); Medium 

Long (ML), td ∈ [10, 22.5); Long (L), td ∈ [22.5, 40); and Very Long (VL), td ∈ [40, ∞). The 

subdivision is obtained by fitting a log-normal distribution on GT-duration data, thus achieving a 

finer granularity in proximity of the mode, also considering that the average shot duration for a 

sample of movies from 1960 to 1985 is 7.0 s, while in contemporary movies decreases to 4.3 s.6  

Shot duration is a 56-dimensional feature vector obtained by concatenating: 

• the shot Duration Distribution (DDistr) over the seven classes (7-dimensions); 

• the shot Duration Transition matrix (DTrans), which describes the probability transition 

in time of going from any class to any other class (49-dimensions).  

Shot scale features 

Shot scale i.e., the relative distance of the camera from the main filmed object, affects the emo-

tional involvement of the audience and the identification process of viewers with the characters.7
 

In cinema studies it is usually mapped into 7 categories: Extreme Close-up (ECU), Close-up 

(CU), Medium Close-up (MCU), Medium shot (MS), Medium Long shot (MLS), Long shot (LS), 

Extreme Long shot (ELS). In practical cases, these are further reduced to 3 families: Close shots 

(CS), Medium shots (MS), and Long shots (LS), as in Figure 1. Close shots focus on a small area 

of the scene, such as a face, in such a detail that it almost fills the screen, revealing important 

details of the plot or character’s feelings. In Medium shots actors and the setting share roughly 

equal space. Long shots show a broad view of the surroundings around the subject.  

Shot scale is a 12-dimensional feature vector obtained by concatenating:  

• the shot Scale Distribution (SDistr) over three classes CS, MS, and LS (3-dimensions);  

• the shot Scale Transition matrix (STrans), which describes the probability transition in 

time of going from any class to another class (9-dimensions).  
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Shot scale feature vectors are built on a second-by-second basis since an individual camera take 

may contain several scales whenever the camera or the objects in the image are moving. Special 

cases when more shot scales are found in the same frame are not considered in this analysis.  

 

Figure 1. Shot scale classes ranging from Extreme Long Shot (ELS) to Extreme Close-up (ECU), 
and the three main classes (LS, MS, CS) used in this work (in blue). From Hugo (Scorsese, 2011).  

DATA VISUALIZATION 

To preliminarily assess the feasibility of automatic authorship recognition, we display and ana-

lyze the GT feature data. 

Visualizing shot features 

The distribution of shot duration (DDistr) is shown in Figure 2(a-top) for each of the 6 directors 

for whom we have GT-duration data (77 movies). Well known Tarr’s preference for VL shots is 

evident. Antonioni and Godard share a tendency to use more ML, L, and VL with respect to Fel-

lini and Bergman, who present similar distributions. Scorsese reveals little use of LS, especially 

in his recent production. 

The distribution of shot scale (SDistr) for the same 6 directors (on 120 GT-scale annotated mov-

ies) is shown in Figure 2(b-top). Despite small individual differences, such as Antonioni’s pref-

erence for MS or Scorsese’s low standard deviation on scale usage, no director’s specific 

patterns are clearly visible, except the dominance of Close shots on other scales. 

Figure 2(a-bottom) represents the transitions between shot duration classes (DTrans) for each of 

the same 6 directors, on their 77 movies annotated with GT-duration, by means of chord dia-

grams. Classes are arranged radially and the transition probabilities between different classes are 

represented by connecting arcs. From an observation, it is evident that the probability to move to 

a shot with different duration is quite high, but often on contiguous classes, meaning that the 

scene slightly speeds up or decelerates. Since diagrams look very different from author to author, 

this might be a highly distinctive author feature.  

Figure 2(b-bottom) represents the information related to transitions between shot scales (STrans) 

on the 120 movies annotated with GT-scale for the same 6 directors by means of chord diagrams. 

Since scale is annotated each second, transition probabilities to different scales are pretty small. 

Visualizing authorship 

To confirm our hypothesis about authorship recognition, we first visualize feature data for each 

of the 6 directors on the subset of 77 movies with both GT data (GT-scale and GT-duration). By 

means of t-SNE, a dimensionality reduction technique suited for visualisation of large datasets, 

we build two and three-dimensional maps in which distances between points reflect similarities. 

In a reduced 2D feature space (Figure 2(c)) we observe that movies from different authors cluster 
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together quite well. The ability of the proposed features in separating the 6 authors is better ap-

preciated in the 3-dimensional maps (Figure 2(d) and Figure 2(e)) which represent movies from 

different directors from convenient view angles.
 

 

Figure 2. (a-top) Shot duration distributions (DDistr) for the 6 directors on a total of 77 movies with 
both annotated GT features (with median, std, variance, and outliers). (a-bottom) DTrans on the 
same movie corpus. In the outer ring the distribution among shot duration classes: VS (red), S (light 
green), SM (blue), M (light blue), ML (orange), L (dark green), and VL (violet). (b-top) Shot scale 
distributions (SDistr) for the 6 directors on 120 movies annotated with GT-scale (with median, std, 
variance, and outliers). (b-bottom) STrans on the same movie corpus. In the outer ring the 
distribution among scale classes: CS (red), MS (green), and LS (blue). Transitions between classes 
are represented by the connecting arcs, where the chord widths at the outer ring represent 
transition probabilities. (c) 2D map built with t-SNE on 77 movies annotated with both GT features 
by Godard (red), Scorsese (violet), Tarr (brown), Antonioni (blue), Bergman (orange), and Fellini 
(green). 3D maps showing movie clusters on 3 authors, with same colors as before: (d) Godard, 
Scorsese, and Tarr; (e) Antonioni, Bergman, and Fellini. 
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AUTHOR RECOGNITION: FEASIBLE OR NOT? 

Author recognition from GT feature data 

To answer Q1 (are shot duration and shot scale a sufficient feature set for recognizing a direc-

tor?) we evaluate the performance of different classifiers in attributing movies to the 6 authors 

on the 77 movies with both GT annotated features, by considering all shot features DDistr, 

DTrans, SDistr, and STrans.  

Employing a classical leave-one-out cross-validation i.e., for every author all movies minus one 

are used for training and the leftovers for testing, we extensively test these classifiers: Nearest 

Neighbors (KNN), Linear SVM, RBF-kernel SVM, Random Forest, Multi-layer Perceptron (100 

hidden nodes and 3 layers), AdaBoost, and Naïve Bayes (NB), under several coarse parameteri-

zations. Best three, which are linear SVM, KNN, and NB, are then accurately tuned by means of 

a grid search procedure with cross-validation. The fact that SVM, and even more KNN and NB, 

perform better than other classifiers, is probably due to the relative scarcity of training data. 

Overall best classification results using both GT features are obtained with the Gaussian Naïve 

Bayes algorithm; they are presented for each of the 6 authors in Table 1 (white columns) and by 

the confusion matrix in Figure 5(a) (results in brackets).  

Apart from Fellini and Antonioni which show slightly lower recall, all authors are recognized 

with high accuracy and balanced recall and precision. Obtained results, proving the separability 

properties of the proposed feature set, are an indicator of the feasibility of automatic recognition 

of movie authorship by means of automatically computed shot features.  

Insights on shot features 

We carry out further analysis on single features to better understand their relevance in classifica-

tion, feature correlation, dependency with respect to the year of production, and most distinctive 

feature for each director (Q2).  

To investigate feature classification abilities when taken alone, the obtained accuracy scores re-

veal a superior ability in classification by duration features with respect to scale related ones 

(DDistr=0.701, DTrans=0.636, SDistr=0.272, STrans=0.597).  

Figure 3(a) depicts the correlation matrix between all feature components (arranged in blocks). 

To investigate other possible relations between features and authors, correlations have been 

computed also for accessory features, such as the year of production, the total number of movie 

shots (#Shots), the total duration (#Frames), and the number of scale changes in the movie 

(#SChanges), which we previously investigated as being responsible for triggering audience’s 

emotional involvement.13 From the inspections of Figure 3(a) no other conspicuous correlations 

between feature blocks emerge.  

We have also tried to exploit these accessory features in classification, obtaining no significant 

difference with respect to results in Table 2 (+1% in accuracy). By adding the year of production 

to our feature set, we obtain a slight increase in accuracy of about 2% points.  

Since movies have changed dramatically over the last century, with several reflections on film 

style, especially on the increased shot pace, on motion, and luminance,6 we also perform a tem-

poral analysis on features. If we restrict the analysis to the shot duration of movies with GT data 

in Figure 3(b), Scorsese is the only one who significantly decreases his mean shot duration over 

the years. It is also true that he is the only one (with Tarr, who is obviously an outlier with re-

spect to duration) who lately directed a consistent number of movies. Since there is a natural 

high correlation between the year of production and the author, with a similar classification pro-

cess we also experimentally exclude that the classifier learns the author from the year. 

Finally, to verify if some features are more relevant than others for recognizing an author, we 

train a classifier for each director with the one-against-all approach. For assessing how much a 

certain feature is specific of an author, we exploit the feature importance measure returned by 
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the Random Forest classifier. Figure 3(c) confirms that duration features are in their absolute 

value more important than those related to shot scale. For all directors, transition features have 

higher impact than the related distributions. Accessory features (#Frames, #Shots, and #SChang-

es) are, in absolute terms, of lower importance. In Figure 3(d) importance measures are normal-

ized to the mean across authors, thus highlighting individual differences. Scorsese differs from 

others for the total number of movie shots. Shot scale distribution is the most specific feature for 

Antonioni instead, as expected from previous studies,Q3 while Fellini’s most distinguishing fea-

ture is the transition pattern between shot scales. Bergman and Godard do not present any pecu-

liar feature, and this is probably why their authorships are sometimes confused in classification, 

as shown in Figure 5(a). As expected, Tarr is characterized by his unique use of long takes which 

impacts on the duration distribution.  

 

Figure 3. (a) Correlation matrix between all feature components. (b) Trends of shot duration for the  
6 directors on the 77 movies with both GT data (obtained by Ransac and Theil-Sen methods). (c) 
Importance measure of single features for each of the 6 director on the same corpus, in absolute 
value and (d) normalized to the mean across authors. 

AUTOMATIC SHOT FEATURE ANALYSIS 

After the analysis with GT features, we perform author recognition by means of fully automatic 

procedures. Shot transitions are detected by existing methods, while we use our deep learning 

approach to derive shot scale.14 Eventually we compare performance on author recognition with 

results obtained using GT features.  

Shot duration features 

For segmenting videos into shots we evaluate the algorithm by Apostolidis et al. and the one by 

Adami et al. which has been recently extended to identify cuts.15,16 The first method detects ab-

rupt and gradual transitions based on frame similarity computed by means of both local (SURF) 
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and global (HSV histograms) descriptors, while the second exploits histogram information and 

decision criteria derived from statistical properties of cuts, dissolves, and wipes. To select the 

algorithm, we test both methods on Il Deserto Rosso (Antonioni, 1964), which counts more than 

700 shots. 

Scores are computed with respect to a manually annotated GT at frame level, confirming the ef-

ficiency of both methods (Apostolidis et al.: Pr.=0.935, Rec.=0.910, F1=0.922; Adami et al.: 

Pr.=0.892, Rec.=0.970, F1=0.929). Since the first method is slower than the recent implementa-

tion by Adami et al., named scdetector, which works in real-time, we use the latter for producing 

DDistr and DTrans features on the whole set of 143 movies. We show in Figure 4 the duration 

distributions obtained by scdetector on Le notti di Cabiria (Fellini, 1957) and Gangs of New 

York (Scorsese, 2002) (in red), overlaid to GT ones (in blue).  

 

Figure 4. Automatically computed shot duration distributions (in red) and GT ones (in blue) for (a) 
Le notti di Cabiria (Fellini, 1957), and (b) Gangs of New York (Scorsese, 2002).  

For most movies, automatically derived DDistr show little deviation from the GT distributions, 

with few problems only on Godard’s production. Once computed shot boundaries, DTrans are 

easily derived with no substantial difference with respect to those in Figure 2(a-bottom).  

Shot scale features  

We use a novel approach for shot scale estimation based on deep learning techniques.14 Exploit-

ing the GT-scale dataset using 55 movies for training and the other 65 for testing, we compare 

three Convolutional Neural Networks with increasing capacity (AlexNet, GoogLeNet, and 

VGG16) trained by an extensive hyperparameter selection process.17-18 To counteract possible 

fluctuations of the output, we exploit the temporal correlation of the shot scale by means of a 

smoothing moving median window of 3s. 

Among tested networks, VGG-16 performs best with an overall precision of 94%, recall 94%, 

and accuracy 94% by fine-tuning the whole network. For most movies, automatically derived 

scale distributions by VGG-16 show little deviation from the corresponding GT distributions. 

Once computed the shot scale for each movie, STrans features are easily derived with no sub-

stantial difference with respect to those in Figure 2(b-bottom).  

FULLY AUTOMATIC AUTHOR RECOGNITION 

To answer Q3 (is it possible to robustly determine the authorship of a movie using automatically 

computed shot features?) we repeat the experiments on author attribution with automatically ex-

tracted features.  

Performance on author attribution are first evaluated on the same set of 120 movies by the 6 di-

rectors (55 movies for testing, 65 for training - see the list on the project website -) in order to 
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compare with attribution computed by means of GT features. By employing a leave-one-out 

cross-validation, we compute precision, recall, and accuracy, exploiting the Gaussian Naïve 

Bayes classifier. Results are presented for each author in Table 1 (gray columns) and by the con-

fusion matrix in Figure 5(a) (in brackets results obtained by using GT feature values). Quite sur-

prisingly there is no drop of performance in fully automatic recognition with respect to the 

classification achieved by GT shot features, even though tests are conducted on a different num-

ber of movies (65 instead of 77). This implies that automatically computed features are in gen-

eral robustly extracted. Using distributions and transition matrices as features has the important 

advantage that false positive and false negative for each class tend to compensate, de-facto sof-

tening the impact of errors on overall classification accuracy. Therefore, even in case of slight 

differences with respect to GT, still shot feature distributions and transition patterns change from 

author to author in a way that is strongly related to the individual author style. 

For the second test we add the filmographies by two authors, Tarantino and Bresson, which ac-

count for additional 23 full movies, never seen before by the shot scale detector during its train-

ing phase. We then repeat the experiments on author attribution with automatically extracted 

features on the full corpus by 8 different directors (143 movies in total), using a leave-one-out 

cross validation, i.e., for every author all movies minus one are used for training and the lefto-

vers for testing. Obtained results, shown in Table 2 and in Figure 5(b), are again clearly far 

above the chance level (12.5%). 

Table 1. Comparison on authorship recognition by GT vs. automatic features on 6 directors.  

 PRECISION RECALL F1-SCORE MOVIES 

AUTHOR GT-feat Aut-feat GT-feat Aut-feat GT-feat Aut-feat GT-feat Aut-feat 

Antonioni 0.75 0.60 0.50 0.67 0.60 0.63 12 9 

Bergman  0.80 0.85 0.76 0.81 0.78 0.83 21 21 

Fellini  0.70 0.71 0.64 0.71 0.67 0.71 11 7 

Godard  0.57 0.50 0.87 0.50 0.68 0.50 15 12 

Scorsese  0.80 0.77 0.73 0.91 0.76 0.83 11 11 

Tarr  0.83 1.00 0.71 0.60 0.77 0.75 7 5 

Avg/Tot 0.74 0.73 0.71 0.72 0.71 0.72 77 65 

 

Table 2. Automatic authorship recognition by automatically computed features on 8 directors 

(Naïve Bayes, leave-one-out cross-validation).  

 PRECISION RECALL F1-SCORE MOVIES 

AUTHOR Aut-feat Aut-feat Aut-feat Aut-feat 

Antonioni 0.60 0.67 0.63 9 

Bergman 0.89 0.81 0.85 21 

Fellini 0.56 0.71 0.63 7 

Godard 0.50 0.58 0.54 12 

Scorsese 0.75 0.82 0.78 11 

Tarr 1.00 0.60 0.75 5 

Tarantino 1.00 0.89 0.94 10 

Bresson 1.00 0.92 0.96 13 

Avg/Total 0.80 0.77 0.78 88 
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Figure 5. Confusion matrices: (a) Authorship attribution by automatic features on 6 directors 
compared with attribution computed by GT features (in brackets); (b) Authorship attribution 
computed with fully automatic features on 8 directors.  

DISCUSSION 

We think about works of art as consciously designed and carefully executed to elicit meanings 

and emotions. For example, it is true that shot scales are meticulously planned one by one in a 

film. But a shot scale distribution of a whole film is something that would not occur to any 

filmmaker. Here is what Antonioni says:  

“When I am shooting a film I never think of how I want to shoot something; I simply shoot 

it. My technique [...] is wholly instinctive and never based on a priori considerations.”20 

Yet, this study shows that statistical patterns of formal features are systematically capable of dis-

tinguishing between individual authorial styles. Even though these patterns cannot be conceived 

as consciously designed, they underlie intentionally crafted features. Whether this relationship is 

correlational (e.g., narrative features involve specific visual techniques) or perceptual and aes-

thetic (e.g., a certain aesthetic effect is obtained at a certain frequency of a technical feature val-

ue, like eliciting empathy with characters is obtained by frequently shifting from any shot scale 

to close-up) needs further investigation: stylistic, psychological and statistical.  

It is important to notice that sequence patterns are at least as characteristic of individual styles as 

their distributions. We think that the reason is that sequence patterns characterize the dynamics 

of film form, which has a closer relationship to narration than overall distributions. The sequenc-

es of shot duration and shot scale might be closely related with such fundamental aesthetic pat-

terns as rhythm, regulation of arousal and of emotional involvement. Since the dynamics of these 

aesthetic effects are the key to regulate dramatic tension in films, which in turn is the key to keep 

the viewer’s attention, it seems probable that sequence patterns are more under conscious autho-

rial control than overall values of the same formal features. However, individual styles show a 

big variety in terms of which feature is the most characteristic of them as compared to the aver-

age values across all authors. And sometimes no single feature is characteristic for an author’s 

work as with Bergman and Godard. However, this does not affect the recall rate of their films, 

which suggests that taking these dimensions together is very robust in the attribution task.  

Despite the large database of 143 movies and the consequent huge number of automatically ana-

lyzed frames (in the order of 1 million) we are aware that a limitation is the small quantity of the 

considered directors. The reduced number of artists might have a strong influence on the perfor-
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mance, which suggests that a further improvement should be directed towards expanding the di-

rector set. However, this work experimentally confirms the hypothesis that the use of a few for-

mal features is sufficiently distinctive, and remains constant enough in one author’s production, 

to enable an automatic attribution of the authorship. The fact that by using only shot duration and 

shot scale it is possible to distinguish among 8 different authors suggests that such an analysis 

can easily scale up to more directors and larger databases. We are confident that adding other 

formal features, both perceptual and technical (e.g., depth of field, camera motion, angle, etc.), 

would increase the accuracy of identification.  

Feature learning is nowadays a valid alternative to the use of hand-crafted features. However, in 

this case learning features directly from data would need an enormous number of examples to 

isolate the distinctive features. For example, to discover artists’ characteristic visual features, the 

CNN by van Noord et al. works on the Rijksmuseum Challenge database:8 more than 110,000 

digitalized artworks by more than 6,000 painters. Conversely, working with formal features has 

the non-trivial advantage of allowing direct testing of hypothesis coming from cinema studies 

and psychology, thus broadening the scope and the interest of this work to more disciplines.  

CONCLUSION 

This work represent an example of cross-disciplinary research inspired from studies in cinema 

about the peculiar use of formal features by different directors.2 Future work will aim at better 

investigating the effect of such features on viewers from the neuroscience perspective,20 and 

linking it with empathy-related processes felt during the cinematic experience.7 Last, since using 

a subdivision of shot scale in three classes could limit the ability of author attribution, another 

possible extension should aim at obtaining at distinguishing more intermediate scales. 
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