
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2013

Network Traffic Aware Smartphone Energy Savings Network Traffic Aware Smartphone Energy Savings

andrew Joseph Pyles
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pyles, andrew Joseph, "Network Traffic Aware Smartphone Energy Savings" (2013). Dissertations, Theses,
and Masters Projects. Paper 1539623617.
https://dx.doi.org/doi:10.21220/s2-wy0s-7w61

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623617&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-wy0s-7w61
mailto:scholarworks@wm.edu

Network Traffic Aware Smartphone Energy Savings

Andrew Joseph Pyles

Williamsburg, VA

B.S. Computer Science,The Ohio State University, 2009
M.S. Computer Science, College of William and Mary, 2010

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
May 2013

COMPLIANCE PAGE

Research approved by

Protection of Human Subjects Committee

Protocol number(s): PHSC-2012-11-12-8276

Date(s) of approval: 2012-11-18

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Andrew Joseph Pyles

Approved by the Committee, May 2013

Committee Chair
Gang Zhou, Computer Science

The College of William and Mary

Professor Weizhen Mao, Computer Science
The College of William and Mary

Associate Professor Qun Li, Computer Science
The College of William and Mary

Associate Professor Haining Wang, Computer Science
The College of William and Mary

sisjant ProfAssi^Jfint Professor Wenbo He, Computer Science
McGill University

ABSTRACT

In today’s world of ubiquitous Smartphone use, extending the battery life has be
come an important issue. A significant contributor to battery drain is wireless networking.
Common usage patterns expect Smartphones to maintain a constant Internet connection
which exacerbates the problem.

Our research entitled A Network Traffic Approach to Smartphone Energy Savings focuses
on extending Smartphone battery life by investigating how network traffic impacts power
management of wireless devices. We explore 1) Real-time VoIP application energy sav
ings by exploiting silence periods in conversation. WiFi is opportunistically placed into low
power mode during Silence periods. 2.) The priority of Smartphone Application network
traffic is used to modifiy WiFi radio power management using machine learning assisted
prioritization. High priority network traffic is optimized for performance, consuming more
energy while low priority network traffic is optimized for energy conservation. 3.) A hybrid
multiple PHY, MAC layer approach to saving energy is also utilized. The Bluetooth as
sisted WiFi approach saves energy by combining high power, high throughput WiFi with
low power, lower throughput Bluetooth. The switch between Bluetooth and WiFi is done
opportunistically based upon the current data rate and health of the Bluetooth connection.

Our results show that application specific methods for wireless energy savings are very
effective. We have demonstrated energy savings exceeding 50% in generic cases.
With real-time VoIP applications we have shown upwards of 40% energy savings while
maintaining good call quality. The hybrid multiple PHY approach saves more than 25%
energy over existing solutions while attaining the capability of quickly adapting to changes
in network traffic.

TABLE OF CONTENTS

Acknowledgments iv

Dedication v

List of Tables vi

List of Figures vii

1 Introduction 1

1.0.1 Contributions.. 3

1.0.2 Dissertation Organization.. 5

1.1 Related W o r k .. 5

1.1.1 Real-time Smartphone Application D a ta 5

1.1.2 Smartphone Application Data P rio rity 7

1.1.3 Mixed Radio Data Driven Energy Savings............................... 8

2 SiFi: Silence prediction based WiFi energy adaptation 10

2.1 SiFi-Background.. 13

2.2 Silence Modeling & Prediction.. 14

2.2.1 Lightweight Silence Detection .. 14

2.2.2 ECDF Based Silence Prediction... 16

2.2.2.1 Determine the Runtime Training Leng th 18

2.2.2.2 The Observed Silence Length a 20

i

2.2.2.3 The Confidence of Prediction...................................... 21

2.3 SiFi: Silence Prediction based WiFi Energy A daptation 22

2.4 Android Phone Implementation .. 25

2.4.1 Application Level Modifications.. 26

2.4.2 System Level Modifications.. 26

2.5 Performance Evaluation ... 28

2.5.1 Evaluation Setup... 29

2.5.2 Evaluation M ethod.. 30

2.5.3 SiFi Energy Savings... 32

2.5.4 SiFi Application F idelity .. 33

2.5.5 SiFi Robustness for Longer Calls .. 35

2.6 Conclusions... 36

3 SAPSM: Smart Adaptive 802.11 PSM 37

3.1 Background and Motivation .. 40

3.1.1 Background .. 40

3.1.2 Sprint HTC Hero Adaptive PSM ... 41

3.1.3 Adaptive PSM Behavior of Different Smartphones (and other

Handheld Devices) ... 42

3.2 SAPSM D e s ig n .. 45

3.2.1 Architecture ... 47

3.2.2 SAPSM C o re .. 48

3.2.3 Application Priority M a n a g e r ... 49

3.3 Im plem entation.. 51

3.4 Evaluation.. 52

3.4.1 Evaluation Method.. 53

3.4.2 Low Priority Application Behavior .. 54

ii

3.4.2.1 Traffic with no listening s o c k e t 54

3.4.2.2 Low Priority Energy Inversion...................................... 55

3.4.3 Energy Savings of Typical Applications.................................. 55

3.4.4 SAPSM High Priority Networking Perform ance..................... 59

3.5 User S tudy... 60

3.6 Conclusions & Future Work .. 64

4 Mixed Radio Data Driven Energy savings 65

4.1 Introduction .. 65

4.2 Background and Motivation .. 68

4.2.1 WiFi P S M ... 69

4.2.2 Bluetooth.. 70

4.2.3 Motivation ... 71

4.3 Bluesaver D e s ig n ... 74

4.3.1 Architecture ... 75

4.4 Im plem entation.. 79

4.5 Evaluation... 81

4.5.1 Evaluation M ethod.. 82

4.5.2 Energy Com parison... 82

4.5.3 Network Adaptation... 86

4.6 Conclusions.. 90

5 Conclusions & Future Work 91

Bibliography 93

Vita 98

iii

ACKNOWLEDGMENTS
This writer wishes to express his appreciation to Professor Gang Zhou, under whose

guidance this investigation was conducted, for his patience, guidance and criticism
throughout the investigation. The author is also indebted to Professors Li, Mao, Wang,
Liu and He for their careful reading and criticism of the manuscript.

iv

This Ph.D. is dedicated to my wife Jill. Without her dedication and support,

of this would be possible.

LIST OF TABLES

2.1 Prediction with Different ,3 .. 21

2.2 Baseline Average P o w e r... 28

2.3 Adaptive PSM Settings in Sprint HTC H e ro ... 29

2.4 SiFi Fidelity ... 35

2.5 Multiple Longer Call Tests: VAD + S i F i .. 35

3.1 Smart devices te s te d .. 44

3.2 SAPSM high priority TCP Performance results with associated

standard deviation... 60

3.3 Majors.. 60

vi

LIST OF FIGURES

2.1 VAD and R T P ..

2.2 ECDF of Silence L e n g th ...

2.3 KL Divergence vs. Training Length ..

2.4 Observed Silence Period Length a vs. Predicted Silence Period

Length A ...

2.5 SiFi Architecture..

2.6 Android WiFi Architecture ..

2.7 Energy Measurement S e tu p ..

2.8 Adaptive PSM State Transitions in Sprint HTC H ero

2.9 VAD + Adaptive PSM vs. VAD + S i F i ...

2.10non-VAD + Adaptive PSM vs. non-VAD + S iF i

3.1 Sprint HTC Hero Adaptive PSM implementation; initial state is PSM,

timer is set to one second...

3.2 Adaptive PSM implementation response to UDP network traffic. . .

3.3 SAPSM Architecture; the packet flow is diverted through the SAPSM

core kernel module...

3.4 The pop-up window to assist user decision...

3.5 Comparison of power consumed from ingress traffic with no listening

socket...

3.6 Energy sdf inversion: 10MB file downloaded w/varying data rates. .

vii

13

17

19

20

23

27

29

30

31

31

42

43

45

50

53

54

3.7 Application energy comparison... 57

3.8 RSS Reader with Adaptive P S M .. 57

3.9 RSS Reader w/ low priority S A P S M ... 58

3.10 Application classification result... 63

4.1 WiFi Energy Latency tradeoff. Measurements reflect recently pub

lished measurements on Smartphone WiFi PSM................................. 70

4.2 Youtube typical broadband connection... 73

4.3 Skype audio typical broadband connection... 74

4.4 Skype video typical broadband connection... 75

4.5 Lab Setup... 76

4.6 Bluesaver Architecture.. 77

4.7 Bluesaver Design... 78

4.8 Bluetooth vs Adaptive PSM power consumption. Adaptive PSM

consumes between 20% more and 35% power than Bluetooth. . . 83

4.9 Bluesaver vs WiFi streaming video Energy comparison. Bluesaver

saves up to 25% energy for bitrates ranging from 64 to 512 kbps. . 85

4.10 Bluesaver vs WiFi streaming video power comparison. Bluetooth

consistently uses less power than WiFi.. 86

4.11 Rate Adaptation: Bluesaver switches from Bluetooth to WiFi while

sequentially downloading a 10MB file followed by a 100MB file

without interrupting the download.. 87

4.12 Room Layout showing lab environment for connection adaptation

evaluation... 88

viii

4.13 Connection Adaptation: Bluesaver switches from Bluetooth to WiFi

when Bluetooth connection issues are detected. A constant ping

from the Server to the phone was done for the duration of the test.

When the switch to WiFi occurs at around 30 seconds, the ping test

is unaffected...

Network Traffic Aware Smartphone Energy Savings

Chapter 1

Introduction

Over the past five years, Smartphones have exploded in popularity. More and more

functionality is added with each new release. New phones are coming out with new

features such as faster processors and advanced networking capabilities. These features

make the use of Smartphones for everyday tasks very compelling. People now have

instant access to a wealth of information that was inconceivable several years ago.

Access to this wealth of information, one of the most compelling aspects to Smartphones,

does not come without cost however. One of the key challenges behind the design of

Smartphone systems is that of limited battery capacity. While the traditional PC with a

wall outlet has virtually unlimited power constraints, the Smartphone must be designed

to be completely functional for a variety of uses, while at the same time minimizing the

consumption of the battery. One of the largest power consumers on Smartphone, is

networking traffic. For instance a recent Smartphone measured as part of this work [54],

shows that the screen consumes approximately 50% less power than the WiFi networking

adaptor actively transmitting data. It has also been shown that in [11] that 3G networking

consumes even more power than WiFi. Identifying areas where network traffic can be

made more efficient can make a big impact on the usefulness and lifespan of the device.

When Smarpthones were first introduced, consumers were commonly given unlimited

1

CHAPTER 1. INTRODUCTION 2

data usage plans. In the past year, however, some providers have pulled away from this

business model. For instance, At&T recently raised eyebrows when it put usage caps on

all new plans. To justify the new policy, it was explained that data usage exploded 20K

percent between 2007 and 2011. This enormous growth is also shown in Mobile App

stores. As of this writing, both the Android Play store and the iPhone app stores have

over 500K applications [6], Clearly, lots of network activity is prevalent on these devices

with no signs of slowing down.

One of the most common Network interfaces on Smarpthones is the WiFi adaptor.

While WiFi is more efficient than 3G [57], it also is not without its challenges. On the

one hand, WiFi can enter into Power Save Mode (PSM) to be more energy efficient and

adding significant delay to all network traffic. On the other hand, the WiFi interface can

enter into Constantly Aware Mode (CAM) which has a significantly higher power cost

while minimizing network delay. In order to switch between these modes, the WiFi driver

switches between power saving modes completely oblivious to the actual type of traffic

currently being transmitted through the radio.

Lots of related work [22] [59] [41] covered in section 1.1, focuses on research to make

WiFi more efficient. However, in actuality, most vendors that we systematically measure

as part of this work [53] use a fairly simple scheme of switching power savings modes

based upon the combined data rate that travelling through the interface. Although this

catch-all approach is effective, we demonstrate that there is lots of room for improvement.

Our research is entitled a Network Traffic Aware Approach to Smartphone Energy

Savings. Our approach is to examine all types of network traffic and determine the

most energy efficient method of transmitting packets through the phone. This research

is broken up into three main categories; Real-time delay sensitive network traffic: We

examine real-time network which is particularly challenging where any delay will affect

the QoS of the application. For instance, this covers real-time video or audio calls.

CHAPTER 1. INTRODUCTION 3

By identifying delay tolerant periods we show that we can save significant energy over

existing solutions as well as ensuring that QoS is not impacted. Application aware

prioritization of network traffic: Since all network traffic can equally impact the Power

consumption of the device. We explore the concept of Application prioritization. Important

Application traffic can be identified over non-important traffic. Important traffic is allowed

to modify the power saving mode of the WiFi driver, while unimportant traffic is not

resulting in significant energy savings over existing solutions. Hybrid multi-phy approach

to energy savings: Certain types of streaming traffic which have a low data rate is

particularly inefficient with WiFi. The rate is high enough that the driver will enter into

CAM, but still low enough where other radios can be more efficient. We identify this type

of traffic and using a hybrid MAC based approach combining Bluetooth and WiFi, we

show that significant energy savings can be saved without adding significant delay.

1.0.1 Contributions

The main contributions of this work are summarized as follows:

• Real-time Smartphone Application Data: Since one-third of a Smartphone’s battery

energy is consumed by its WiFi interface, it is critical to switch the WiFi radio from

its active or Constantly Awake Mode (CAM), which draws high power (726mW with

screen off), to its sleep or Power Save Mode (PSM), which consumes little power

(36mW). Applications like VoIP do not perform well under PSM mode however, due

to their real-time nature, so the energy footprint is quite high. The challenge is to

save energy while not affecting performance. In this dissertation we present SiFi:

Silence prediction based WiFi energy adaptation. SiFi examines audio streams

from phone calls and tracks when silence periods start and stop. This data is

stored in a prediction model. Using this historical data, we predict the length of

future silence periods and place the WiFi radio to sleep during these periods. We

CHAPTER 1. INTRODUCTION 4

implement the design on an Android Smartphone and achieve 40% energy savings

while maintaining high voice fidelity.

• Smartphone Application Data Priority: The ability for 802.11 power management

on Smartphones to distinguish traffic priority is an important issue. Low priority

background traffic unnecessarily causes the client to switch to the high power Con

stantly Awake Mode (CAM) wasting unnecessary energy upwards of 50% in some

cases. The priority of network traffic flows is dependent upon application intent.

Wide availability of application stores such as the Android Market with thousands

of applications makes application prioritizing a challenge. In this dissertation we

introduct SAPSM: Smart Adaptive Power Save Mode. SAPSM gathers network us

age metrics per application. It unobtrusively requests per-application priority setting

confirmation from users with the aid of a lightweight machine learning algorithm.

Only high priority applications affect the client’s behavior to switch to CAM, while

low priority traffic is optimized for energy efficiency. Our implementation on an

Android Smartphone improves energy savings by up to 56% under typical usage

patterns.

• Mixed Radio Data Driven Energy Savings The limited battery life on Smartphones

makes energy conservation an important issue. Wireless networking efficiency is

particularly important since it consumes a large percentage of total energy. In

recent studies, WiFi and 3G have been shown to consume more than double the

amount of power than powering on the screen. WiFi power save mode saves

energy by trading added latency for less power consumption. This latency is

caused by packet buffering at the Access Point. Minimal latency but maximum

power on the other hand, is consumed with WiFi Active mode. WiFi effectively has

two extremes: low power consumption and high latency or low latency and high

power consumption. While research has advanced in mitigating these extremes,

certain types of network traffic such as constant bitrate streaming make the contrast

CHAPTER 1. INTRODUCTION 5

unavoidable. We introduce Bluesaver which provides low latency and low energy by

maintaining a Bluetooth and WiFi connection simultaneously. Bluesaver is designed

and implemented at the MAC layer and is able to opportunistically select the most

efficient connection for packets while still assuring that latency is acceptable. We

implement Bluesaver on an Android phone and Access Point and show that we

can save more than 25% energy over existing solutions and attain the capability of

quickly adapting to changes in network traffic.

1.0.2 Dissertation Organization

The rest of this Dissertation is organized as follows. In Section 1.1 we review related

work that is closely related to our work. Section 2 our work in Real-time Smartphone

Application Data is covered. Section 3 covers our work in Smartphone Application Data

Priority, while in Section 4 we cover our work in Mixed Radio Data energy savings.

Finally, we conclude in Section 5.

1.1 Related Work

1.1.1 Real-time Smartphone Application Data

A large amount of research attention has been recently paid to the problem of WiFi

energy saving in mobile devices. Here we discuss the work most relevant to SiFi.

Exploiting Idle opportunities. Considerable work has been done finding idle opportuni

ties within WLAN to exploit for power savings. In Bounded Slowdown [35], idle periods

between TCP establishment are exploited to switch WiFi between CAM and PSM modes.

Time periods between slow start and between Web transactions are used. Beacon

intervals are dynamically adjusted to minimize PSM overhead.

CHAPTER 1. INTRODUCTION 6

Micro Power Management [39] exploits small time periods (/ 1 seconds) between MAC

frames to save energy. Micro power sleep periods are effective since the speed of

WLAN’s are typically much greater than the WLAN up-link speed. This approach is

complimentary to SiFi. SiFi examines the payload of RTP packets and based on the

prediction methods, puts the radio to sleep. Micro power management could be combined

with SiFi to gain additional energy savings.

Another approach, Catnap [22] stores data into blocks that are combined at the AP,

then the blocks can be transmitted efficiently to the STA allowing for additional power

savings. This approach is not applicable to real-time applications such as VoIP due to

the added delay incurred.

Self-Tuning [1] provides an API to application developers to identify network traffic that

is considered background or foreground traffic. Using these hints, the kernel driver can

schedule background traffic into PSM mode while foreground traffic can be scheduled

at a higher priority. Self-Tuning is not a good fit for the real-time nature of VoIP for two

reasons. First, in the case of non-VAD RTP traffic, the same traffic pattern exists for voice

and silence RTP packets which is difficult for Self-Tuning to attach different traffic hints.

Second, unlike SiFi that directly controls the WiFi driver, the Self-Tuning kernel module

may introduce delay that impacts VoIP performance.

VoIP Specific Approaches w/o Idle Exploitation. There are several other VoIP specific

approaches that do not exploit idle opportunities for saving WiFi energy. The GreenCall

algorithm [47] uses a deadline approach that does not consider silence periods. By

examining the inter-arrival times of the packets, they determine the play-out deadline.

As long as the play-out deadline has not been reached, the WiFi radio is put into PSM

mode. Our approach is complimentary to this approach with the following distinction. We

place special emphasis on putting the radio to sleep particularly during silence periods.

The play-out deadline for silence packets is not as important as for voice packets.

CHAPTER 1. INTRODUCTION 7

AP Modification. Some AP centric approaches are also developed for WiFi energy.

Napman [59] focuses on modifying the AP scheduler so that PSM traffic and CAM traffic

are treated fairly. Specific care is given to Adaptive PSM implementations on the latest

smart phones such as the iPhone and Android based approaches. By adjusting the TCP

window size, PSM-Throttling [64] increases the burstiness of multimedia streaming traffic

causing energy saving to be realized.

IEEE 802.11e U-APSD. IEEE 802.11e also introduces U-APSD [32] to provide an extra

layer of QoS while saving energy. When the AP receives a frame from the STA, the

AP will send all buffered data to the client without requiring the PS-POLL mechanism.

This works when upstream and downstream RTP streams are complimentary as in the

non-VAD case. However, in cases such as VAD, the upstream and downstream RTP

streams can be asymmetric and the down-link frames will not be triggered.

In [18] an exponential back-off scheme is employed during silence periods of VoIP

calls to determine the maximum period to put the radio into sleep mode. For long silence

periods, this scheme has the potential problem of over sleeping causing delay. By using

training data, SiFi can more accurately determine the length of the silence period, to

prevent extended over-sleeping.

1.1.2 Smartphone Application Data Priority

A number of prior solutions have been proposed to reduce energy consumption on mobile

devices. We focus on these most closely related to SAPSM.

A number of solutions have been proposed for optimizing PSM behavior on 802.11

clients for greater efficiency. PSM-Throttling [64] uses traffic shaping on the client to

add burstiness to TCP traffic which contributes to more efficient PSM behavior. Sleep

durations are modified [35] in reaction to current traffic levels maintaining a bounded

CHAPTER 1. INTRODUCTION 8

RTT for more efficient adaptive PSM behavior. ^uPower management [30] uses prediction

to determine microsecond sleep periods during busy intervals to save energy. Down-

clocking the radio during idle listening periods to reduce energy consumption is explored

in [66]. Most closely related to SAPSM, STPM [1] adapts PSM behavior by combining the

monitoring of current traffic and knowledge of application intent provided by an API made

available to developers. SAPSM is complementary; application intent can be combined

with application priority to achieve further energy savings.

Other solutions propose modifications to network infrastructure. In [22] the difference

in bandwidth between Wireless and WAN connectivity is exploited. Napman [59]

reduces contention by staggering beacon intervals per client and the use of a fair

scheduling algorithm. In [41] network contention reduction is explored: beacon periods

are staggered by eavesdropping on AP's in close proximity. SAPSM is complimentary

in reducing energy with these solutions. Any improvements reducing network contention

will result in additional energy savings.

A number of projects have considered idle periods to duty cycle the radio into a

minimal power state to save additional energy. In [54] silence periods are exploited in

VoIP calls to save additional energy. Coolspots [51] uses multiple radios to only enable

the radio with highest energy cost when required.

1.1.3 Mixed Radio Data Driven Energy Savings

Although there is a significant body of research focused on mobile energy efficiency, we

focus primarily on those closesly related to Bluesaver.

Client modifications: Numerous client side research exists addressing the problem

of making the client more energy efficient. Micro power management [38] predicts

and utilizes microsecond sleep periods to save energy. While others [1] [53] focus on

CHAPTER 1. INTRODUCTION 9

application specific traffic shaping based upon priority or sensitivity to delay; traffic not

sensitive to delay or given a low prioity is forcibly sent through PSM. Others [54] examine

application specific idle periods to save energy by switching to PSM during idle periods.

PSM-throttling [64] uses traffic shaping to streamline TCP traffic for PSM efficiency.

E-Milli [66] uses a downclocking scheme which reduces the voltage to the WiFi driver

during idle listening times. Bluesaver is complementary to these approaches; client side

enhancements can be extended with the use of mutliple radios.

Infrastructure modifications: Others have modified the wireless infrastructure to be

more efficient. Napman [59] uses a fair energy-aware scheduling algorithm to increase

WiFi efficiency. Sleepwell [41] reduces client collisions with the use of multiple APs

staggered at different time intervals while Catnap [22] exploits the difference between

WLAN and WAN speeds. Others [8] explore the use of proxies to reduce client-side

polling. All of these approaches save energy by streamlining the wireless traffic to and

from the Client. These approaches are complimentary to Bluesaver; any enhancements

in the infrastructure to make WiFi more efficient will also enhance Bluesaver.

Multiple PHY: Other research focuses on combining multiple radios for best efficiency.

ZiFi [67] and Blue-Fi [2] use low power radios to detect the presence of WiFi access

points. Coolspots [51] uses a combination of Bluetooth and WiFi to save energy. Only

one radio is active at the same time causing serious delay and dropped connections

when switching between radios. BlueStreaming [60] also uses WiFi and Bluetooth. Both

radios are on at the same time with 2 seperate IP addresses. Applications therefore have

to be specifically designed to bind to one of the IP addresses. Bluesaver uses Both WiFi

and Bluetooth. Since it is implemented at the MAC level, it is able to seamlessly switch

between radios without impacting applications.

Chapter 2

SiFi: Silence prediction based WiFi

energy adaptation

As demonstrated in [56], there is a tradeoff between the cellular data network and WiFi

communication that both exist in currently widely used smart phones. Compared to

the WiFi interface, the cellular data network incurs a lower penalty to stay connected,

but much higher energy price per MB of data transfer. In addition, the cellular data

network has higher latency and may incur additional airtime charges. Towards improving

battery lifetime and enhancing user experience and productivity [57] [51] [12], many

newly developed smart phone related applications choose to involve the WiFi radio

communication [56] [43] [9] [40] [65].

Even though WiFi radio is energy efficient when communicating a large amount of

data, it is expensive just to stay connected. For example, the Sprint HTC Hero [63]

consumes 726mW (with screen off) in the Constantly Awake Mode (CAM). So, it is

essential to put WiFi to the Power Save Mode (PSM) which consumes 20 fold less energy

(36mW in Sprint HTC Hero). In the research community, a large number of efforts have

been proposed to reduce energy consumption. For example, [35] [22] [1] propose to

10

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 11

save WiFi energy by exploiting periods of idleness, while [59] improves scheduling on

the WiFi Access Point (AP). [32] shows a general purpose 802,11 protocol changes to

save energy for general real-time applications, and [47] analyzes the VoIP network traffic

playout deadline to determine when to put the radio to sleep. Also, the Adaptive PSM [59]

commonly deployed saves energy by monitoring throughput through the WLAN. The

radio stays in PSM by default, but switches to CAM when traffic is observed.

However, none of the aforementioned existing work examines the RTP payload to

exploit silence period for WiFi energy savings during a VoIP call, even though it has

been shown that up to 60% [23] of a typical human conversation is made up of silence.

Therefore, we are motivated to address the research challenges towards exploiting

silence period for energy saving during a smart phone VoIP call: (1)how to model and

predict VoIP silence periods of a phone call at runtime? and (2)how to apply silence

prediction to the existing WiFi infrastructure of an Android phone to save energy?

To address the first challenge, we first developed a light weight silence detection

algorithm that is able to distinguish silence from voice in RTP packets during a phone call.

Then, once an adequate set of silence periods are obtained during runtime, a running

statistical model is built to characterize the silence periods distribution in an accurate

and energy efficient way. Finally, when the statistical model is observed stable enough,

runtime prediction of the future silence period length is conducted based on statistical

analysis.

To address the second challenge, we propose SiFi, a silence prediction based WiFi

energy adaptation framework for smart phones. SiFi is carefully designed so that it fits

well with existing mobile phone constraints as discussed in [42], namely OS limitations,

API and operational limitations, energy management limitations, etc. SiFi is able to

incorporate the statistical modeling and prediction theory and realize it in the limited

smart phone WiFi infrastructure and demonstrates more than 40% energy saving.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 12

Our main contributions can be summarized as follows:

• With lightweight digital signal processing, and statistical modeling and prediction,

we successfully exploit during runtime the silence periods of a VoIP call which

forms a solid base for runtime WiFi energy saving. To ensure high accuracy

and low cost for the runtime silence exploitation, different modeling and prediction

techniques including empirical cumulative distribution function and time series

analysis are compared, and important statistical issues like runtime training length

and confidence of prediction are thoroughly explored.

• To apply the statistical silence exploitation technique we develop, we propose a

silence prediction based WiFi energy adaptation framework, called SiFi, for smart

phones energy saving. By making modifications to the low level system architecture

as well as application components, SiFi is able to directly control the WiFi power

save mode based on silence prediction, and fits well with the limited Android phone

infrastructure.

• We deploy SiFi on a real system with Sprint HTC Hero that runs VoIP application

and obtain more than 40% power savings during runtime. We achieve high call

fidelity by sleeping during silence periods and being active during voice periods. Our

real system evaluation also demonstrate SiFi’s resilience to network congestion,

and its robustness in different phone call scenarios like with different phone call

lengths, different languages, different number of speakers, and different genders of

speakers.

The rest of the work is organized as follows. We explain background knowledge

followed by related work. Next, we present details of detecting, modeling and predicting

VoIP silence periods of a phone call at runtime. Then, a detailed design of the SiFi

framework is given followed by details of the SiFi implementation on an Android phone.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 13

Real system performance evaluation with Sprint HTC Hero is illustrated next. Finally, we

present the conclusions.

2.1 SiFi-Background

Session Initiation Protocol (SIP) is widely used in Internet Telephony. It is used to

establish and tear down calls where Real Time Protocol (RTP) media is streamed. To

illustrate how SIP works, imagine two phones A and B, where A would like to call B.

Once a call has been established, RTP packets are sent bi-directionally until a call is

terminated with a BYE message. Detailed description of SIP is outside the scope of this

work, and interested readers are referred to [58]. When a call is initiated with an INVITE

packet, phone A notifies phone B which UDP port it is listening for RTP packets. Phone

B responds soon after with a 200 OK message. The 200 OK message will notify phone

A which UDP port it will listen for RTP packets. During this negotiation phase, the two

parties also agree on the codec to use and also whether or not Voice Activity Detection

(VAD) and Comfort Noise (CN) is supported.

VOICE -S ILEN C E- VOICE

non-VAD

□ c □
RTP STREAM

Figure 2.1: VAD and RTP

RTP packets are usually sent at evenly spaced intervals that the two parties agree

upon during the codec negotiation phase. For instance, if two parties use the G.711

codec, typically a 20ms RTP interval is used. Figure 2.1 shows a typical RTP flow. RTP

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 14

packets that do not use VAD, that is silence packets are transmitted the same as voice

packets, we define as non-VAD. However during silence periods, VAD has a different

behavior. When the silence period starts at the sender end, the next scheduled RTP

packet is a Comfort Noise (CN) packet. When the CN packet is received at the receiver

side, it knows that a silence period has begun. When the period of silence has stopped,

a normal RTP packet with the Marker bit is set. When the this RTP packet is received,

the silence period has ended and a new voice period has begun.

2.2 Silence Modeling & Prediction

In this section, we use a lightweight threshold based algorithm to detect silence RTP

packets from voice RTP packets. Then, we compute the length of silence periods

between consecutive voice packets and also use statistical analysis to characterize the

silence data. We finally present an algorithm to predict the future silence period length

based on observed silence history. Such prediction will be used in the next section for

saving WiFi energy in smart phones.

2.2.1 Lightweight Silence Detection

It has been shown that approximately 60% of a typical conversation is made up of

silence [23]. Intuitively, during a silent period of a conversation we should not need to

transmit any packet and therefore maximize the energy savings of the WiFi radio used.

Our approach is to look for mutual silence where at time t, all RTP streams are silent

from both parties. That is, the payload in the RTP packets have no meaningful data. This

can correspond to a short silence period between two consecutive words in a sentence

or a pause in a conversation, for example.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 15

Although some codecs such as g.729b and G.273.1 3GPP provide Silence suppres

sion [25], these codecs are not always available. By implementing a lightweight silence

detection on the phone, this allows greater flexibility and allows SiFi to be used with any

voice codec.

In order to find the start of a period of mutual silence, we have two cases to deal

with. The first case is that the remote end of the conversation supports VAD. In this

case the silence detection is dealt with by the sender. By examining the RTP packets,

we can easily determine when the silence starts. For the second case where VAD is

not in use, we implemented a simple Digital Signal Processing (DSP) algorithm. This

algorithm and its associated problem, which is well studied in the Speech and Language

Processing research area, is known as Endpoint Detection. However, most recent

Endpoint Detection algorithms [28] [37], although highly accurate, are very computational

expensive. Since the end result of our research is to save energy, we decided upon a

lightweight threshold based algorithm that relies upon the amplitude of the audio stream

which from our analysis performs reasonably well.

The DSP algorithm we use is as follows. We set a threshold th . th is configured

manually to the noise level of a normal conversation. When the average audio level (over

the past k samples) are less than th , S ilence = tru e , where k is the number of audio

samples in a single RTP packet. When the average audio level equals or exceeds th,

Silence = fa lse .

For the purpose of simplification, we assume the VAD case in the following discussions

unless explicitly stated otherwise. Since we can observe the start of the mutual silence

period we need to determine how long the silence period will be so that we can maximize

the radio sleep time.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 16

2.2.2 ECDF Based Silence Prediction

In this subsection, we discuss in detail how to design the silence length prediction. An

accurate but simple (less computationally intensive) silence length prediction algorithm is

important as this helps achieve better conversation quality while at the same time saves

more energy.

To this end, we first analyze 7 Skype call traces which last 5 hours and 41 minutes

in total and contain 52,929 silence periods (65% of the call time). These Skype calls

are conducted by 3 different groups of participants. Group 1 and Group 2 each has

three participants using two Skype clients: one participant at one end, and two at the

other end. We collected 3 traces from Group 1, and 2 traces from Group 2. In Group

3, 4 participants use 4 Skype clients respectively for conference calls, and we collected

2 traces. The silence period lengths from the traces are used to build the empirical

cumulative distribution function (ECDF) as shown in Figure 3. From the ECDF, we

observe that the length of the silence period can range from 20ms to more than one

minute, with variation as large as more than 900ms. With this observation, we propose

a staged prediction algorithm that utilizes the conditional probability. The call traces

were gathered from conference calls with students as well as personal calls provided by

student volunteers.

Let X denotes the length of the silence period, and P(a) = P (X < a) be the

probability that the silence period X lasts less than time a. Then, the probability of the

silence period lasting longer than a is P (X > a) = 1 - P (a). Assume that the silence

period has already lasted for time a, the conditional probability that it will last longer than

(a + A) is:

E
m

pe
ric

al
 C

DF

%

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 17

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

77

Group 1 1to2 call trace 1
Group 1 1to2 call trace 2
Group 1 1to2 call trace 3
Group 2 1to2 call trace 1
Group 2 1to2 call trace 2
Group 3 4 clients call trace 1
Group 3 4 clients call trace 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Silence Period Length (s)

1.6 1.8

Figure 2.2: ECDF of Silence Length

P (X > a + A | X > a)
P (X > a , X > a + A)

P { X > a)
1 — P (a + A)

1 -
(2 .1)

Input: confidence interval ft, observed silence length a , E C D F
Output: predicted silence length A
on event that a silence period has lasted for time a, find the maximum A that satisfies
P { X > o + A |X > a) > 0
if no A can be found then

A = 0
else

a — a + A
retum(A)

Algorithm 2.1: ECDF Based Silence Prediction

With the ECDF, our prediction algorithm is able to look for appropriate value of A (i.e.

new increment in time) that has conditional probability P (X > a + A \ X > a) larger than

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 18

or equal to a given confidence interval /3. If such A can be found, the algorithm predicts

that if the silence period has lasted for time a, it would stay silence for the next period of

A with high confidence. By the end of each predicted period, the algorithm will predict

again if it detects that the silence period continues. The prediction loop breaks when

the silence period ends or no A value can be found with the confidence bound. This

algorithm is shown in algorithm 1.

We use R2 error value to evaluate the accuracy of the prediction, which is commonly

used to measure how well statistical models can predict the future outcomes. Let /* be

the predicted value, yt be the real value, and y be the mean of y,. R2 is computed using

Equation 2.2. With R? value closer to 1, the predictions are more accurate.

S S E =
i

S S T = £ > t - y) 2

I? = 1 -™ E (2.2)
S S T K }

We apply the prediction algorithm to the 7 Skype traces with the first half of the traces

as training data to build the ECDF, and predict for the second half and test its accuracy.

Given j3 = 65% and a initiated as 50ms, 6 of the prediction results have R2 value above

0.9 and the other one over 0.8.

2.2.2.1 Determine the Runtime Training Length

To determine the proper length of the training period, we compute the Kullback-Leibler

divergence [36] of the silence period length distribution. When a new call starts, the

system begins to collect the training data of silence periods in groups of 50 (usually

included in about 20s calling time). If the Kullback-Leibler divergence between the current

training set including and excluding the new group of silence periods is larger than a

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 19

predefined threshold K L thres, the new group of 50 silence periods is added to the training

data set, and the training continues. Otherwise, we know that the current training data

is enough to build a stable ECDF. When the training period ends, the prediction period

begins. KLthres is a design parameter. For example, with K L thres = 0.02, in one of our

traces the training periods stops after 500 silence periods, which lasts 193s in call time,

see Figure 2.3.

0.3

0.25

§ 0.2
0

1 0.15
b
_i

KLt. =0,02 thres0.05

Groups in Training Data Set

Figure 2.3: KL Divergence vs. Training Length

After the training period, we also check whether the ECDF needs to be updated with

every 50 new silence periods. If the Kullback-Leibler divergence raises above K L thres-

The system stops predicting and updates the ECDF with new silence periods. When the

Kullback-Leibler divergence is below K L thres, the prediction resumes.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 20

2.5
i/i

p = 0.8< 1
JC4—*CT1
Co_ l p = 0.5

L_oQ_
p = 0.2Q)Oc0>

(7)
TJ0)4—4*a
T5a)i—

0.5

CL

0.2 0.4 0.6 0.8

Observed Silence Period Length a (s)

Figure 2.4: Observed Silence Period Length a vs. Predicted Silence Period Length A

2.2.2.2 The Observed Silence Length a

Figure 2.4 show the analysis of the predicted silence period length with different observed

silence period lengths. For different values of confidence interval /3 , we observed that the

predicted silence period length A generally increases when a increases. When a silence

period starts, Algorithm 1 waits for an initial period of a before prediction, with the phone

on the CAM mode. If the setting of the initial a is too large, some silence periods may be

too short to predict. For longer silence periods, less energy can be saved with the long

initial waiting period. If the initial period a is too short, however, the predicted silence

period may be too short to save energy. Also, the lightweight silence detection is not

very accurate in classifying very short silence periods, even though it is very accurate for

longer silence periods.

Therefore, we decide to use a larger value of initial a and do not predict for very

short silence periods. We configure the initial value of a so that the first predicted A (a

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 21

sequence of A predictions are possible within the same long silence period) is larger

than 20ms. In our trace data, the corresponding initial a value is 50ms.

2.2.2.3 The Confidence of Prediction

3 R2 Mean Iteration Mean A
0.15 0.0237 1.1155 0.7846
0.20 0.2894 1.1636 0.6215
0.25 0.5778 1.2084 0.4998
0.30 0.6332 1.2641 0.4192
0.35 0.8044 1.3362 0.3509
0.40 0.8448 1.4246 0.3039
0.45 0.8902 1.5262 0.2612
0.50 0.9047 1.6576 0.2260
0.55 0.8965 1.8258 0.1925
0.60 0.9149 2.0046 0.1664
0.65 0.9251 2.2376 0.1425
0.70 0.9187 2.5303 0.1214
0.80 0.8946 4.0082 0.0679
0.75 0.9387 3.1789 0.0905
0.85 0.8750 5.5128 0.0472
0.90 0.7861 9.3979 0.0259

Table 2.1: Prediction with Different /?

For each silence period, our prediction algorithm iterates until the silence period ends

or no A can be found with the given confidence interval /?. We analyze the effect of (3 on

the prediction accuracy in Table 2.1. R2 is used to measure the prediction accuracy. We

observe that when the confidence interval j3 increases from 0.10 to 0.65, R2 increases

because each A is calculated with higher accuracy. But R2 fluctuates when (3 increases

after 0.65, and when (3 equals 0.90, the R2 drops to 0.7861. This is because the algorithm

can not find a A prediction for very large a with the given confidence interval.

In order to save more energy, large silence prediction A is preferred with a lower

confidence interval /?, but the prediction also risks large errors which may degrade the

quality of the phone call. We can estimate the expected error for each prediction of

A. If the silence period stops at some time x before the predicted time (a + A), the

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 22

voice packets arrived after x will be delayed. Also considering the beacon interval I in

the Power Save Mode, the delayed packets won't be received until the next beacon.

Equation 2.4 defines the expected error E of prediction which is also the expected delay.

We find the value of (3 so that for all possible prediction A the expected error is below a

threshold. Besides the prediction accuracy, we also consider the cost for the algorithm to

wake up and check for each iteration. For each silence period, the prediction algorithm

should not wake up too many times. From Table. 2.1, we can see the mean iterations

for predictions within one silence period increases as f3 increases. Considering both

accuracy and cost, in our experiments, we limit (3 values within the range of 0.25~0.6.

We found im peria lly that the phone call fidelity was of good quality for (3 values in that

range.

Time series models such as Autoregressive moving average (ARMA) and Autoregres

sive Integrated Moving Average (ARIMA) [17] were also examined, but the drawbacks

were many. We found a weak data correlation and low prediction accuracy, not to mention

the higher computation cost. Our ECDF based prediction algorithm is both efficient and

can predict the silence period length with high accuracy.

2.3 SiFi: Silence Prediction based WiFi Energy Adaptation

(2.3)

E V - P (X > * i) - P (X > * i - i) ^
 * d>

We propose SiFi: silence prediction based WiFf energy adaptation. As shown in

figure 2.5, SiFi is composed of the following main components: Modeling and Prediction,

WiFi Manager, and the Silence Classifier. The RTP Media Server is an optional

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 23

component included here to handle the case of VAD. Each of these components has

been added to the SIP user agent on Android.

> Playback
Buffer

RTP Media
Server

Silence
Classifier

Buffer

Modeling &
Prediction

Rem ote

W iFi
Manager

Kernel W iF i Driver

Figure 2.5: SiFi Architecture

Modeling and Prediction. Based upon the call history, we can determine how long we

can sleep for. Modeling has two modes: training and running mode. During training

mode, the modeling component is fed the observed silence period lengths from the

silence classifier. The cumulative silence period length data is stored in an internal

data structure. We transition to the running mode as soon as we have enough silence

period lengths. Immediately after entering the running mode, we compute the empirical

cumulative distribution function (ECDF) based on this training data. We also calculate an

appropriate a based on the ECDF.

The prediction component is idle during the training period. As input, the prediction

component receives two arguments: the silence period start event and /3 . We immediately

sleep for the predefined a milliseconds. Then we follow Algorithm 1. Based on the value

of /3 we predict the length of the sleeping period.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 24

WiFi Manager. The WiFi manager is responsible for putting the WiFi radio to sleep.

When the current WiFi power mode is switched to active we override the Adaptive PSM

and forcibly place the WiFi driver into PSM mode for a specified time period. Once the

time period expires, the driver is switched back to Adaptive PSM.

Silence Classifier. This component is responsible for detecting silence in both directions:

inbound RTP packets and outbound RTP streams. When RTP packets are received, the

silence classifier observes the silence start and silence stop events. We compute the

average amplitude level over each received RTP packet. By using a known threshold

value, we can detect if the current packet is a start or stop silence event.

Inbound RTP packet processing needs to deal with two separate cases. The first

case is when silent packets are embedded into the RTP stream or the non-VAD case.

In the non-VAD case, the silence classifier checks every packet. The silence classifier

also handles the case when VAD is enabled for a call. In this case, it has the same

responsibility for detecting silence, with an additional layer of complexity. In addition to

checking every received packet for the average amplitude level as before, the call state

is implicitly received through Comfort Noise (CN) packets and those packets with the

m a rke r bit set. Silence starts when a CN packet is received while silence stops when the

Marker bit is set. The silence classifier still computes the amplitude level of every packet,

in case the remote VAD implementation is not aggressive enough at detecting silence.

For the silence classifier to handle outbound RTP streams, we sample input from the

microphone and detect the average amplitude level. The sample interval is determined

by codec negotiation. As before, when the amplitude level drops the threshold th , a

silence start event occurs. Similarly, when the amplitude level exceeds the pre-defined

threshold, a voice event occurs. If VAD is enabled, we do not send silence packets. Only

voice RTP packets are transmitted.

The voice and silence states from both outbound and inbound are combined to

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 25

produce a joint event we call mutual silence. Mutual silence occurs when there is silence

both with the sender and receiver RTP streams. These mutual silence start and mutual

silence stop events are sent to the Modeling and Prediction component. To illustrate

mutual silence, we consider the following scenario: the receiver RTP stream is silent for

three seconds. Starting at time 0, the sender RTP stream alternates between one second

of silence, then one second of voice and so on until three seconds. This means the first

mutual silence period is between time zero and one. The second is between time two

and three.

RTP Media server. Finally, our last component is the RTP Media server. This is an

optional component included here to handle the case of VAD. We found an open source

RTP Media Server [27] that allows us to relay any RTP traffic including embedded silence

in the RTP payload. The media server has its own DSP algorithm and detects when

silence occurs. When silence starts, a CN packet is inserted. When voice starts, an RTP

packet with the marker bit is sent.

2.4 Android Phone Implementation

We implemented our design on the Sprint HTC Hero [63] with root access. This version

contains version 2.1 of Android with HTC enhancements. The Hero has the Tl WLAN

1251 driver which is part of the Android source repository that is freely available on top of

the 2.6.29 Linux Kernel. The implementation is comprised of two parts: the WiFi system

modifications and the application modifications done within the Android virtual machine

layer. We first start with the application, followed by system level modifications.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 26

2.4.1 Application Level Modifications

There are a number of VoIP clients available on the Android market. For our research,

we wanted one that is well established on the Android Market. A big plus was also to

find a package that was open source since we need to make a number of changes. One

such SIP User Agent [61], hereafter referred to as SIPua, is available for Android with

over 250K downloads from the Android Market and has high user ratings. It provides the

ability to make and receive VoIP phone calls using WiFi or a mobile data plan. It is able

to handle video and audio and a number of codecs are supported. It is comprised of third

party SIP and RTP stacks.

The silence classifier component is shared between the SIPua’s RTP sending and

receiving threads. We analyze the energy level of the payload of each RTP packet. We

first implemented the component in Java. We quickly realized, however, that the energy

calculation was too computationally expensive and the performance was unacceptable.

Using the Android Native Development Kit (NDK) [3] for a native code implementation,

we were able to obtain acceptable performance with a minimal performance penalty.

We measured the performance penalty to be a 3% energy overhead. The penalty was

realized by comparing a call with the silence classifier enabled for both inbound, outbound

streams to a call made with the silence classification disabled.

2.4.2 System Level Modifications

We introduce the WiFi Manager implementation. The WiFi Manager has two components:

the low level system implementation and the Application API. The latest Android system

(as of this writing version 2.2) is missing the functionality to forcibly switch the WiFi radio

from adaptive PSM to static PSM from the Android environment. We modified the Android

Virtual Machine to include this functionality, but quickly realized this broke other parts

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 27

FIFO

W iFi Manager

Android Socket

Application

Android Virtual Machine

Android Socket

W P A Supplicant
Y >

IOCTL

Kernel W iFi Driver

Figure 2.6: Android WiFi Architecture

of the system. As we discovered, although Android is open source, contributors can

add to the system various components that are not. By modifying the Android VM, we

would not be able to have a fair comparison since our modified VM would be missing key

components. Instead we needed a simpler design that would not require modifications to

the Android VM.

Figure 2.6 describes how the current WiFi subsystem works within Android. When

an application makes an API call to the WiFi sublayer, it passes through the VM and

connects to the W P A _S upp lican t daemon running on the system. To save energy,

when the WiFi radio is inactive, it runs for 15 minutes and then the driver is disabled in

the Linux kernel. When the Android system receives an indication that network activity

starts again, the driver is then loaded again. During the loading and unloading phase, the

W P A JS ap p lica n t daemon is also started and stopped. The W P A _ S u p p lica n t listens for

events through an Android Socket interface. The Android socket is essentially a UNIX

socket with some modifications.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 28

We created a separate daemon process called the WiFi Manager. This daemon

simply listens on a FIFO interface which our application has access to. Then, when

the Android application wants to send a special WiFi command, it can send a FIFO

message to the WiFi Manager. We used the Android NDK to implement a native code

interface to interact with the WiFi Manager. The WiFi Manager then communicates to the

W P A JS a p p lica n t daemon through the same Android Socket as the VM. We modified the

init scripts on the phone such that whenever WiFi is enabled and disabled, WiFi Manager

is also started and stopped, respectively.

Once the aforementioned system was in place, it was trivial to implement the

sleepforMSQ WiFi function. This function an integer millisecond argument and sends a

request to the WiFi Manager through the FIFO interface.

We also modified the WPA_supplicant daemon. When it receives the sleepforMSQ

command, it forcibly puts the radio into PSM mode. Then it pauses for the specified

milliseconds before changing the radio back to Adaptive PSM.

Finally, we modify the RTP Media Server. When a silence start event is observed, a

CN RTP packet is sent. Prior to our modifications, the RTP Media Server would only set

the marker bit when a voice start event occurred. With this change, the Silence Classifier

component can easily detect when silence starts and stops when VAD is enabled.

2.5 Performance Evaluation

Radio Status Screen ON Screen Off
CAM
PSM
Disabled

1070.00 mW
381.40 mW
345.94mW

726.05 mW
36.5 mW
4.9 mW

Table 2.2: Baseline Average Power

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 29

With the implementation in Sprint HTC Hero phone, we present system performance

evaluation in the Android platform. Our results demonstrate that our SiFi solution achieves

more than 40% energy savings in the smart phone.

2.5.1 Evaluation Setup

Threshold Metric
AutoPowerModeActiveTh
AutoPowerModeDozeTh
Transition 6

8 packets/sec
4 packets/sec
1.5 sec

Table 2.3: Adaptive PSM Settings in Sprint HTC Hero

Our evaluation setup consists of a Linux server that runs a media server [27] and

runs hostapd to serve as a WiFi AP. The media server is configured to host audio

recordings. When a specific dial string is called the recording is played back. The phone

is approximately one meter from the AP. The only delay incurred is isolated to the wireless

leg.

Figure 2.7: Energy Measurement Setup

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 30

We measure the energy use of the phone in real-time using a power meter from

Monsoon technologies. Figure 2.7 shows the setup for energy measurement. A simple

circuit is configured such that the positive terminal on the battery is insulated with electrical

tape and the positive feed from the power meter is instead connected to the phone’s

battery terminal. When the phone is powered on, we can measure in real-time the energy

usage.

Table 2.2 shows the baseline power usage of the phone. We measured the power

usage by placing the phone in ‘airplane mode’ which disables all the network interfaces

including Bluetooth and mobile radio. Clearly CAM mode is very expensive and should

be avoided if possible. Powering the screen is also quite expensive as well. The

measurements indicate the power consumed when the radio is idle.

2.5.2 Evaluation Method

AutoPowerModeDozeTh
threshold triggered

Transition

CAM
switching

A

switching
PSM t

(Initial state)
AutoPowerModeActiveTh

threshold triggered

Figure 2.8: Adaptive PSM State Transitions in Sprint HTC Hero

In the following sections we show the results on how SiFi compares with Adaptive

PSM in the VAD case and the NON-VAD case. The Sprint HTC Hero phone uses

Adaptive PSM to save energy [35]. Adaptive PSM is completely controlled by the WiFi

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 31

1600

1400

% 1200

| 1000
O

CL
800

600

Power Savings:
42.92%

-VAD + Adaptive PSM
VAD + SiFi

- p i
I I I y1 1

20 40 60 80 100 120 140 160 180 200

Figure 2.9: VAD + Adaptive PSM vs. VAD + SiFi

kernel driver. The Adaptive PSM sets the default power mode to PSM. When the network

interface starts to receive packets, it transitions to CAM mode by sending a NULL.Awake

packet to the AP. When the wireless network interface is idle and the driver desires to

switch to PSM, it sends a NULL:Sleep packet to the AP.

Power Savings:
39.85%

non-VAD + Adaptive PSM
non-VAD + SiFi

1700

_ J 500
i | ' ; > , p , , j ■ ’ I . ' I ' - I ') 11 _ i'

| 1100h

IX 900-

700

■ t

ti

40 60 80 100 120 140 160 180 200
Time (s)

Figure 2.10: non-VAD + Adaptive PSM vs. non-VAD + SiFi

In Table 2.3 we see the settings for Adaptive PSM for the Sprint HTC Hero.

The AutoPowerModeActiveTh parameter refers to the number of packets necessary to

trigger the phone to switch from PSM to CAM mode, while the AutoPowerModeDozeTh

parameter shows the threshold value necessary to switch back to PSM mode. We

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 32

note these settings are the default settings for this phone. The transition <5 parameter

is not configurable (without hacking the driver, as we do in the next section). We

observed this parameter by sending a small packet burst to the phone that exceeds the

A utoP ow erM odeA ctiveT h threshold. By watching the kernel logs on the WiFi Access

point, we recorded the time difference from when the STA returned to PSM after switching

to CAM. We also determined that no other network traffic was sent on the interface.

Although the observed transition 5 value might be unique to this phone, others have

also observed similar behavior. [59] cites several variations in implementation among

common Smartphones. Aggressive Adaptive PSM, is when the transition S is small.

Default Adaptive PSM is when the transition S is longer such as the Sprint HTC Hero.

When we refer to Adaptive PSM, we are referring to the default case.

There is tradeoff between the aggressive and default adaptive PSM. As noted in [59],

Aggressive Adaptive PSM can in some cases lose packets, and ultimately consume

more energy when the AP is under heavy use and the transmit buffer is full. This is best

illustrated by the following example. Suppose the phone is in CAM mode due to a high

packet receive rate. Some time later, the AP transmit buffer becomes full from some

other traffic. If it takes longer than the transition S to process the packet through the

transmit buffer, the phone will go to sleep and the packet may be lost.

2.5.3 SiFi Energy Savings

In this section we show how SiFi improves both the VAD and non-VAD cases. SiFi is

able to efficiently save 40~43% average power over Adaptive PSM.

Figure 2.9 shows the results of VAD with SiFi enabled. For this call, [5 was set to

.5 and a to 50ms. A 43% power savings was achieved over Adaptive PSM. At certain

extended voice periods of the call, for example at 150 seconds, the power levels of

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 33

Adaptive PSM and SiFi are the same. Similarly when extended silence periods occur,

Both Adaptive PSM and SiFi can take advantage. For instance, during the periods right

before and after the 100 second mark we see the energy use drop significantly. Adaptive

PSM performs poorly due to the long transition <5.

We present the results of non-VAD + SiFi in Figure 2.10 . ft was set to .25 and a

to 50ms. When SiFi detects silence and puts the radio into PSM mode, RTP packets

continue to queue up at the AP. This results in extra overhead since the phone has to

PS-POLL every packet queued at the AP. Therefore, even though /3 is set to half of the

setting used for VAD, the overall power savings are slightly less. Compared to Adaptive

PSM, SiFi has 39% power savings. Since RTP packets are always sent even during

silence periods, Adaptive PSM never switches to PSM. Once a call is established, there

will always be a packet rate that exceeds the A u toP ow erM odeA ctiveT h threshold.

To be fair, since the Android phone has a very long transition S setting, we modified

the WiFi driver such that the transition S was as close to a as possible. Without

major modifications to the driver, the lowest setting we were able to maintain was

approximately 70ms. Adjusting the transition 5 to anything lower than 70 caused stability

issues(exceeding the Active threshold did not always keep the driver in CAM). We

compared SiFi vs. Aggressive Adaptive PSM and a non-VAD call. In this case, SiFi

clearly wins out because the amount of RTP traffic does not change during silence

periods, so it will never switch to PSM. Secondly, we compare a VAD call with SiFi vs.

a VAD call with Aggressive Adaptive PSM. In this case, SiFi has a 34% improvement

(1070 vs 710 mW).

2.5.4 SiFi Application Fidelity

We evaluated the application fidelity of SiFi by using the industry standard for evaluating

Voice Quality, the Mean Opinion Score (MOS). The MOS scale ranges from 5-1, with

CHAPTER 2. SIFI; SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 34

(5) best quality, (4) High quality, (3) Medium quality, (2) Low quality and (1) Completely

unusable. VoIP is particularly susceptible to packet loss and delay. The E-model [19] can

be used to calculate the MOS rating of a call.

The MOS score was originally designed to be a subjective measurement of call

quality. The E-model can be used to estimate the MOS score based on the observed

packet loss, one way delay and codec metrics from the codec in use. The E-model

computes the R-factor which can then be used to calculate the MOS score as follows:

1 + 0.035R + 7 * 10- 6R(R - 60) (100 - R).

The R-Factor can be calculated as R ~ 100 - I s - I d - I ef + A. Where I d is the

delay impairment, Ief the loss impairment, I s the signal-to-noise impairment and A

the expectation factor. The latter is a subjective measurement that is higher when

users expect higher call quality. We set A to zero as in [10,19] since it is not easily

quantified. Since we are using the g.711 codec, the R-Factor can then be simplified

to [19]: R ~ 94.2 - 0.024d - 0.11(d - 177.3) H(d - 177.3) - 30£n(l + 15e). Where d is the

mouth-to-ear delay comprised of the codec delay, the delay due to the jitter buffer and

the network delay, e is the error rate comprised of total packets lost and late packets

dropped by the jitter buffer. H is a heavy-side function where H (X) = 0 , X < 0 and

H(X) = 1 , X > 0.

The g.711 coding delay is 20ms and we assume the jitter buffer delay is 60 ms.

Finally, the network delay is calculated as follows: We assume the one way delay across

the US is 40ms to account for VoIP calls over the Internet, d is then equal to dnet + 120ms,

where dnet is the delay caused by WiFi. dnet is computed by measuring the one-way

delay from the media server to the phone. We measure the one-way delay by using the

same method in [10]. We assume that the delay is identical in both directions and remove

the clock skew according to [45].

W e calculate the ejitter by assuming any packet with jitter higher than the jitter buffer,

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 35

Description Length /iOWD(ms) ^jitter MOS
non-VAD 1 hour 85 1.4% 3.76
VAD 10 minutes 63 1.4% 4.03

Table 2.4: SiFi Fidelity

that is 60ms is lost. We made a number of 10 minute calls comparing both the non-VAD

and VAD and show the results in Table 4. The overall MOS score on the VAD call

slightly outperforms the non-VAD call since only voice packets are transmitted. The MOS

is calculated by adding the extra 40ms Internet delay to the shown values. The overall

results show that SiFi causes minimal call quality degradation.

Call SiFi #People Duration
(min:sec)

//Power
(mW)

/uOWD
(ms)

&jitter MOS

#1 y 2 people 26:38 615 68.6 0.63% 4.28
#2 y 3 people 48:53 618 69.3 2.03% 4.15
#3 y 4 people 50:00 675 69.3 1.14% 4.25

Table 2.5: Multiple Longer Call Tests: VAD + SiFi

2.5.5 SiFi Robustness for Longer Calls

In this section, we show the robustness of SiFi for longer calls. Different call scenarios

are explored: longer call lengths, different languages, different genders, and different

numbers of people in the phone call. Table 2.5 describes the following scenarios: Call

#1 consists of 2 people (both females & using Chinese) conversing for 26 minutes. Call

#2 is a 3 person (all males & using English) conference lasting for 48 minutes. Call #3

is a 4 person (all males & using English) conference lasting for 50 minutes. In all three

combinations, SiFi shows consistent high power savings. For reference, the average

power consumption with VAD + Adaptive PSM enabled on Call #2 and SiFi disabled was

recorded as 1263mW. For longer calls, SiFi performs 51% better than VAD + Adaptive

PSM. While saving energy, the quality does not suffer as well, the MOS in all cases is

well above 4.

CHAPTER 2. SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAPTATION 36

We also tested the stability of the training period. First, training was enabled for call

#2 as reflected in Table 2.5. Call # 3 was made using the training data from call #2. Less

than a 10% difference in is apparent between the two calls. As was shown in Figure 2.2,

the silence period distributions observed in the traces are similar. This shows that if

training from a previous call is re-used, significant energy savings can still be realized

while maintaining high fidelity.

2.6 Conclusions

In this work, with lightweight digital processing, and runtime modeling and prediction,

we exploit during runtime the silence periods of a VoIP call. Thorough statistic analysis

is conducted to ensure high modeling and prediction accuracy and low cost for the

runtime silence exploitation. To apply silence period exploitation to save smart phone

WiFi energy, we also propose the design, implementation, and real system evaluation

of a silence prediction based WiFi energy saving framework called SiFi. By making

modifications to the low level system architecture and also application components, SiFi

is able to directly control the WiFi power save mode based on silence prediction. Our

real system evaluation running VoIP application demonstrates that SiFi saves more than

40% energy compared to the standard Adaptive PSM solution deployed in Sprint HTC

Hero. We achieve high call fidelity by sleeping during silence periods and active during

voice periods. Our real system evaluation also demonstrate SiFi is resistant to network

congestion and robust in multiple phone call scenarios.

Chapter 3

SAPSM: Smart Adaptive 802.11 PSM

WiFi on Smartphones is a significant source of energy consumption. Constantly Awake

Mode (CAM) consumes 20 times more power than Power Save Mode (PSM) when

idle [54]. PSM consumes little power at the cost of added latency of up to 300ms. Latency

can cause performance issues for interactive applications such as web browsers [35]

and real-time VoIP applications [47], CAM consumes high power but delivers high

performance and low latency.

There are a number of existing PSM and adaptive PSM mechanisms [31] [35] [32]

that utilize PSM to save energy (described in the background section). Adaptive PSM

alternates between PSM and CAM based soley upon network activity thresholds. Clearly,

the choice between PSM and CAM should be done carefully. But what criteria should be

considered when the switch is made? Existing Adaptive PSM behavior on Smartphones,

we find through controlled experiments, has a simple threshold based approach reacting

to aggregate traffic volume. Unimportant traffic bears the same weight as foreground

highly interactive traffic.

How can Adaptive PSM on Smartphones be improved? Clearly the Adaptive PSM

implementations we evaluate here are not adequate. Certain applications have varying

37

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 38

delay tolerances. Background traffic with a high delay tolerance should use a strategy

optimized for energy conservation. On the other hand, interactive traffic should be

optimized for performance. STPM [1] is a pioneering work that considers the priority

of different traffic flows. However, it requires application developers to indicate traffic

intent through the use of a custom API. With the prevalence o f application stores like the

Android Market with thousands of developers of varying skill levels, it is impractical to rely

upon developers to accurately provide application intent through an API. For instance,

developers generating revenue from advertising may not be motivated to indicate their

application is low priority background traffic. Recently, [50] has shown that 65-75% of

energy consumed by free Smartphone apps is spent on downloading ads and uploading

user tracking information.

A key challenge is how to determine which applications are high priority without

assistance from application developers. Non-technical users may not be able to determine

which applications should be high priority. Once an application’s priority is established,

an additional challenge is how to ensure an application’s priority is tracked through the

system in an efficient and energy conscious manner.

In this work we present SAPSM, a Smart Adaptive PSM solution that prioritizes

network traffic based on application priority, which we now define. Each application

is tagged with a priority. When an application is set to high priority, the application’s

network traffic is permitted to adaptively switch to CAM. A low priority setting for an

application means that application’s network traffic is not permitted to switch to CAM,

but will instead remain in PSM1. Therefore, SAPSM works with any Android application

without any modifications. Additionally, any traffic not associated with an application

is considered low priority to save more energy. SAPSM is able to handle both high

1Low priority traffic remains in PSM for most traffic flows. W e experimentally determine that data rates
exceeding 3Mb/sec while in PSM consume more power than in CAM. When high data rates are observed,
Low priority traffic always chooses the path with lowest energy consumption. See the Evaluation section for
more details.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 39

priority and low priority traffic simultaneously. Only high priority applications are permitted

to switch the WiFi driver to CAM by incrementing a high priority traffic counter, which

can only be incremented by high priority traffic. SAPSM unobtrusively determines an

application’s priority by observing network usage patterns and assisting users with a

short list of applications that might benefit from high priority Adaptive PSM behavior.

Each application’s priority is stored within a kernel module. SAPSM tracks network traffic

priority by comparing the owner of the active listening socket associated with the current

traffic flow to a list of known high priority applications. If a match occurs, treat as high

priority. If no match is found, the app is treated as low priority.

In summary, motivated by current Adaptive PSM implementation’s inability to distin

guish network importance, We contribute SAPSM with the following features:

• In SAPSM, we propose the Core component to augment Adaptive PSM behavior by

favoring application priority compared to aggregate network traffic. We maximize

energy savings by staying in PSM for low priority applications when it is expedient

to do so, while switching to CAM for high priority applications.

• In SAPSM, we propose the Application Priority Manager (APM). The APM is

responsible for observing network behavior. By unobtrusively gathering feedback

from users it provides an easy to use mechanism for setting application priority.

• We implement SAPSM on Android. Using extensive experiments performed on an

Android HTC Hero Smartphone, we show that SAPSM provides significant energy

savings for Android applications that have background low priority traffic: 56% with

an RSS reader application and 44% with a popular streaming audio application.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 40

3.1 Background and Motivation

In this section, we first explain the background knowledge of CAM, PSM, and Adaptive

PSM. Then, we take two steps to examine Adaptive PSM implementations on a multitude

of Smartphones and also a few other devices: in the first subsection, we report on the

internals of the Sprint HTC Hero driver; next, we analyze Adaptive PSM implementations

by sending spurious network traffic unassociated with any application. By observing

Adaptive PSM behavior of different Smartphones, we show that no commercial imple

mentation of Adaptive PSM that we test is able to differentiate between important and

unimportant traffic. Every implementation switches to high power CAM when spurious

traffic is received. This wastes energy and shows the need for improvement.

3.1.1 Background

First standardized in 1999 [31], the static PSM approach was developed for the client

to conserve energy. The client and the access point (AP) agree upon a beacon period.

Between the beacon periods, the AP buffers packets. Right before the beacon period,

the client awakes and listens for the beacon. The beacon contains a Traffic Indication

Map (TIM), which tells the client if packets are currently being buffered. If packets are

buffered by the AP, the client will send a PS-POLL message to the AP. The AP will send

a data frame back to the client. The data frame includes a MORE field which indicates if

more packets are buffered. The client continues to PS-POLL until no further packets are

buffered. The static PSM approach saves energy by keeping the radio off except during

the beacon period where it briefly wakes up to communicate with the AP.

The static PSM approach saves energy by minimizing the amount of time that the

WiFi radio is active. However, there is a tradeoff. Static PSM adds a delay of 100-300ms.

In between beacon periods when the client’s WiFi radio is off, any incoming packets

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 41

are buffered at the AP. This added delay impacts real-time applications such as VoIP

and interactive applications like web browsers [35]. Because of this issue, Adaptive

PSM [35] [59] is now commonly used to switch between CAM and PSM. The client

switches to CAM based upon aggregate traffic volume. To switch between the two

modes, the client sends a NULL frame with the POWER field disabled. When the AP

receives the NULL frame, it will cease to buffer packets for the client. To switch back to

PSM, the client sends a NULL frame with the POWER field enabled. In this case, the AP

is now aware the client is in PSM and will start to buffer packets for it.

After the client switches operation to CAM, it will stay in CAM for an idle timeout period

before switching back to PSM. This tail energy cost, also prevalent in 3G networks [10]

differs between implementations. Our results show a 1.5 second idle timeout period in

the HTC Hero, while [59] shows a 20-25ms timeout period for an iPhone 3GS. In the

following subsections, we show the results from our survey of various devices.

3.1.2 Sprint HTC Hero Adaptive PSM

Now we examine the source code of the Sprint HTC Hero WiFi driver and describe its

Adaptive PSM implementation. Due to the open-source nature of Android, we were able

to obtain the complete source of the driver, later modified in the implementation Section.

The driver is built as a kernel module and is loaded on-demand by Android.

The behavior is illustrated in Figure 3.1. During a one second interval, which is not

configurable, both ingress and egress frames are counted. If the frame count exceeds

a configurable UP threshold, the driver will switch to CAM. When the frame rate drops

below a configurable DOWN threshold, it will switch back to PSM.

Since CAM consumes much more energy than PSM, we contend that certain packets

should not impact this decision. To illustrate this point, in the next section we send

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 42

NO
YES

YESNO YESNO
T im er Expired?, PSM?

YES
NO

Counter >
IP threshold'

Counter *
DOWN

threshold'

S tart

Count Packets
received

S tart Tim er
(reset)

Change Power Mode

Figure 3.1: Sprint HTC Hero Adaptive PSM implementation; initial state is PSM, timer is
set to one second.

unwanted traffic to a number of Smartphones. In all cases, each Adaptive PSM imple

mentation switches to CAM unnecessarily. In contrast to our approach, which emphasizes

the priority of network traffic based upon Application priority, existing implementations

place equal weight on all network traffic.

3.1.3 Adaptive PSM Behavior of Different Smartphones (and other Hand

held Devices)

How different WiFi driver implementations react to various network traffic is discussed in

this section. The methodology for testing the Adaptive PSM behavior is as follows. First,

a Linux server is setup running hostapd to operate as an Access Point. The devices were

placed less than one meter away to minimize delay and retransmissions. Second, all

applications accessing the network were stopped to ensure the only source of network

traffic to/from the device is due to the packets transmitted during the test. Finally, all

network interfaces besides WiFi, such as 3G/4G and Bluetooth were disabled.

We test the Adaptive PSM behavior of a Blackberry Curve, three Android phones

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 43

40

35

“u 30<u
t/>
~ 25

Blackberry
a—a Incredible
■H i iPad
© © iPhone3

iPhone4
o o Hero
■*-r DroidX
j— >• Kindle

u 20

« 15 o

F 10

10 20
pkts/sec

Figure 3.2: Adaptive PSM implementation response to UDP network traffic.

from various manufacturers, a Kindle, an iPhone3, iPhone4 and iPad. The methodology

of these tests is described in this section.

By observing 802.11 management frames Adaptive PSM behavior can be observed.

Recall that the client utilizes the POWER field in NULL frames as an indication to the AP

when to switch between CAM and PSM. The difference in timestamps between NULL

frames with opposing POWER settings indicates how long the client stayed in CAM or

PSM.

To determine if the test is successful, we measure the packet rate {UP threshold) at

which the phone will remain in CAM for an extended amount of time. First, one packet

per second of a given traffic type is sent to the device. Gradually the rate is increased

up until 20 packets per second. Each test lasts for 30 seconds and is repeated for each

traffic type.

Different Adaptive PSM implementations have varying Adaptive PSM bandwidth timer

windows. As described previously, the HTC Hero has a timer of one second. Other

devices, like the iPhone, have smaller timer windows sometimes referred to as aggressive

Adaptive PSM timeout [59], To compensate for this variation, if the device stays in CAM

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 44

for at least 50% of the time we assume the U P threshold has been reached.

To illustrate the problem we send Multicast, UDP, ICMP and TCP based traffic to

gauge each device’s Adaptive PSM response to unwanted traffic. Unwanted traffic in this

context means that traffic is generated where there is intentionally no listening socket on

the device. For consistency, we keep the packet size to 512bytes across all tests, except

for TCP2 which is 60 bytes.

Smart devices Traffic type reaction
Model Version U P

th re s h o ld
MCAST UDP TCP ICMP

iPhone4 4.2.1 10pkts/sec N Y N Y
iPadl 3.2.2 12pkts/sec N Y N Y
Curve-8530 5.0.0.973 12pkts/sec N Y N Y
Droid
Incredible

2.2 2pkts/sec N Y Y Y

DroidX 2.2.1 1 pkt/sec N Y -Y ' - y

..HTC Hero..... 2.1 1pkt/sec ""Y........ Y Y ..Y
Kindle 3.1 2pkts/sec Y Y N Y

Table 3.1: Smart devices tested

The results are shown in Table 3.1. The U P threshold is measured for each device.

The next several columns show what traffic types can trigger the device to switch to CAM.

In most cases, MCAST packets were ignored and did not trigger the device to switch to

CAM. All devices were susceptible to the ICMP and UDP variations, while three devices

were vulnerable to the TCP traffic.

Figure 3.2 shows the response of each device to the UDP traffic test. Due to the

connectionless nature of UDP datagrams, it is easy to understand why all devices tested

are susceptible to unwanted UDP traffic. Although some devices have a higher UP

threshold than others, all devices react to this kind of traffic once the packet rate is

increased. By observing this figure, we can determine what the UP threshold for each

device.

As shown, all adaptive PSM implementations are triggered by unwanted network

2Since TCP requires a connection to be established first and since there is no listening socket, we
generate a SYN packet to a non-listening TCP port on the device. The host responds with an RST packet.
A SYN packet is 60 bytes: IP 20 bytes + TCP 40 bytes.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 45

traffic. Adaptive PSM behavior is implemented within the WiFi driver which is responsible

only for the MAC layer. Any unwanted traffic that is detected by examining layer 3 and

above will not be detected. Therefore, current implementations are not able to determine

which packets should influence Adaptive PSM behavior without additional information

from the TCP/IP stack. We discuss our solution to this problem in the next section.

3.2 SAPSM Design

In order to address the challenge of what traffic is permitted to influence Adaptive PSM

behavior, we present SAPSM (Smart Adaptive 802.11 Power Save Mode). SAPSM

is designed with the following constraints in mind: (1) Minimal user interaction; even

non-technical users can use the system. (2) Performance must not be impacted; the

critical-path is respected. (3) Any hints from either the Android system or individual

applications are honored.

Android

Application Priority Manager

User Space

Kernel Space

I
Netlink Socket

T

SAPSM
Core

APPHandler

L3/L4 Handler

1
TCP/IP Stack

W iFi Manager
WiFi

Driver

PHY

Figure 3.3: SAPSM Architecture; the packet flow is diverted through the SAPSM core
kernel module.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 46

The first step in the SAPSM system is to observe individual usage metrics of a specific

app running on the phone. This entails recording low level network characteristics and

usage patterns, such as the data rate an application uses, which can be used to train

a classifier. We develop a classifier which is trained with an assortment of applications

specifically chosen which have diverse network patterns. We conduct a user study

where users interact with these applications and set the priority of applications. From

these results we create a classifier. This classifier can then be used to compare new

applications to the training done in our user study.

After the individual usage patterns are observed for an app, these usage patterns are

compared with the classifier. By comparing the usage patterns of the existing application

with known patterns learned from the classifier, the priority of each application can be

estimated with minimal user intervention. Once the priority is determined, the kernel

component of the SAPSM system will ensure that the system stays in PSM when low

priority applications transmit network data or adaptively switch to CAM based upon the

amount of traffic for high priority applications.

The SAPSM system is designed to work autonomously without assistance from the

Operating System. However, any hints given are freely utilized. When the screen is off,

we assume that the phone is not currently actively used. We then set the entire system

to low priority to save energy. This is a reasonable assumption, since by turning the

screen off, Android will disable the WiFi driver after 15 minutes. To get around this issue,

some applications such as Pandora and Skype keep the screen on, but very dim, when

network traffic is anticipated for long periods of time.

Background and Foreground Traffic: The Android API provides developers with

several options for retrieving data in the background. Background data be used used to

enable a push notification background service [16]. Android provides multiple ways of

running data in the background: Background threads and Android services [7] are just two

CHAPTER 3, SAPSM: SMART ADAPTIVE 802,11 PSM 47

such methods. Android services or background threads, however, are not necessarily an

indication of low priority intent. For instance [61] uses a background service for receiving

delay-sensitive RTP packets. Therefore, we cannot rely upon this factor alone to indicate

low priority intent.

3.2.1 Architecture

In summary, the SAPSM system saves energy on the device with smart WiFi Power

management. By receiving hints from the Operating system, and confirmation from

end-users, the SAPSM system is designed to intelligently save energy on Smartphones.

The SAPSM system architecture is described in Figure 3.3. In order to address all

of the design criteria mentioned previously, the SAPSM system includes components

running at the Kernel level and within Android. These modules are the WiFi driver

modifications WiFi Manager, the kernel component SAPSM core, and an Android

application component, the Application Priority Manager.

WiFi Manager is a component of the Smartphone’s WiFi driver that is responsible

for exposing the internals of the Adaptive PSM implementation to be controlled by the

SAPSM Core kernel module.

SAPSM Core is a kernel module responsible for determining the priority of packets

traversing through the network stack. It performs a check if the current packet either

originated from or is destined to an application running on the device. If the socket is

currently paired to an application, it determines the priority of the application by performing

a lookup in the high priority application table. If the current packet is paired to a high

priority application, it will update the Adaptive PSM traffic counter in the driver. Otherwise,

the traffic counter will not be updated.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 48

Application Priority Manager is an Android application that runs as a background

service. It gathers usage metrics of Android applications running on the phone. Based on

inferences gathered from these metrics, hints are provided to the end-user regarding the

priority of the application. Finally, it is responsible for communicating application priority

settings to the SAPSM core.

3.2.2 SAPSM Core

The SAPSM Core module functionality is detailed in this section. We describe how we

track each application’s network traffic and how applications priority is enforced.

Inbound Packets: When a packet first enters the WiFi interface, the driver does

checking on the MAC header and passes the packet on to the networking stack. Before

the packet is processed by the networking stack, the packet is intercepted by the kernel

module. We check the destination port number and determine if there is a process

listening on that port. If a valid process is found we compare the UID of the process

against the list of known high priority applications.

Android pairs each application to a unique UID [4] allowing efficient matching of

Android Application to sockets. If the packet is deemed to be high priority, the driver’s

Adaptive PSM traffic counter is updated. This allows traffic only from High priority

applications to trigger the WiFi driver to switch to CAM.

Outbound Packets: When an outbound packet is sent by an application, the packet

is intercepted before being processed by the networking stack. As with inbound packets,

checks for socket validity and valid UID are also done. We then rewrite the IP header by

setting the TOS bit and recalculate the IP header checksum. Then the packet is returned

to the networking stack for normal processing. When the packet eventually arrives at the

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 49

WiFi driver, if an IP header with the TOS bit set exists, the Adaptive PSM traffic counter

is updated.

The UID validity check is performed to check the priority of the userid of the socket’s

owning process. The High-Priority list contains userids of high priority applications. The

High-Priority list is updated over a netlink socket by the Application Priority Manager.

To summarize, the SAPSM Core kernel module permits only high priority packets

to switch the WiFi driver into CAM. The WiFi driver looks only at the high priority traffic

counter to adaptively switch to CAM. This design allows both traffic types to occur

simultaneously, since only the high priority packets can increment the high priority traffic

counter.

3.2.3 Application Priority Manager

To facilitate non-technical users setting priority for each application, we design the

Application Priority Manager (APM) that is implemented as an Android service. When

the WiFi interface is active, it polls the Kernel using the TrafficStats API for all available

per application statistics as described in the implementation section. The TrafficStats API

provides us with the total amount of bytes each application has transmitted and received

at a given time. By polling every few seconds (one second in our evaluation) we can

determine the data rate that each application is using. Each individual poll performs a

low impact atomic readQ from the /proc file system which has a low energy consumption.

By polling every second we can determine the current data rate.

Through the TrafficStats API, APM collects the following four statistics. RXBytes: the

total received bytes by the WiFi driver. TXBytes: the total transmitted bytes by WiFi

driver. RXRate: receiving data rate in KBytes/sec. TXRate: transmitting data rate in

KBytes/sec. For each application, RXBytes and TXBytes reflect the total traffic while

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 50

RXRate and TXRate reflect instantaneous traffic. These four statistics together capture

each application’s ingress and egress traffic.

With the collected information of each application’s WiFi usage, APM uses an offline-

trained classifier (trained through our user study data detailed in the next section) to

classify each application into either high priority or low priority. While this information is

being collected each application is set to low priority. We select low priority by default.

This allows users to save energy on newly installed applications during the data gathering

phase. If the latency introduced by PSM noticeably places the usability of an application

in question, the user can manually set the application’s priority to high.

Top Network Consumers'r

Andro id Marke t

Ti t ib a p p l i c a t i o n ns. iy i - c e r n s ! o \
W o u l d y o u h k u t o n i . t k t - i t h i ^ l i
p r i o r i t y ?

Figure 3.4: The pop-up window to assist user decision.

The application priority decision is then offered for confirmation to the end-user. While

this process could be completely automated, we require confirmation from the end-user

because this decision can impact the battery life of the device. Also, this feedback can

eventually be used to train an individualized classifier which we reserve for future work.

If an application is classified as high priority, APM pops up a window and asks the user

whether this application should be set to high priority (Figure 3.4). APM then stores

the user’s decision in a database and updates the SAPSM Core kernel module with the

userid of the application in question.

In APM design, we choose Support Vector Machine (SVM) to differentiate applications

into high priority and low priority based on the collected information of each application’s

WiFi usage. SVM is one of the best classifiers and has been successfully applied

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 51

in many real-world classification problems, including text categorization [34], image

recognition [52], hand-written digit recognition [20], and bioinformatics [33]. In general,

SVM has four advantages over other classifiers [13] [21]: (1) the optimization problem

involved in SVM is a convex optimization problem, whose local solution is also a global

solution: (2) it is able to achieve high accuracy with a relatively small number of training

examples; (3) it scales well with data dimensionality: (4) it is fast to execute at runtime.

These four nice properties of SVM make it a perfect fit for our Smartphone application

priority management.

3.3 Implementation

We implement SAPSM on the Sprint HTC Hero [63]. The phone comes with the Tl 1251

WiFi chipset which is capable of 802.11 b/g. The driver is freely available and is part

of the Android Linux Kernel tree. The Android platform is a natural choice because the

source code is freely available. The implementation consists of the SAPSM core system,

implemented completely at the kernel level and the Application Priority Manager, which

is developed as an Android application.

SAPSM Core System. The SAPSM Core system is implemented as a Linux kernel

module and is dependent upon the WiFi driver, also implemented as a module. Android

loads and unloads the WiFi driver on demand. The user has the ability to load and

unload the module at will. The SAPSM core design requires access to the WiFi module

to update the traffic counter. This causes dependency issues if the WiFi driver needs

to be unloaded. To address this problem, we implement (un)registerQ functions in the

SAPSM module and export them so that they are available to the WiFi driver. When

the WiFi driver is loaded it registers the UpdateTrafficCounterQ function with the module.

When the WiFi driver is unloaded, SAPSM is notified with the unregister() function. The

SAPSM kernel module is loaded at boot time to avoid any further dependency problems.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 52

We listen on a netlink socket within the SAPSM module. In order for the Application

Priority Manager to connect to the netlink socket, we require the use of raw sockets

which requires root access. Since Android applications do not run with root privileges for

security reasons, we developed a “ netlink manager" system service with root privileges,

“netlink manager” listens for packets with a FIFO socket interface and then relays the

packet through the netlink socket to the SAPSM kernel module.

We use the Linux Netfilter API [48] for packet interception in the SAPSM module

which can be used to register a hook for inbound and outbound processing.

We store the list of high priority applications in a linked list that is kept persistent

after a system reboot. The Application Priority Manager maintains an internal list of high

priority applications for persistency. When the system is rebooted, the list is pushed to

the kernel module through a netlink socket.

Application Priority Manager. The Application Priority Manager uses the Android

TrafficStats API for the periodic check of network statistics per application. The Traffic

Stats API retrieves information from the Android specific location of/proc/uid_stat/%UID/

directory. Each time a packet is transmitted or received, this /proc directory is updated on

a per user basis. This allows a detailed snapshot of each application’s network usage.

The Android system supports both UDP and TCP packets per application [5].

3.4 Evaluation

In this section we evaluate the SAPSM solution by answering the following questions;

(1) Do low priority applications save energy over high priority applications? We address

this by measuring the power consumed by Adaptive PSM, static PSM and SAPSM while

conducting the load tests explained in the motivation section. (2) How does the SAPSM

solution save energy with a typical use case? We address by comparing energy use of

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 53

low priority applications using SAPSM and those same applications with Adaptive PSM.

(3) Does general networking performance suffer for applications placed into high priority?

We determine that the SAPSM implementation does not impede high priority applications

by comparing Adaptive PSM to SAPSM high priority using a networking benchmark

application.

3.4.1 Evaluation Method

For performance testing, we use an off the shelf access point and router. A laptop is

configured with to the router via Gigabit Ethernet. The Smartphone is connected to the

router via WiFi.

Ping Multicast UDP TCP

Traffic Type

Figure 3.5: Comparison of power consumed from ingress traffic with no listening socket.

We use the Monsoon Solutions Power Monitor [44] to measure the energy consump

tion on the Hero Smartphone. The Power Monitor is configured by blocking the positive

terminal on the phone’s battery with electrical tape. The voltage normally supplied by the

battery is supplied by the Power Monitor. The Monsoon records voltage and current with

a sample rate of 5 kHz. We disable all radio communication except for WiFi.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 54

3.4.2 Low Priority Application Behavior

In this section we evaluate SAPSM behavior with low priority applications. We first

evaluate behavior with network traffic with no listening socket (Multicast,UDP, TCP,

ICMP). Next, we experimentally determine what point is it expedient to switch to CAM if

the goal is to maximize energy savings.

3.4.2.1 Traffic with no listening socket

In this section we evaluate the behavior of SAPSM, Static PSM and Adaptive PSM when

subjected to traffic not associated with a listening socket. We repeat the load tests

described in the motivation section. The applications were placed in low priority for the

SAPSM case. All categories of traffic were transmitted at 20pkts/sec for 30 seconds.

tfiQ?

S? 40 <1)c 30 y
UJ '

Adaptive PSM

llllllllilinr
1 1.5 2 2.5 3 4 5 6 7 8

Data Rate (Mbit/sec)

Figure 3.6: Energy sdf inversion: 10MB file downloaded w/varying data rates.

Adaptive PSM switches to CAM for the duration of the test due to the high traffic

levels and results in significantly higher power consumption (340%) compared to SAPSM

as shown in Figure 3.5. Adaptive PSM has no way to distinguish unwanted traffic

from necessary traffic. This test shows the potential for unnecessary excessive power

consumption. Since traffic not associated with a listening socket is treated as low priority

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 55

traffic by SAPSM, SAPSM is able to save significantly more energy than Adaptive PSM.

SAPSM has an overhead compared to Static PSM of approximately 20% due to the

listening socket check we perform on each packet. A faster listening socket check could

improve these results. If all applications were low priority, Static PSM would be a good

fit. However, in reality there is a mix of high priority and low priority applications which

Static PSM is not able to address.

3.4.2.2 Low Priority Energy Inversion

In this section we determine experimentally the data rate for which static PSM network

traffic ultimately consumes more energy than CAM. To conduct this test, we configure

traffic shaping on a web server. Traffic shaping permits us to accurately limit the data

rate for files downloaded from the server. We limit the data rate ranging from 1 Mbit/sec

to 8Mbit/sec. Our results, which also coincide with [35], show that as the data rate

exceeds 3Mbit/sec, a PSM energy inversion occurs: static PSM consumes more energy

than Adaptive PSM. For data rates less than this threshold the energy savings can be

significant. As shown in Figure 3.6, data rates of 1 Mbit/sec potential energy savings of

over 500% are possible . Exceeding the 3Mbit/sec threshold for sustained periods with

Internet traffic is unlikely. As shown in [22], WLAN data rates typically far exceed that of

WAN connection speeds. This shows that low priority applications can achieve significant

energy savings, especially when the data rates are low.

3.4.3 Energy Savings of Typical Applications

In this section we evaluate the energy use of several typical applications which consume

a significant amount of network traffic. The applications we selected are a streaming

audio application that allows users to stream audio over the Internet, an offline map

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 56

application which downloads in-advance maps of a new area you are traveling to with

limited network coverage and an RSS reader application that retrieves RSS feeds from

the Internet and caches them on the SD card. Finally, we evaluate social networking

applications, including email, Facebook and Twitter, running in the background while the

screen is off.

After each application is installed, we perform the following steps. First, we allow the

application to run for approximately 10 minutes. During this time the APM gathers each

application’s network statistics described in the design section. Next, APM classifies

these measured results with the classifier trained by the user study data. After running

this process for these applications that we selected, we discovered that the RSS reader

and the offline map applications are correctly classified as low priority. The streaming

audio application was incorrectly classified as high priority.

Further investigation into why the streaming audio application was incorrectly classified

produced a surprising result. We would expect the application to have a higher receiving

data rate and a very small transmitting data rate since the primary function of the

application is to stream audio from a remote server. However, we discovered that RXrate

and TXrate are identical. It is not clear why the application transmits and receives

simultaneously. This is most likely why the classifier incorrectly classified this application.

In this case we manually set the application to low priority.

Each application’s behavior is compared with Adaptive PSM and low priority SAPSM,

Since the applications we selected were determined to be low priority. The Adaptive PSM

results indicate the default behavior on Android Phones without SAPSM enabled. Figure

3.7 shows the comparison. The energy savings range from 13% for social networking

applications up to 56% energy savings for the RSS reader application.

Streaming Audio. The streaming audio (XiiaLive) application has a wide selection of

streaming radio stations where users can play different music styles. This application is

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 57

jg 700
3 O
>.
S?
CD
c
LU

SAPSM
Adaptive PSM

Figure 3.7: Application energy comparison.

1800

1600

§
1400

£ 1200
CD
5 1000
o

CL 800
c
CO 600
CD
2 400

200

0

Mean Power

2400 ©
CO

2000 S *
1600

1200 r f

Time

Figure 3.8: RSS Reader with Adaptive PSM

very popular with millions of installations. We select a station at random with a 128kbps

stream. The added delay of PSM does not affect the quality of the playback since the

application is able to buffer the audio stream as noted in [1], We play the same audio

stream for 10 minutes. SAPSM saves 44% energy compared to Adaptive PSM. This kind

of traffic is clearly low priority; there is no noticeable effect if this traffic runs in CAM or in

PSM. SAPSM is able to make this distinction over Adaptive PSM and save considerable

energy in the process.

Map Offline Download. The offline map application (MapDroyd) has an extensive

collection of free maps that can be downloaded. For this test we download a map of a US

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 58

1800
Mean Power

Total DataRate

3200

1600 2800

g 1400

.£ 1200

| 1000

g . 800

S 600
1200 DC

2400 cd

2 400

200

0
■00 ' 00 <00 <00 Oq °00 Oq O0 <00

Time

Figure 3.9: RSS Reader w/ low priority SAPSM

state which is 70MB. After running the test several times, SAPSM saves 18-22% energy

compared with Adaptive PSM. As we described previously, since the data rate is small

approximately 1,5Mbit/sec SAPSM clearly save more energy at the expense of taking

more time. Since delays of this type are acceptable, SAPSM clearly wins in this case.

RSS Reader. The RSS reader application (RssDemon) has a default install of

16 feeds dispersed over categories of general interest. These include sports, news,

technology and Entertainment. Periodically, feeds are updated by retrieving the latest

from the Internet. Figures (3.8 and 3.9) show the plot of power consumption and combined

data rate during an update. The RSS reader downloads a number of XML RSS files at the

first part of the update period, the first 3-4 minutes. At approximately 4.5 minutes several

larger files are downloaded. The UP threshold is triggered quickly at the beginning and

stays for the duration of the test. SAPSM saves 56% energy over Adaptive PSM in this

case.

Combined Social Networking. Applications using push technology are often run in

the background. Even with the screen off, new data is actively pushed to applications.

This type of application is clearly low priority. We select the following popular applications:

Gmail, Facebook and Twitter. For the test we subscribe to the Linux kernel mailing list

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 59

and subscribe to a number of popular Twitter feeds. Facebook, which does not use

push-based notifications, is set to update every 30 minutes (the lowest setting). We

conduct a test in the early morning for one hour. During this period we received a total of

12 tweets and 30 emails while observing no Facebook activity. We record the timestamps

when each email and tweet is received and then replayed each for comparison.

The Adaptive PSM results show that the data rate during this test is quite low yet high

enough to switch the radio in to CAM at several occasions. SAPSM results show that the

radio stays in PSM the entire time. Even with light traffic, SAPSM results in a 13% energy

savings over Adaptive PSM.

3.4.4 SAPSM High Priority Networking Performance

While saving energy is important, having solid networking performance for high priority

traffic is equally important. We use Netperf [49] to evaluate the performance of SAPSM.

We install the Netperf server component on the laptop and the client component on the

phone. We measure the maximum sustained TCP throughput rate that the device can

tolerate.

We repeat the Netperf test 10 times and the results are shown in Table 3.2. SAPSM

incurs a 3% general networking performance penalty compared to Adaptive PSM. The

critical section is the lookup function as described in the implementation section. The

use of a better data structure, like a hash table, for UID lookup would make a small

improvement. To address this issue we test a version of SAPSM with the lookup

disabled, which is labeled SAPSM1 in Table 3.2. In this case the data rate shows a slight

improvement, very similar to the Adaptive PSM result.

Additionally, we also perform another test where we download a 10MB file from a local

web server and record the time. This test, repeated 10 times per implementation, shows

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 60

no significant differences per implementation. Interestingly, No improvements are seen

from the SAPSM 1 results, suggesting that the optimization results seen with Netperf are

of negligible impact outside of extreme performance tests. Overall, SAPSM high priority

performs on-par with Adaptive PSM.

Throughput Time Delay

Type (it) (ct) (it) (<r)

Adaptive

PSM 8.34Mbps 0.25 14.83s .50

SAPSM 8.08Mbps 0.10 14.70s .47

SAPSM1 8.48Mbps 0.13 15.04s .50

Table 3.2: SAPSM high priority TCP Performance results with associated standard
deviation.

3.5 User Study

In order to train an SVM classifier and also to evaluate

whether it is able to provide accurate classification results for

different users, we conduct a user study. A random mixture

of fourteen technical and non-technical users participate in

the user study. In the study, each application is set to

low priority, which is the default WiFi configuration for each

application in SAPSM. Each participant is required to use

each of six applications for ten minutes. We selected a

number of applications that have a diverse array of network

behavior. We select applications that are interactive (Android Market and the Android

web browser), while also addressing those with a low degree of interactivity (Tanks

and Turrets game). Social networking applications with ambiguous priority depending

Major/Minor Count

Computer Science 7

Economics/Finance 1

Government/Math 1

Kinesiology 1

Math/Physics 1

Neuroscience 1

Rhythmic Gymnastics 1

Sociology 1

Table 3.3: Majors.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 61

on usage are also selected (Gmail, Facebook and Twitter). These applications are

ambiguous because, on the one hand, they can be used interactively, i.e. clicking on

every link or, on the other hand, run in the background non-interactively.

During the user study, we assign each participant a set of instructions that they

should follow. Each phone was configured with static PSM enabled. As mentioned in

the background section, static PSM adds approximately 100-300 ms of network delay

or latency. We vary the degrees of interactivity among all participants’ instructions and

ask them to determine if they feel the observed latency is acceptable. The answers from

participants are used as labels for the applications. If a participant feels the observed

latency is unacceptable, this application is labeled as high priority. Otherwise, the

application is labeled as low priority, which means that any perceived latency does not

impact the users experience with the application. At the end of the user study, we do

a brief survey to collect participants’ basic information such as their majors and their

experience about Smartphone. The major distribution of all the participants is summarized

in Table 3.3.

In the background, APM collects four statistics (described previously in the Application

Priority Manager) that measure WiFi usage for each application. APM groups the statistics

for each application and extracts a set of features: (i) the maximum, mean, median and

variance of RXRate and TXRate; (ii) RXBytes, TXBytes as well as the ratio of RXB-

ytes / TXBytes. These features measure different statistical characteristics of WiFi usage.

RXBytes / TXBytes can reflect an Application’s network interactivity much better than

non-network features like the touch screen rate. If a user is regularly touching the screen,

this does not always mean that network traffic is occuring; video games for example are

very interactive with respect to the user and the screen, but typically non-interactive with

respect to to the network.

The accuracy of an SVM classifier depends on the input features. We use the

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 62

Sequential Forward Search based feature selection algorithm [29] to select the best

features from these 11 features. The algorithm returns two optimal features - the

maximum and mean of RXRate.

These two features are meaningful in terms of predicting whether any perceived

latency added to a given application by static PSM is noticeable by end-users. The

reasons are: (1) comparing to TX related features, RX related features are more important

because Smartphones are more receivers rather than producers of information. The time

spent on receiving is usually much longer than that of transmitting; (2) the maximum of

RXRate reflects the participant’s experience at the network traffic peak and the mean of

RXRate reflects the participant’s long-term network experience.

With these two features, we select the optimal parameters for the SVM classifier from

the user study data following the routine of 6-folds cross validation to avoid overfitting

and estimate the runtime accuracy. In each round of cross validation, data is divided into

6 subsets, 5 of which are used for training and the remaining 1 is used for testing, so

that the testing data is different from the training data. This process is repeated 6 times

and each of the 6 subsets is used exactly once as testing data. The accuracy is the

average accuracy over 6 rounds [13]. The parameters with the maximal accuracy during

cross validation are selected. Then, the resulting classifier is trained with the selected

parameters and achieves 88.1% accuracy.

Figure 3.10 describes the classification results. There are three zones. The top and

bottom zones reflect low priority applications. While the middle of the figure reflects high

priority applications.

First, from the classification results, we observe that all participants label the Tank

game as low priority. It is because the Tank game is offline except for periodically fetching

advertisements in a background thread. The SVM classifier accurately classifies all the

Tank game data points in the user study data as low priority.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 63

140 □ High P rio rity
Low Prio rity
Decision Boundary

□ AndroidM arket
O Browser
0 Facebook
A Gmall
V Tank Game
i t Tw itter

□

A

2000 2500 3000 3500

Figure 3.10: Application classification result.

Second, we observe that the Browser, Facebook, Gmail and Twitter are ambiguous

in terms of user-defined priority. This is due to different users have different degrees

of interactivity. For instance, repeatedly clicking on a URL leads the user to label the

browser as high priority while simply updating the Twitter status leads the user to label

the Twitter or Facebook as low priority. For these applications, the SVM classifier is able

to accurately classify 47 out of 56 user study data points.

Third, the most interesting observation is that some applications with either high

maximum or high mean values of RXRate are labeled as low priority. For instance,

three users label the Android Market as low priority as depicted in the top zone of

Figure 3.10. These applications contradict the common intuition that an application with

a high RXRate will have unacceptable latency and should be labeled as high priority.

One possible explanation is the network data is received in a background thread so the

latency is not noticable. The SVM classifier is robust to these applications and accurately

classifies all of them.

To sum up, the SVM classifier achieves satisfiable classification accuracy for different

users with different backgrounds. Integrating with the SVM classifier, APM is adequate

to assist even non-technical users in configuring application priority.

CHAPTER 3. SAPSM: SMART ADAPTIVE 802.11 PSM 64

3.6 Conclusions & Future Work

Effective WiFi power management is an important issue. We have shown that by labeling

each application with a priority, the overall system is able to save energy by allowing only

the traffic from high priority applications to impact WiFi power management behavior.

By using a user study trained classifier we demonstrate that even non-technical users

can effectively label the priority of applications. Our evaluations of real scenarios show

energy savings from 13% to 56% depending on the application.

The user study demonstrates that the SVM classifier used by APM can achieve

satisfying classification accuracy. In future work, we plan to to develop an optional

individualized classifier. Newly acquired data such as personal application priority

decisions and corresponding network traffic measurements can be offloaded to a server

and can be used to adapt to an individual’s usage patterns. When the server receives a

retraining request, the server will train a new classifier which can then be used to replace

the default classifier that is trained through our user study. Finally, we plan to extend

SAPSM to other smart handheld devices.

Chapter 4

Mixed Radio Data Driven Energy

savings

4.1 Introduction

Energy efficiency on Smartphones is a driving factor because of limited battery life. Due

to the always-connected nature of Smartphones, the efficiency of Internet access is

particulary important. Wireless networking choices for Smartphones typically consist of

either WiFi or 3G/4G networking. When the mobile device is in a fixed location such as

a home or business, WiFi is faster and more energy efficient than 3G networking [56],

Additionally, mobile plans typically place data usage limits.

Although WiFi networking is more energy efficient than 3G, considerable research

has been done to make it more efficient. The WiFi standard includes Power Save Mode

(PSM) which saves energy by sleeping during idle periods. Then periodically the radio

wakes up to detect if packets are waiting at the Access Point (AP). While this is generally

energy efficient, the buffering of packets at the AP adds additional delay. Previous work

includes enhancing sleep periods during periods of inactivity [38] [53], While this body of

65

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 66

work has made significant progress, still the high power requirements for the WiFi radio

still allows room for improvements, especially for low bitrate traffic.

WiFi is more efficient on a per-bit basis [51] than other radios such as Bluetooth.

An obvious question arises: shouldn’t we always use WiFi? When the WiFi Radio is

predominately idle, ironically, this is also when it can be most inefficient. WiFi drivers on

Smartphone’s come equipped with Adaptive PSM [53], the ability to switch the current

power mode between sleep and active based upon the current data rate. When the WiFi

radio data rate is high enough where it triggers the Adaptive PSM threshold, it will switch

from sleep to active mode. Active mode in-turn can consume up to 20 times more energy

than Sleep mode when idle [54],

Others investigate the use of multiple radios [51] [39] to be more energy efficient. For

low bitrate traffic the low power radio can be used, then when network traffic conditions

change, the schemes can adapt to the other radio. A major challenge to this approach is

that the act of switching between radios can be an expensive operation. In [51], only a

single radio is powered on at the same time. However, when network conditions change,

the other radio has to be powered on and configured which can cause a delay of several

seconds, consumes extra energy each time a switch occurs and also terminates all active

sockets. A key challenge is to allow the use of multiple radios without disrupting existing

socket connections and allow rapid adaptation to changing conditions all while saving

energy.

In this work we also investigate using Bluetooth and WiFi with the goal of saving

energy. In order to address existing challenges of previous work, we focus on the ability

to switch between mulitiple radios without disrupting existing socket connections and

have the ability to switch between radios immediatlely. We do this by implementing our

solution at the MAC layer. Recent developments in low power WiFi radios and Bluetooth

allow us to keep both radios active at the same time. The inactive radio is kept in the low

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 67

power mode.

Applications for which high network throughput is desirable should use WiFi due to

it’s superior speed (802.11n handles speeds of 300Mb/sec). But for typical Smartphone

Internet traffic is high speed always necessary? According to a recent study [24], data

rates for mobile video are considerably less than 1 Mbit/sec. In fact fast data speeds may

not be as common as might be expected. Certainly for LAN applications high throughput

is expected and should be used. Internet connections, however, are magnitudes of

order slower than the WiFi router speed, throttled by [22] slower Internet routers and the

broadband connection speed.

Bluetooth, explained further in the background section, has a max data speed of

about 2-3Mbit/sec and a range of between 10-50m. Constant bitrate traffic is a special

case where the WiFi connection is over utilized. The WiFi radio has to stay on for the

duration in order to minimize latency. However if the bitrate is also below the maximum

Bluetooth speed, then Bluetooth is more energy efficient while maintaining an acceptable

latency. For certain types of traffic Bluetooth is a viable alternative.

Significant WiFi network traffic exists that under utilizes the WLAN connection. Are

there other alternatives that will not impede network performance and still save energy?

While WiFi PSM is energy efficient by sleeping during idle periods, the added latency is

unacceptable for many applications. Bluetooth is an acceptable alternative and Bluetooth

devices are present in virtually all Smartphones. Although Bluetooth can handle a much

smaller data rate than WiFi, Bluetooth power consumption even in its highest power state

is significantly less than WiFi in Active mode.

To address these concerns we introduce Bluesaver: A Multi PHY Approach to

Smartphone Energy Savings. Bluesaver combines Bluetooth and WiFi together both at

the Phone and at the Access Point. When the Phone is in range of the Bluetooth radio

on the AP it can efficiently send and receive packets over Bluetooth. When out of range

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 68

or the requirement for a higher data rate is requested, the phone uses WiFi. Bluesaver is

implemented on a Motorolla Razr Android phone and can save 25% energy over existing

solutions.

The individual traffic patterns of Smartphones are difficult to predict. While some

applications such as Skype and web-browsing may be ideal for Bluetooth, other applica

tions such as Youtube clearly benefit from WiFi. If the goal is to save energy, how can

you switch between the radios with minimal impact to the user?

To address this problem, Bluesaver provides a mechanism to seamlessly switch

between WiFi and Bluetooth without impacting current applications in such a way that will

save energy. Therefore, if current network traffic can be more efficiently transmitted over

Bluetooth, then the Smartphone can seamlessly switch between WiFi and Bluetooth for

best efficiency.

4.2 Background and Motivation

In this section we cover the background section specifically related to the Bluesaver

architecture. Since Bluesaver covers both WiFi and Bluetooth, we give a brief overview of

both WiFi power saving mode (PSM) and Bluetooth. While WiFi PSM does save energy,

it has the downside of adding considerable delay. Bluetooth has the advantage of a low

power solution when low data rates can be used. We show that combining elements from

both Bluetooth and WiFi PSM, we can potentially save more energy while minimizing

delay.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 69

4.2.1 WiFi PSM

WiFi PSM is part of the original 802.11 spec first standardized in 1999 [31]. WiFi

clients connecting to an Access Point (AP) can negotiate a low power state. In this

way, the client’s radio will remain off, while incoming packets are buffered at the AP.

At pre-determined beacon intervals, the client will poll the AP for any queued packets.

The AP will respond with the queued packets. While this approach works well for power

saving applications, it adds an approximate 100-300ms of delay caused by the buffering

of packets during the beacon intervals. When a packet is buffered at the AP, the AP will

set the TIM bit. When the TIM bit is set, the client knows to poll the AP for the buffered

packets.

Recently, there have been several alternatives to PSM. Most deal with switching

between Active mode and PSM. Active mode requires the WiFi radio to remain active,

requiring significantly more power. Adaptive PSM as described in [53], [59] use an

approach to adaptively switch to active mode based upon the observed data rate. When

the data rate drops, the WiFi radio switches back to PSM. The “switching" occurs by

sending a NULL management frame from the client to the AP. The client sets the power

management bit according to whether active of PSM mode is desired. If switching from

PSM to active, the buffer on the AP is first cleared using a PS-POLL management frame,

also initiated by the client.

As shown in figure 4.1, still the underlying trade-off with latency and power remain

as WiFi research challenges. The data in the figure published in [54] shows that WiFi is

suited for high speed operations. Network traffic with moderate data transfer speeds will

either suffer high latency or consume extra power. Therefore, it is logical to investigate

the use of other means of transmitting data that falls into this category.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 70

300 800

250

200

O 150 a<a
CO
_ i

100

50

0 0
PSM Active Mode PSM Active Mode

Figure 4.1: WiFi Energy Latency tradeoff. Measurements reflect recently published
measurements on Smartphone WiFi PSM.

4.2.2 Bluetooth

Bluetooth, in contrast to WiFi, is designed with low energy and small distance in mind.

Data Rates have an upper bound between 1 Mb/sec to 3Mb/sec with version 2.0 [14]

enhanced data rate. Additionally the range is limited to around 50m with the BT

4.0 specification, compared to 100m WiFi range, while older versions are limited to

approximately 30m. Bluetooth is effectively used for a variety of close range applications

such as streaming audio to headsets to peer to peer data sharing applications.

One disadvantage of sharing peer data via Bluetooth is that the slower speed can

take a significant amount of time when large files are transmitted. In order to address

this concern, the 3.0 specification has included the High Speed (HS) [15] specification.

This specification allows files to be transmitted at high speed by utilizing the high speed

capabilities of a co-existing WiFi card. The connection is established with Bluetooth and

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 71

then the file can be transmitted to the peer (which also must support HS) via WiFi.

The 3.0 HS specification provides the capability for Bluetooth connections to ultimately

be more energy efficient for the transmitting of large files. WiFi is more efficient at

transmitting large files, since the higher throughput of WiFi can send files in less time.

When a constant stream based connection such as a Bluetooth headset for streaming

audio, Bluetooth is more efficient than attempting to use the higher energy cost of WiFi.

WiFi has nothing to compare with the HS option. When transmitting data over WiFi

when sending large files over a LAN connection, WiFi is an ideal solution. However,

when it comes to streaming audio or other applications that require small data rates, WiFi

is forced to use the high speed, high power radio for this task.

4.2.3 Motivation

In this subsection we investigate cases where WiFi alone can use some improvement

from an energy savings perspective and look to see how prevalent such cases are.

Specifically, we examine cases where one of these cases exist:

• bandwidth is limited.

• streaming applications such as video or audio.

In Figure 4.2, we see the bandwidth required over time as a Youtube video is watched

on a recent Motorolla Android smartphone. As can be seen, the bandwidth tends to

spike and then quickly drop off. Static video content, typically delivered in chunks can

take advantage of the speed and efficiency of a WiFi connection. In this case, WiFi

handles the bursty nature of static video content providers such as Youtube efficiently.

The WiFi driver is suited to quickly switch to Active mode and download the next available

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 72

chunk of video. As can be seen the broadband connection allows connections of up to

approximately 3Mb/sec, and so WiFi is a good fit.

In Figure 4.3 we see a different story. In this case, instead of bursty traffic, we see the

bandwidth of a constant bitrate live streaming Skype call. Figure 4.3 shows a trace of a

Skype audio call between two users. In this case, the trace shows a constant bandwidth of

slightly less than 100KB/sec which ends approximately 2.5 minutes later. The bandwidth

is high enough that the WiFi driver will switch to active mode, thus minimizing latency.

However, due to the higher power requirements of the WiFi radio, the lower bandwidth

requirements of this particular applications could just as easily be fulfilled by another radio

such as Bluetooth. This wastes unnecessary energy and can use some improvement.

Figure 4.4 shows a Skype video call that was set to high quality and again is

at a constant bitrate. In this case, the bandwidth requirements are approximately ten

times higher than the previous audio call slightly below 800Kib/sec. Note that since the

constant bitrate never exceeds 1 Mbit/sec, the WiFi radio again is under-utilized. Even

at the highest available video streaming rate, Bluetooth is a viable alternative for video

streaming. Bluetooth, with it’s lower power draw, could be used to save energy. At the

same time since the connection is below one megabit per second, the QoS requirements

are not impacted.

As we have shown, for constant bitrate network traffic, WiFi is under utilized. In order

to minimize delay, the WiFi radio must be kept active most if not all of the time. Therefore,

the use of an alternative radio such as Bluetooth could easily be utilized to save energy.

For video streaming at HD the video streaming is peaked at 1.5 Mb/sec [62] which

is available for premium members only; not available as an option for the Android

client. The more likely high quality video streaming is at 500Kb/sec. Facetime has been

measured [26] at less than 400Kb/sec. Clearly in these cases the WiFi radio is mostly

idle.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 73

Limited Bandwidth How realistic is the case of limited bandwidth for WiFi connec

tions? Clearly WiFi Wireless LAN connections are getting anything but slower. WiFi

802.11n for instance supports speeds up to 300Mbit/sec. However, research conducted

recently by Dogar [22] shows that the bottleneck is not the highspeed WiFi connection

between the AP and the client, but rather between the AP and the Internet. Therefore it

is entirely plausible to have a Smartphone with a 300Mb connection to the AP and a 1 Mb

connection to the Internet.

By finding opportunities where traffic patterns meet the criteria above where Bluetooth

consumes less energy than WiFi, we can exploit these periods to save energy on

Smartphones.

YouTube typical home broadband connection

o
CD

jd

cd

(0tr
CO

CO
Q

Total DataRate

Time (min:sec)

Figure 4.2: Youtube typical broadband connection

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 74

Skype audio typical home broadband connection

o0)
,CO
23

CD4-*
CtS

DC
CO
cO
Q

1000

800

600

400

200 -

Total DataRate

Time (min:sec)

Figure 4.3: Skype audio typical broadband connection

4.3 Bluesaver Design

We have described the challenges facing WiFi clients. To address these challenges, we

introduce Bluesaver: Multi-PHY approach to smartphone energy savings. In this section

we describe the system architecture and discuss the design of the Bluesaver system.

Bluesaver has been designed to function at the MAC layer. Both radios are kept on

simultaneously. This way, packets can be sent either via Bluetooth or via WiFi. To save

energy, both WiFi and Bluetooth connections are kept in a low power state when idle to

save energy.

The Bluesaver design consists of a modified WiFi AP which also includes a Bluetooth

adaptor. The client is an Android Smartphone which also includes WiFi and Bluetooth.

The lab setup is shown in figure 4.5. While our lab setup is used with a Smartphone,

Bluesaver can be used with any system that has multiple radios. Bluesaver could be

easily extended to laptops and tablets.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 75

o
a>w

J Q

B03
DC
aj
co
a

Skype video typical home broadband connection

1400

1200

1000

800

600

400

200

0
°o. °o.

°o

I I I I

% <b
° r ..

Total DataRate

Op
'&o °o '*•?? °o

°<3>. %>.

Time (min:sec)

Figure 4.4: Skype video typical broadband connection

<V. 3r.
*o °o -*0

4.3.1 Architecture

The Bluesaver architecture is spread out between the client portion running on the

Smartphone and the WiFi AP shown in figure 4.6. It is comprised of three main

components: The Health Monitor(HM), The Bluesaver Connection Manager (BCM), and

The Sending Decision Manager (SDM). All of these separate components used together

are responsible for switching packets over the best available PHY interface.

The HM component is responsible for tracking the health of each Bluetooth connection.

When a Bluetooth connection with a peer is established, the HM monitors traffic going

through the device. Specifically, for each connection the HM component is responsible

for monitoring the current data rate, connection status, packet loss and delay. Once this

information is gathered, information can be passed onto the SDM in order to determine

which interface the packet should be sent.

A crucial part of the HM component is the Bluetooth Availability Manager (BAM).

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 76

Figure 4.5: Lab Setup.

This component is responsible for checking the connection status of the peer. The BAM

determines the health of the peer, using I2ping which is similar to ICMP ping but instead

uses Bluetooth I2cap packets. To save energy, the BAM operates periodically, currently

once per second and only when network traffic is observed.

The bulk of the HM operation occurs within an asynchronous timing thread that

re-occurs every second. If a new packet has been transmitted in the past second, that is

if any network traffic has been observed, the current connection quality and the current

data rate are updated. If the data rate exceeds the threshold of what Bluetooth can

handle (1.5Mb/sec) then UseBluetooth is set to false. Additionally, if the results of the

RTT observations retrieved by the BAM using I2ping either fails (unable to connect) or

shows an unaccepable latency (greater than 100ms), then UseBluetooth is set to false.

The HM notifies BAM to refresh the latest health statistics through a netlink socket.

The BAM (which is running in userspace) sends an I2cap ping to the peer only when

current traffic is detected. We use an I2cap ping operation because Bluetooth devices

have I2ping operation enabled by default as part of the firmware. We send 4 packets and

record the average RTT (the firmware of most devices closes the socket after 4 packets).

If the delay is determined to be more than 100ms, then we assume that the connection

is unsuitable, and BAM then sends a notification through the netlink socket. The BAM

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 77

User Space

Kernel Space

Bluetooth Availability

___S££S2S2L__

Notllnk Socket

Bluesaver Connection
 Manager______

Sending
Decision Manager

TCP/IP S tackPacket

t
Bluetooth
Driver (2)

©
Figure 4.6: Bluesaver Architecture,

currently only runs on the AP.

When a packet is ready to be transmitted, the SDM determines which interface will

be used. Figure 4.7 describes the interaction. When the host OS sends a packet, it

will pass the packet onto the driver. Bluesaver will intercept that packet and determine

which interface to use. When the packet is placed in the transmit queue, the PHY

interface to use is determined via the UseBluetooth variable. Then the packet will be

either transmitted through the WiFi driver or through Bluetooth.

Once these parameters have been obtained, a decision is made whether the connec

tion is suitable for Bluetooth operation. If a threshold is crossed for either latency, packet

Bluetooth
Driver (1)

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 78

(Start)
Wait

For Packet

Health Monitor
Start t=0s

*
 Transmit

n Flag?

Measure Send
RSSI Ping

Heartbeat

\
Connection Health-

*
Sleep

Until t=1s

Packet
Queued?

♦ Y
Set Transmit Flag

If
UseBluetooth — • Bluetooth

Xmit

WiFi
Xmit

Poor
Connection

♦ Y
Set

UseBluetooth
false

Set
UseBluetooth

N true

Figure 4.7: Bluesaver Design.

loss or data rate, the variable UseBluetooth is set accordingly. At this point when an

outbound packet destined for the WiFi interface is queued in the driver transmit queue,

the WiFi driver will either transmit the packet directly if set to true else the BCM will

transmit the packet over the bluetooth interface.

The AP is responsible for checking the health of each client through the HM component

as described earlier. When a decision is ultimately made to send via a specific PHY

interface, an important consideration is to keep this decision in sync with the client. That

is, when the AP sends packets over WiFi, the phone should also send over the same

medium. In order to accomplish this, we have a much simpler design on the client. The

client’s initial setting is set to UseBluetooth. The AP will determine the overall health

of the system using the method previously described and the appropriate PHY will be

selected. On the client, when a packet is received on a different interface than what

is expected, the local UseBluetooth will be set accordingly. For instance if the client is

sending packets over Bluetooth, but then receives a packet over WiFi, UseBluetooth will

be set to false.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 79

The Bluetooth Connection Manager (BCM) is responsible for transmitting Bluetooth

packets through the system. It does this by opening a Bluetooth I2cap socket to the peer.

When I2cap packets are received over this socket, the packet will be passed to the host

so that the host OS cannot differentiate it from a WiFi packet. In order to accomplish

this, the Bluetooth MAC addresses are replaced with the WiFi source and destination

MAC addresses in an 802.3 header that the host OS is expecting. When packets are

transmitted over Bluetooth, they are taken from the WiFi driver transmit queue and sent

over the I2cap socket.

On the AP, the BCM requires one Bluetooth adaptor for a single client. A single

Bluetooth adaptor can also scale to multiple clients, since our implementation requires a

seperate I2cap port for each client. Depending on the traffic loads from each client, the

combined bandwidth of multiple clients could overwhelm a single adaptor. In this case,

additional Bluetooth hardware can be used to support multiple users. Our initial design is

to dedicate a single Bluetooth adaptor to each client. In future, we plan to extend this to

make this more extensible by extending the BCM to have multiple socket connections to

the Bluetooth adaptors on the AP. Then utilize an appropriate load balancing scheme to

determine which destination interface to which to transmit.

By operating at the MAC layer, Bluesaver is able to quickly adapt to adverse network

connections and switch quickly between WiFi and Bluetooth.

4.4 Implementation

We implement Bluesaver on the the Motorola Razr [46]. The Razr comes with Android

version 2.3.5 and Linux kernel version 2.6.35.7. The WiFi AP is implemented on a PC

equipped with Ubuntu 12.04, an ath9k WiFi driver and an ath3k Bluetooth driver. The

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 80

implementation consists of a Linux kernel modules on both the phone and the AP. The

Bluetooth Availability Manager (BAM) is implemented as a user level daemon process.

One of the challenges faced with the implementation is that the Smartphone comes

with a locked bootloader. This makes it nearly impossible to modify the kernel. Therefore,

all of our modifications had to be done within the confines of a kernel module. Due to this

limitation, we were unable to access health related statistics from the Linux kernel from

the Bluetooth device because the symbols were not exported. Also due to differences in

the Linux kernel between the AP and the phone, the Bluetooth kernel API’s were slightly

different.

The BCM component requires modification to the WiFi drivers on both the phone and

AP. When a packet is about to be transmitted over WiFi in the driver, we modify the

transmit portion of the WiFi driver to check if the packet should be sent over Bluetooth. If

so, the packet is placed in a transmit queue and transmitted over the I2cap socket. The

receive functionality on the driver is not modified.

Phone Challenges:

Another subtle difference between the Android implementation and the AP is the issue

of Wakelocks. The Android kernel supports the concept of entering a deeper sleep when

a wakelock is not held. When packets are transmitted or received, we hold a wakelock.

Each time a packet is received we set a flag. We have a timer that runs every second. If

a packet is received during that time window, we hold a wakelock for one second. In this

way, the maximum amount of time we hold a wakelock is one second when idle.

The client component is implemented with a queue data structure. When new

outbound packets need to be transmitted, they are inserted into the transmit queue. A

seperate thread is run periodically whenever the queue length has at least one packet in

it.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 81

Bluetooth Availability Manager. The BAM is a userlevel process that is responsible

for determining the status of the Bluetooth connection. Every 500ms the BAM sends a

BT heartbeat packet to it's peer. If a heartbeat packet is not received within one second

then the connection is bad. This could be caused from the phone being outside of the

range of bluetooth. The connection status is then transmitted to the Health Monitor via a

netlink socket.

BAM uses a selectQ loop to respond to incoming packets. In order to precisely send

packets at a given interval, we use the Linux timerfdQ system call. However, Android’s

bionic libc does not support this particular system call. Therefore, we had to explicitly add

support for this system call with systemQ.

Bluetooth Notes. We made the best effort to obtain the highest Bluetooth throughput

possible. Recall from the Background section, that Bluetooth supports up-to 3Mbit/sec. In

our tests, we were able to achieve 1,7Mbit/sec, which is close to the theoretical maximum

of 2.1 Mbit/sec. We used I2cap based sockets with default options for the implementation.

4.5 Evaluation

In this section we evaluate the Bluesaver system. To evaluate the system correctly. We

must show that it first saves energy over exisiting solutions. Second, we must show that

Bluesaver can adaptively switch between between Bluetooth and WiFi due to changing

network conditions.

This section is organized by our evaluation method followed by the energy comparsion

section. Finally, we conclude with an evaluation of how Bluesaver responds to dynamic

network conditions.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 82

4.5.1 Evaluation Method

We implement and evaluate the phone component of the Bluesaver system on a Motorolla

RAZR [46] Android phone. The WiFi AP is implemented on a workstation running Ubuntu

12.04. The workstation is equipped with a Qualcomm-Atheros reference design PCI

card [55] that includes both Bluetooth 4.0 and WiFi capabilities.

To measure the power consumption, we use the Monsoon [44] power monitor. The

Monsoon bypasses the existing battery and provides power to the phone. It measures the

instantaneous voltage and current with a sample rate of 5kHz. We can then determine

the overall system power draw over a given time interval. In order to isolate the power

consumption specifically to the test in process, we enable “Airplane" mode which disables

all PHY interfaces. Then the interface that is about to be tested is explicitly enabled.

Additionally, we make a best effort attempt to disable all services and background

proceses running on the phone during the test.

4.5.2 Energy Comparison

To assess the energy comparison between Bluesaver and Wifi adaptive PSM, we

compare power consumption levels between WiFi and Bluetooth first for data rate

throughput testing. Second, we compare the power consumption of video streaming at

incrementally increasing data rates between the AP and the phone. In this section we are

ultimately comparing the power and energy consumption of Bluetooth vs. WiFi. Although

Bluesaver can handle both cases, it can really save the most power and energy when

using Bluetooth.

We measure the throughput by sending ICMP ping. By varying the packet size and

packet sending rate, we were able to accurately measure throughput and data rate. The

reason ICMP ping was used for throughput testing, is that it is an accurate bi-directional

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 83

throughput testing tool. Since the payload size for ping packets is identical for sending

and receiving, the sending and receiving operations are equally tested. This is especially

important for WiFi. Recall from the Background section that when WiFi is in PSM mode,

receiving packets that are queued at the AP has an added delay of several hundred

milliseconds. ICMP ping therefore places equal weight on sending and receiving packets.

WiFi
BlueSaver

240 515 1100 1308 1462
Data Rate (Kb/sec)

Figure 4.8: Bluetooth vs Adaptive PSM power consumption. Adaptive PSM consumes
between 20% more and 35% power than Bluetooth.

Using ICMP ping for throughput testing, we test bitrates from 50kb/sec up to

1400kb/sec, as can be seen in Figure 4.8. We initiate the test from the phone to

the AP. For the entire bitrate range that we test, the Adaptive PSM implementation within

the WiFi driver switches to CAM for a majority of the time resulting in extra power con

sumption. Clearly the WiFi driver is performing the best it can under the circumstances.

Recall from the Background section that staying in PSM will result in unacceptable delay,

while staying in CAM results in the higher power consumption. Within the bounds of the

bitrate range that we test, Bluetooth is more efficient than WiFi. Once the rate exceeds

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 84

1500kb/sec, we start to see packet loss and added RTT delay over the Bluetooth radio.

Therefore, as part of the Bluesaver design, when the rate exceeds 1500kb/sec, we switch

to WiFi to minimize delay.

As can be seen, Bluetooth consistently saves between 20% and 35% power con

sumption compared to WiFi adaptive PSM. This shows that when data rates are within

this range, Bluetooth should be used to extend the battery of Smartphones.

This result also shows an interesting trend. In [54], the power consumption of CAM

mode on an Android smartphone from 2010 was measured to approximately 20 times

higher than that of PSM around 720mw when idle. Note that with the Motorolla RAZR,

which came on the market less than two years later, we find that the WiFi driver is

much more efficient approximately 375mw with a light load of 50kb/sec. The reasons

for this improvement are not that clear, however, it could be that the Adaptive PSM

implementation has been improved as well. Even with these improvements, Bluetooth is

still a better alternative with lower bitrate network traffic.

Video Streaming

According to [24], 80% of videos for smart phone traffic use a bitrate of less than

256kbps. In order to evaluate the energy efficiency of Bluetooth, we setup a streaming

server located on the same LAN as the AP. We set the video streaming server VLC to

stream via RTSP and streaming at video bitrates from 64kbpbs to 512kbps. We measure

the total energy consumed and compare to Adaptive PSM.

We install a popular RTSP streaming application called MoboPlayer on the phone.

This application is capable of playing back RTSP stream over the internet. We measure

the average power consumption during the test and measure the total time taken to play

back the entire video at the various bitrates. This particular application requires time to

buffer the video stream before it is played back. Figures 4.9 and 4.10 show the results

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 85

64 128 256 512

Video Bitrate(Kb/sec)

Figure 4.9: Bluesaver vs WiFi streaming video Energy comparison. Bluesaver saves up
to 25% energy for bitrates ranging from 64 to 512 kbps.

of this test. In Figure 4.10, it is quite clear that Bluetooth consumes much less power

than WiFi in all tests.

Since we are using the RTSP protocol for streaming, there are several seconds of

buffering that occurs before the stream actually begins playing. In this case, WiFi clearly

has the advantage due to its superior speed. Therefore, the Bluetooth energy results,

shown in Figure 4.9 reflect a more modest energy savings ranging from 25% for video

codec streaming at 64kbps to 13.5% at 512kbps. This shows that even if a streaming

protocol requires extra time for buffering, Bluetooth is still a better solution for streaming

video.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 86

1000

950

900

5
E,

8500)
5o0.

800

750

700

Figure 4.10: Bluesaver vs WiFi streaming video power comparison. Bluetooth consis
tently uses less power than WiFi.

4.5.3 Network Adaptation

In this subsections we demonstrate that Bluesaver has the ability to quickly switch

between Bluetooth and WiFi. A key characteristic of the Bluesaver architecture is to

nimbly switch between radio types with minimal delay. In order to throughly test this

aspect of Bluesaver design, we test two key components. How quickly does Bluesaver

adapt to fluctuations in data rates. Second, we address connection quality adaptation.

That is, how quickly and how does Bluesaver adapt when the phone is outside of the

useful range of Bluetooth and still within the useful range of WiFi.

Data Rate Adaptation

We measure the responsiveness, or how quickly the system can detect changes in

data rate and respond accordingly. When the AP first starts to send packets to the phone

the data rate spikes above the Bluetooth data rate threshold of 1.5Mbit. When the data

WiR
BlueSaver

64 128 256 512

Video Bitrate(Kb/sec)

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 87

12000

10000
'o '
CD

8000
-O

cd 6000
CO
cc
£ 4000
CO
Q

2000

0

%
Time (sec)

Figure 4.11: Rate Adaptation: Bluesaver switches from Bluetooth to WiFi while se
quentially downloading a 10MB file followed by a 100MB file without interrupting the
download.

rate exceeds the threshold, the AP will switch from Bluetooth to WiFi. When the phone

detects that packets are received on the WiFi interface, it will disable Bluetooth and

transmit packets over WiFi. When the data rate again drops below the threshold, it again

switches back to Bluetooth.

We place a 10MB and 100MB file on a web server running on the same subnet as

the AP. We then proceed to download the file using an http client on the phone. This

is the worst case energy-wise for Bluetooth because the high WLAN speeds available

over WiFi make Bluetooth inefficient. Figure 4.11 shows the results of this test. We first

download a 10MB file, then wait a few seconds and download the same 10MB file again.

A few seconds later, we download the 100MB file. As soon as the first download starts,

Bluesaver rate adaptation detects that the download speed exceeds what Bluetooth can

Bluesaver: Rate Adaptation

Total DataRate
PSM CAM

Bluetooth

WiFi

Time (sec)

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 88

handle. At that point, it will switch to WiFi. The packets are received over WiFi to quickly

download the file. When the file is done downloading, the connection will fall back to

Bluetooth to save energy.

We note that during the test, the WiFi driver did switch between CAM and PSM

during the download as noted in the figure. It is not clear why the WiFi driver switched

to PSM during the middle of the transfer. However, this explains the dips shown in the

download of the 10MB files and shown especially clearly in the 100MB file. Additionally,

due to limitations (Or a configuration error) of the AP software, we were unable to exceed

speeds of 10Mb/sec.

Connection Adaptation:

A D

AP

B C

Figure 4.12: Room Layout showing lab environment for connection adaptation evaluation.

We measure how quickly Bluesaver can adapt to changes in the network environment.

To perform this test, we setup a Bluesaver enabled AP in a building described in Figure

4.12. We initially setup WiFi only and walked from within one meter of the AP to points A,

B,C,D, then A,B,C,D again. After which we proceeded back to the AP. The total distance

from the AP to point D is about 10 meters. During the duration of the test we setup an

ICMP ping running on the AP that will record the RTT time.

The results of this test are shown in Figure 4.13. The WiFi results show that around

time 50 and 100s the phone experienced extreme packet loss and was unable to respond

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 89

Packet Loss Adaptation
6000

WiFi Only
Bluesaver Recovery

WiFi Packet Loss
5000

4000
in
E

3000 Use WiFi

cr
2000

1000

a a a a A A M ^ \ A .

o

Time (sec)
Figure 4.13: Connection Adaptation: Bluesaver switches from Bluetooth to WiFi when
Bluetooth connection issues are detected. A constant ping from the Server to the phone
was done for the duration of the test. When the switch to WiFi occurs at around 30
seconds, the ping test is unaffected.

for several seconds. Tracking down the root cause of packet loss is challenging, but most

likely this is the result of a combination of the fact that the phone was rapidly moving and

the multiple obstructions between the phone and the AP.

The same test was then performed with Bluesaver enabled. In this case, the Bluetooth

Availability Manager running on the AP sent a steady I2ping to the phone during the

duration of the test. At 30 seconds into the test, the BAM was unable to connect to the

phone over Bluetooth. Immediately, the HCM was notified over the netlink socket and it

started sending packets over WiFi for the duration of the test until the phone got back into

Bluetooth range of the AP again. The phone then detected that packets were retrieved

over WiFi and in turn started sending packets over WiFi as well.

CHAPTER 4. MIXED RADIO DATA DRIVEN ENERGY SAVINGS 90

The result is that at 30 seconds into the test, there is no perceptible difference in the

RTT measurement. This shows that Bluesaver can switch between radios without adding

any additional delay. After 30 seconds into the test, we see severe WiFi related packet

loss similar to the WiFi only test which in this case is unavoidable.

We have shown that Bluesaver can adapt to fluctuating data rates and adverse

network connection issues. Furthermore, Bluesaver is able to save energy when using

low data rate applications by as much as 25% over existing solutions.

4.6 Conclusions

Smartphones suffer from the dilemma that network traffic to and from the device either

has excessive latency and low power consumption or low latency with high power

consumption. To address this problem, we have presented Bluesaver, a novel approach

that combines the low latency, low power consumption characteristics of Bluetooth with

high speed, higher power consumption characteristics of WiFi implemented at the MAC

level. We have demonstrated that Bluesaver is able to adapt to changing network

conditions by routing network traffic between different PHY interfaces. Finally, we have

demonstrated that we can save up to 25% energy over existing solutions for certain types

of network traffic.

In future work, we plan to extend the Bluesaver platform to better support multiple

clients. As we described in the Design section, our current solution is to pair a single

client with a dedicated Bluetooth adaptor. In future, we plan to extend this approach to

use a load balancing algorithm to more efficiently support multiple clients.

Chapter 5

Conclusions & Future Work

We have demonstrated that network traffic traversing through Smartphones can be very

power intensive. Through the use of a Network Traffic Aware Approach to Smartphone

Energy Savings, we have demonstrated that not only can network traffic be made more

effecient, we can also ensure that QoS requirements are met. We have made the

following contributions:

• Real-Time Traffic: We have demonstrated that significant energy savings can be

obtained by identifying idle periods where the WiFi radio can be put to sleep. At the

same time, we honor the unique QoS constraints inherint within real-time network

traffic.

• Application Priority: Existing behavior of WiFi power management in Smartphones

simply considers combined data rate of all network traffic in which to modify

the current WiFi power state. By prioritizing network traffic by application, we

demonstrate significant energy savings over existing solutions. QoS requirements

of high priority applications are honored by permitting only high-priority traffic to

modify the current WiFi state.

91

CHAPTER 5. CONCLUSIONS & FUTURE WORK 92

• Mixed Radio Data Driven Energy Savings: By exploiting the fact that Smartphones

come equipped with multiple Wireless radios, we combine the attributes of Bluetooth

and WiFi for significant energy savings using a MAC based high-availability scheme.

We have demonstrated that certain traffic that is very inefficient over WiFi due to

its low data rate can be effectively streamed over Bluetooth without impacting QoS

requirements.

Our goal of saving energy on Smartphones through effective network traffic driven

wireless energy management policy is realized through our focus on three scenarios.

Our work in SiFi demonstrates energy can be saved while in the midst of delay sensitive

network traffic, utilizing silence periods to place the WiFi transceiver into a low power

state. We have demonstrated through SAPSM that different application priorities can

be exploited to save energy. By using machine learning techniques, the priority of

applications can be determined; low-priority application traffic can then be optimized for

energy efficiency. Finally, through our work Bluesaver we have shown that by using

Bluetooth to augment WiFi PSM behavior through a WiFi MAC layer implementation,

significant energy savings can result without impacting the end-user. Traffic with low

data rates can be routed through Bluetooth, while high volume, high priority traffic can be

routed over WiFi.

Further possibilities exist to extend this work as follows. One promising option is

to combine all aspects of this work into a single software suite for Smartphones and

investigate how all aspects of this work can be utilized together for further energy

effeciency. Other options include extending this work to other battery constrained devices

such as military applications.

Bibliography

[1] M. Anand, E. B. Nightingale, and J. Flinn. Self-Tuning Wireless Network Power
Management. In ACM MobiCom, 2003.

[2] G. Ananthanarayanan and I. Stoica. Blue-Fi: Enhancing Wi-Fi Performance using
Bluetooth Signals. In ACM MobiSys, 2009.

[3] Android Native Development Kit, 2010. http://developer.android.com/sdk/ndk/index.html.

[4] Android Technical Information, 2011. http://source.android.com/tech/index.html.

[5] Android TrafficStats Information, 2011. http://developer.android.com/reference/android/
net/T rafficStats.html.

[6] Android Market Hits 500,000 Successfully Published Apps, 2011.
http://readwriteweb.com/mobile/2011/10/android-market-hits-500000-suc.php.

[7] Android Services Reference Documentation, 2012.
http://developer.android.com/reference/android/ app/Service.html.

[8] T. Armstrong, O. Trescases, C. Amza, and E. de Lara. Efficient and Transparent
Dynamic Content Updates for Mobile Clients. In ACM MobiSys, 2006.

[9] M. Azizyan, I. Constandache, and R. R. Choudhury. SurroundSense: Mobile Phone
Localization via Ambience Fingerprinting. In ACM MobiCom, 2009.

[10] A. Balasubramanian, R. Mahajan, A. Venkataramani, B. Neil Levine, and J. Zahorjan.
Interactive wifi connectivity for moving vehicles. In ACM SIGCOMM, 2008.

[11] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy Con
sumption in Mobile Phones: A Measurement Study and Implications for Network
Applications. In ACM IMC, 2009.

[12] N. Banerjee, A. Rahmati, M. D. Corner, S. Rollins, and L. Zhong. Users and
Batteries: Interactions and Adaptive Energy Management in Mobile Systems. In
ACM UbiComp, 2007.

[13] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

93

http://developer.android.com/sdk/ndk/index.html
http://source.android.com/tech/index.html
http://developer.android.com/reference/android/
http://readwriteweb.com/mobile/2011/10/android-market-hits-500000-suc.php
http://developer.android.com/reference/android/

BIBLIOGRAPHY 94

[14] Bluetooth Core Version 2.0 + EDR, 2009. Bluetooth SIG Std. Core Version 2.0 +
EDR specification.

[15] Bluetooth Core Version 3.0 + HS, 2009. Bluetooth SIG Std. Core Version 3.0 + HS
specification.

[16] Android Cloud to Device Messaging Framework, 2012.
http://code.google.com/android/c2dm/.

[17] C. Chatfield. The Analysis of Time Series: An Introduction, Sixth Edition. Chapman
and Hall/CRC, 2003.

[18] H. Choi and J. Lee. Hybrid Power Saving Mechanism for VoIP Services with Silence
Suppression in IEEE 802.16e Systems. In IEEE Communications Letters, 2007.

[19] R.G. Cole and J.H. Rosenbluth. Voice over IP performance monitoring. In ACM
SIGCOMM, 2001.

[20] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine Learning,
pages 273—297, 1995.

[21] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[22] F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap: Exploiting High Bandwidth
Wireless Interfaces to Save Energy for Mobile Devices. In ACM MobiSys, 2010.

[23] P. Drago, A. Molinari, and F. Vagliani. Digital Dynamic Speech Detectors. In IEEE
TON, 1978.

[24] J. Erman, A. Gerber, K. Ramakrishnan, S. Sen, and O. Spatscheck. Over The Top
Video: The Gorilla in Cellular Networks. In ACM IMC, 2011.

[25] A. Estepa, R. Estepa, and J. Vozmediano. A new approach for VoIP traffic
characterization. In IEEE Communications Letters, 2004.

[26] iPhone FaceTime bandwidth gets measured.
http://www.digitalsociety.org/2010/08/iphone-facetime-bandwidth-gets-measured/,
2010.

[27] Freeswitch, 2010. http://www.freeswitch.org.

[28] M. Fujimoto, K. K. Ishizuka, and T. Nakatani. A Voice Activity Detection based on the
Adaptive Integration of Multiple Speech Features and a Signal Decision Scheme. In
IEEE ICASSP, 2008.

[29] Isabelle Guyon and Andre Elisseeff. An introduction to variable and feature selection.
J. Mach. Learn. Res., 3:1157-1182, March 2003.

[30] Y. Liu; E. I. and H. Qi. An energy-efficient QoS-aware media access control protocol
for wireless sensor networks. In IEEE MASS, 2005.

http://code.google.com/android/c2dm/
http://www.digitalsociety.org/2010/08/iphone-facetime-bandwidth-gets-measured/
http://www.freeswitch.org

BIBLIOGRAPHY 95

[31] IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification, 1999. ANSI/IEEE Std. 802.11dcf.

[32] Medium Access Control (MAC) and Physical Layer (PHY) specifications Amend
ment 8: Medium Access Control (MAC) Quality of Service Enhancements, 2005.
ANSI/IEEE Std. 802.11e.

[33] Tommi Jaakkola and David Haussler. Exploiting generative models in discriminative
classifiers. In In Advances in Neural Information Processing Systems 11, pages
487-493. MIT Press, 1998.

[34] Thorsten Joachims. Text categorization with suport vector machines: Learning with
many relevant features. In ECML, pages 137-142,1998.

[35] R. Krashinsky and H. Balakrishnan. Minimizing Energy for Wireless Web Access
with Bounded Slowdown. In ACM MobiCom, 2002.

[36] S. Kullback and R. A. Leibler. On Information and Sufficiency. In The Annals o f
Mathematical Statistics, 1951.

[37] L. Lamel, L. R. Rabiner, A. Rosenberg, and J. Wilpon. An Improved Endpoint
Detector for Isolated Word Recognition. In IEEE TOASSP, 2003.

[38] J. Liu and L. Zhong. Micro Power Management of Active 802.11 Interfaces. In ACM
MobiSys, 2008.

[39] Y. Liu, F. Li, L. Guo, Y. Guo, and S. Chen. Bluestreaming: towards power-efficient
internet P2P streaming on mobile devices. In ACM MM, 2011.

[40] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell. The Jigsaw
Continuous Sensing Engine for Mobile Phone Applications. In ACM SenSys, 2010.

[41] J. Manweilerand R. Choudhury. Avoiding the Rush Hours: WiFi Energy Management
via Traffic Isolation. In ACM MobiSys, 2011.

[42] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman,
X. Zheng, and A. T. Campbell. Sensing Meets Mobile Social Networks: The Design,
Implementation and Evaluation of the CenceMe Application. In ACM SenSys, 2008.

[43] E. Miluzzoy, C. T. Corneliusy, A. Ramaswamyy, T. Choudhuryy, Z. Liux, and A. T.
Campbelly. Darwin Phones: the Evolution of Sensing and Inference on Mobile
Phones. In ACM MobiSys, 2010.

[44] Monsoon Solutions, 2011. http://www.msoon.com/LabEquipment/PowerMonitor.

[45] S.B. Moon, P. Skelly, and D. Towsley. Estimation and removal of clock skew from
network delay measurements. In IEEE INFOCOM, 1999.

[46] Motorola RAZR, 2012. www.motorola.com.

http://www.msoon.com/LabEquipment/PowerMonitor
http://www.motorola.com

BIBLIOGRAPHY 96

[47] V, Namboodiri and L. Gao. Towards Energy Efficient VoIP over Wireless LANs. In
ACM MobiHoc, 2008.

[48] NetFilter packet filtering framework, 2011. http://www.netfilter.org.

[49] Netperf Networking Benchmark, 2011. http://www.netperf.org.

[50] A. Pathak, Y. Hu, and M. Zhang. Fine Grained Energy Accounting on Smartphones
with Eprof. In ACM Eurosys, 2012.

[51] T. Pering, Y. Agarwal, R. Gupta, and R. Want. Coolspots: Reducing the Power
Consumption of Wireless Mobile Devices with Multiple Radio Interfaces. In ACM
MobiSys, 2006.

[52] Massimiliano Pontil and Alessandro Verri. Support vector machines for 3-d object
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20:637-646, 1998.

[53] A. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu. SAPSM: Smart Adaptive 802.11
PSM for Smartphones. In ACM UbiComp, 2012.

[54] A. Pyles, Z. Ren, G. Zhou, and X. Liu. SiFi: exploiting VoIP silence for WiFi energy
savings in smart phones. In ACM UbiComp, 2011.

[55] Qualcomm-Atheros WB225 Reference Design, 2012.
http://www.qca.qualcomm.com/media/product/product _106_file1 .pdf.

[56] A. Rahmati and L. Zhong. Context for Wireless: Context-Sensitive Energy-Efficient
Wireless Data Transfer. In ACM MobiSys, 2007.

[57] A. Rahmati and L. Zhong. Human-Battery Interaction on Mobile Phones. In Pervasive
and Mobile Computing, 2009.

[58] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. In RFC 3261, 2002.

[59] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu. NAPman: Network-Assisted
Power Management for WiFi Devices. In ACM MobiSys, 2010.

[60] R. C. Shah, L. Nachman, and C-Y. Wan. On the performance of Bluetooth and IEEE
802.15.4 radios in a body area network. Third International Conference on Body
Area Networks (BodyNets’08).

[61] Sipdroid, 2010. http://www.sipdroid.org.

[62] How much bandwidth does Skype need?
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need,
2012 .

[63] Sprint HTC HERO, 2010. www.htc.com/us/support/hero-sprint.

http://www.netfilter.org
http://www.netperf.org
http://www.qca.qualcomm.com/media/product/product
http://www.sipdroid.org
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
http://www.htc.com/us/support/hero-sprint

BIBLIOGRAPHY 97

[64] E. Tan, L. Guo, S. Chen, and X. Zhang. PSM-throttling: Minimizing Energy
Consumption for Bulk Data Communications in WLANs. In IEEE ICNP, 2007.

[65] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, and B. Krishnamachari. A
Framework of Energy Efficient Mobile Sensing for Automatic User State Recognition.
In ACM MobiSys, 2009.

[66] X. Zhang and K. G. Shin. E-MiLi: Energy Minimizing Idle Listening in Wireless
Networks. In ACM MobiCom, 2011.

[67] R. Zhou, Y. Xiong, G. Xing, M. L. Sun, and J. Ma. ZiFi: wireless Lan discovery via
ZigBee interference signatures. In ACM MobiCom, 2010.

98

VITA

Andrew Joseph Pyles

Andrew is currently a cyber security researcher at MITRE corporation. Prior to that he

has worked for several start-up companies in Silicon Valley before deciding to return to

school. He has been at William and Mary full-time from 2009 to 2012 where he has

studied under the direction of Professor Gang Zhou focusing on Smartphone energy

research. He has published two papers in ACM Ubicomp.

	Network Traffic Aware Smartphone Energy Savings
	Recommended Citation

	00001.tif

