685 research outputs found

    Classification of apple tree disorders using Convolutional Neural Networks.

    Get PDF
    Abstract?This paper studies the use of Convolutional Neural Networks to automatically detect and classify diseases, nutritional deficiencies and damage by herbicides on apple trees from images of their leaves. This task is fundamental to guarantee a high quality of the resulting yields and is currently largely performed by experts in the field, which can severely limit scale and add to costs. By using a novel data set containing labeled examples consisting of 2539 images from 6 known disorders, we show that trained Convolutional Neural Networks are able to match or outperform experts in this task, achieving a 97.3% accuracy on a hold-out set

    Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions

    Get PDF
    Convolutional Neural Networks (CNN) have demonstrated their capabilities on the agronomical field, especially for plant visual symptoms assessment. As these models grow both in the number of training images and in the number of supported crops and diseases, there exist the dichotomy of (1) generating smaller models for specific crop or, (2) to generate a unique multi-crop model in a much more complex task (especially at early disease stages) but with the benefit of the entire multiple crop image dataset variability to enrich image feature description learning. In this work we first introduce a challenging dataset of more than one hundred-thousand images taken by cell phone in real field wild conditions. This dataset contains almost equally distributed disease stages of seventeen diseases and five crops (wheat, barley, corn, rice and rape-seed) where several diseases can be present on the same picture. When applying existing state of the art deep neural network methods to validate the two hypothesised approaches, we obtained a balanced accuracy (BAC=0.92) when generating the smaller crop specific models and a balanced accuracy (BAC=0.93) when generating a single multi-crop model. In this work, we propose three different CNN architectures that incorporate contextual non-image meta-data such as crop information onto an image based Convolutional Neural Network. This combines the advantages of simultaneously learning from the entire multi-crop dataset while reducing the complexity of the disease classification tasks. The crop-conditional plant disease classification network that incorporates the contextual information by concatenation at the embedding vector level obtains a balanced accuracy of 0.98 improving all previous methods and removing 71% of the miss-classifications of the former methods

    G\mathcal{G}-softmax: Improving Intra-class Compactness and Inter-class Separability of Features

    Full text link
    Intra-class compactness and inter-class separability are crucial indicators to measure the effectiveness of a model to produce discriminative features, where intra-class compactness indicates how close the features with the same label are to each other and inter-class separability indicates how far away the features with different labels are. In this work, we investigate intra-class compactness and inter-class separability of features learned by convolutional networks and propose a Gaussian-based softmax (G\mathcal{G}-softmax) function that can effectively improve intra-class compactness and inter-class separability. The proposed function is simple to implement and can easily replace the softmax function. We evaluate the proposed G\mathcal{G}-softmax function on classification datasets (i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet) and on multi-label classification datasets (i.e., MS COCO and NUS-WIDE). The experimental results show that the proposed G\mathcal{G}-softmax function improves the state-of-the-art models across all evaluated datasets. In addition, analysis of the intra-class compactness and inter-class separability demonstrates the advantages of the proposed function over the softmax function, which is consistent with the performance improvement. More importantly, we observe that high intra-class compactness and inter-class separability are linearly correlated to average precision on MS COCO and NUS-WIDE. This implies that improvement of intra-class compactness and inter-class separability would lead to improvement of average precision.Comment: 15 pages, published in TNNL

    Fruit sizing using AI: A review of methods and challenges

    Get PDF
    Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.This work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.info:eu-repo/semantics/publishedVersio

    Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks

    Full text link
    In this study, we address the problem of classification of carrot fruit in order to manage and control their waste using improved deep neural networks. In this work, we perform a deep study of the problem of carrot classification and show that convolutional neural networks are a straightforward approach to solve the problem. Additionally, we improve the convolutional neural network (CNN) based on learning a pooling function by combining average pooling and max pooling. We experimentally show that the merging operation used increases the accuracy of the carrot classification compared to other merging methods. For this purpose, images of 878 carrot samples in various shapes (regular and irregular) were taken and after the preprocessing operation, they were classified by the improved deep CNN. To compare this method with the other methods, image features were extracted using Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP) methods and they were classified by Multi-Layer Perceptron (MLP), Gradient Boosting Tree (GBT), and K-Nearest Neighbors (KNN) algorithms. Finally, the method proposed based on the improved CNN algorithm, was compared with other classification algorithms. The results showed 99.43% of accuracy for grading carrot through the CNN by configuring the proposed Batch Normalization (BN)-CNN method based on mixed pooling. Therefore, CNN can be effective in increasing marketability, controlling waste and improving traditional methods used for grading carrot fruit

    Numerical Modeling and Design of Machine Learning Based Paddy Leaf Disease Detection System for Agricultural Applications

    Get PDF
    In order to satisfy the insatiable need for ever more bountiful harvests on the global market, the majority of countries deploy cutting-edge technologies to increase agricultural output. Only the most cutting-edge technologies can ensure an appropriate pace of food production. Abiotic stress factors that can affect plants at any stage of development include insects, diseases, drought, nutrient deficiencies, and weeds. On the amount and quality of agricultural production, this has a minimal effect. Identification of plant diseases is therefore essential but challenging and complicated. Paddy leaves must thus be closely watched in order to assess their health and look for disease symptoms. The productivity and production of the post-harvest period are significantly impacted by these illnesses. To gauge the severity of plant disease in the past, only visual examination (bare eye observation) methods have been employed. The skill of the analyst doing this analysis is essential to the caliber of the outcomes. Due to the large growing area and need for ongoing human monitoring, visual crop inspection takes a long time. Therefore, a system is required to replace human inspection. In order to identify the kind and severity of plant disease, image processing techniques are used in agriculture. This dissertation goes into great length regarding the many ailments that may be detected in rice fields using image processing. Identification and classification of the four rice plant diseases bacterial blight, sheath rot, blast, and brown spot are important to enhance yield. The other communicable diseases, such as stem rot, leaf scald, red stripe, and false smut, are not discussed in this paper. Despite the increased accuracy they offer, the categorization and optimization strategies utilized in this work lead it to take longer than typical to finish. It was evident that employing SVM techniques enabled superior performance results, but at a cost of substantial effort. K-means clustering is used in this paper segmentation process, which makes figuring out the cluster size, or K-value, more challenging. This clustering method operates best when used with images that are comparable in size and brightness. However, when the images have complicated sizes and intensity values, clustering is not particularly effective

    Comparative Analysis of Fruit Disease Identification Methods: A Comprehensive Study

    Get PDF
    The need for accurate and efficient technologies for recognising and controlling fruit diseases has increased due to the rising global demand for high-quality agricultural products. This study focuses on the advantages, disadvantages, and potential practical applications of a range of methods for identifying fecundities. Thanks to developments like improved imaging, machine learning, and data analysis tools, old methods of disease diagnosis have altered as technology has developed. The study compares older methods like visual observation, manual symptom correlation, spectroscopy, and chemical procedures with more contemporary methods like computer vision, autonomous learning algorithms, and sensor-based technologies. Precision, efficiency, cost, scalability, and ease of use are used to describe each method's effectiveness. The article reviews the research examples and practical applications of fruit endocrine disease detection in different cultivars and areas to provide a thorough comparison. This comparison focuses on the variations in disease prevalence and the ways that alternative treatments can be customised to certain situations.It is for this reason that this study offers useful information on how the methods for detecting fruit rot have evolved through time. It emphasises the significance of utilising technological advances to enhance the accuracy, effectiveness, and long-term sustainability of the management of agricultural diseases. Based on the unique requirements of their various agricultural systems, this analysis can assist researchers, practitioners, and policymakers in selecting the most effective methods for identifying fruit diseases

    A Review on Advances in Automated Plant Disease Detection

    Get PDF
    Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images
    corecore