4,748 research outputs found

    LeakyPick: IoT Audio Spy Detector

    Full text link
    Manufacturers of smart home Internet of Things (IoT) devices are increasingly adding voice assistant and audio monitoring features to a wide range of devices including smart speakers, televisions, thermostats, security systems, and doorbells. Consequently, many of these devices are equipped with microphones, raising significant privacy concerns: users may not always be aware of when audio recordings are sent to the cloud, or who may gain access to the recordings. In this paper, we present the LeakyPick architecture that enables the detection of the smart home devices that stream recorded audio to the Internet without the user's consent. Our proof-of-concept is a LeakyPick device that is placed in a user's smart home and periodically "probes" other devices in its environment and monitors the subsequent network traffic for statistical patterns that indicate audio transmission. Our prototype is built on a Raspberry Pi for less than USD40 and has a measurement accuracy of 94% in detecting audio transmissions for a collection of 8 devices with voice assistant capabilities. Furthermore, we used LeakyPick to identify 89 words that an Amazon Echo Dot misinterprets as its wake-word, resulting in unexpected audio transmission. LeakyPick provides a cost effective approach for regular consumers to monitor their homes for unexpected audio transmissions to the cloud

    IoT-MQTT based denial of service attack modelling and detection

    Get PDF
    Internet of Things (IoT) is poised to transform the quality of life and provide new business opportunities with its wide range of applications. However, the bene_ts of this emerging paradigm are coupled with serious cyber security issues. The lack of strong cyber security measures in protecting IoT systems can result in cyber attacks targeting all the layers of IoT architecture which includes the IoT devices, the IoT communication protocols and the services accessing the IoT data. Various IoT malware such as Mirai, BASHLITE and BrickBot show an already rising IoT device based attacks as well as the usage of infected IoT devices to launch other cyber attacks. However, as sustained IoT deployment and functionality are heavily reliant on the use of e_ective data communication protocols, the attacks on other layers of IoT architecture are anticipated to increase. In the IoT landscape, the publish/- subscribe based Message Queuing Telemetry Transport (MQTT) protocol is widely popular. Hence, cyber security threats against the MQTT protocol are projected to rise at par with its increasing use by IoT manufacturers. In particular, the Internet exposed MQTT brokers are vulnerable to protocolbased Application Layer Denial of Service (DoS) attacks, which have been known to cause wide spread service disruptions in legacy systems. In this thesis, we propose Application Layer based DoS attacks that target the authentication and authorisation mechanism of the the MQTT protocol. In addition, we also propose an MQTT protocol attack detection framework based on machine learning. Through extensive experiments, we demonstrate the impact of authentication and authorisation DoS attacks on three opensource MQTT brokers. Based on the proposed DoS attack scenarios, an IoT-MQTT attack dataset was generated to evaluate the e_ectiveness of the proposed framework to detect these malicious attacks. The DoS attack evaluation results obtained indicate that such attacks can overwhelm the MQTT brokers resources even when legitimate access to it was denied and resources were restricted. The evaluations also indicate that the proposed DoS attack scenarios can signi_cantly increase the MQTT message delay, especially in QoS2 messages causing heavy tail latencies. In addition, the proposed MQTT features showed high attack detection accuracy compared to simply using TCP based features to detect MQTT based attacks. It was also observed that the protocol _eld size and length based features drastically reduced the false positive rates and hence, are suitable for detecting IoT based attacks

    On the Impact of Wireless Jamming on the Distributed Secondary Microgrid Control

    Full text link
    The secondary control in direct current microgrids (MGs) is used to restore the voltage deviations caused by the primary droop control, where the latter is implemented locally in each distributed generator and reacts to load variations. Numerous recent works propose to implement the secondary control in a distributed fashion, relying on a communication system to achieve consensus among MG units. This paper shows that, if the system is not designed to cope with adversary communication impairments, then a malicious attacker can apply a simple jamming of a few units of the MG and thus compromise the secondary MG control. Compared to other denial-of-service attacks that are oriented against the tertiary control, such as economic dispatch, the attack on the secondary control presented here can be more severe, as it disrupts the basic functionality of the MG

    Lora-based traffic flow detection for smart-road

    Get PDF
    This paper presents a wireless traffic flow detection system, mainly focused on conditions in which the traffic flow is slow or stopped, which increases the risk of highway accidents. To achieve this goal, a Low Power Wide Area Network (LPWAN) based on LoRa called Short LoRa has been developed. This LoRa sub-network complies with the European Telecommunications Standards Institute (ETSI) harmonized standard for its compatibility in Europe countries. In addition, the development of the devices has allowed them to also work on a LoRaWAN network. The introduced development has been compared to a reference system mounted with laser barriers that provided a high accurate comparison. Field tests of the system have been carried out and the data obtained in the measurement has been analyzed with two different methods, and both of them were valid for the application. The results can determine vehicle speed with adequate precision at low speeds. The attenuating behavior of the communication signal is also analyzed through the Radio Signal Strength Indicator (RSSI). The relationship between vehicle speed, gate distances and RSSI attenuation has been studied. The system is proven to have efficient results in detecting traffic flow under the conditions for which it has been developed

    putEMG -- a surface electromyography hand gesture recognition dataset

    Full text link
    In this paper, we present a putEMG dataset intended for evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches, and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. putEMG dataset is available under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license at: https://www.biolab.put.poznan.pl/putemg-dataset/. The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. Accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. Presented dataset can be used as a benchmark for various classification methods, evaluation of electrode localisation concepts, or development of classification methods invariant to user-specific features or electrode displacement

    Network Traffic Aware Smartphone Energy Savings

    Get PDF
    In today\u27s world of ubiquitous Smartphone use, extending the battery life has become an important issue. A significant contributor to battery drain is wireless networking. Common usage patterns expect Smartphones to maintain a constant Internet connection which exacerbates the problem.;Our research entitled A Network Traffic Approach to Smartphone Energy Savings focuses on extending Smartphone battery life by investigating how network traffic impacts power management of wireless devices. We explore 1) Real-time VoIP application energy savings by exploiting silence periods in conversation. WiFi is opportunistically placed into low power mode during Silence periods. 2.) The priority of Smartphone Application network traffic is used to modifiy WiFi radio power management using machine learning assisted prioritization. High priority network traffic is optimized for performance, consuming more energy while low priority network traffic is optimized for energy conservation. 3.) A hybrid multiple PHY, MAC layer approach to saving energy is also utilized. The Bluetooth assisted WiFi approach saves energy by combining high power, high throughput WiFi with low power, lower throughput Bluetooth. The switch between Bluetooth and WiFi is done opportunistically based upon the current data rate and health of the Bluetooth connection.;Our results show that application specific methods for wireless energy savings are very effective. We have demonstrated energy savings exceeding 50% in generic cases. With real-time VoIP applications we have shown upwards of 40% energy savings while maintaining good call quality. The hybrid multiple PHY approach saves more than 25% energy over existing solutions while attaining the capability of quickly adapting to changes in network traffic

    Design techniques for low-power systems

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system including error control, system decomposition, communication and MAC protocols, and low-power short range networks
    • 

    corecore