736,643 research outputs found

    PlaNet - Photo Geolocation with Convolutional Neural Networks

    Full text link
    Is it possible to build a system to determine the location where a photo was taken using just its pixels? In general, the problem seems exceptionally difficult: it is trivial to construct situations where no location can be inferred. Yet images often contain informative cues such as landmarks, weather patterns, vegetation, road markings, and architectural details, which in combination may allow one to determine an approximate location and occasionally an exact location. Websites such as GeoGuessr and View from your Window suggest that humans are relatively good at integrating these cues to geolocate images, especially en-masse. In computer vision, the photo geolocation problem is usually approached using image retrieval methods. In contrast, we pose the problem as one of classification by subdividing the surface of the earth into thousands of multi-scale geographic cells, and train a deep network using millions of geotagged images. While previous approaches only recognize landmarks or perform approximate matching using global image descriptors, our model is able to use and integrate multiple visible cues. We show that the resulting model, called PlaNet, outperforms previous approaches and even attains superhuman levels of accuracy in some cases. Moreover, we extend our model to photo albums by combining it with a long short-term memory (LSTM) architecture. By learning to exploit temporal coherence to geolocate uncertain photos, we demonstrate that this model achieves a 50% performance improvement over the single-image model

    Studies of jet quenching within a partonic transport model

    Get PDF
    Background: Finite mixture models posit the existence of a latent categorical variable and can be used for probabilistic classification. The authors illustrate the use of mixture models for dietary pattern analysis. An advantage of this approach is taking classification uncertainty into account. Methods: Participants were a random sample of women from the European Prospective Investigation into Cancer. Food consumption was measured using dietary questionnaires. Mixture models identified latent classes in food consumption data, which were interpreted as dietary patterns. Results: Among various assumptions examined, models allowing the variance of foods to vary within and between classes fit better than alternatives assuming constant variance (the K-means method of cluster analysis also makes the latter assumption). An eight-class model was best fitting and five patterns validated well in a second random sample. Patterns with lower classification uncertainty tended to be better validated. One pattern showed low consumption of foods despite being associated with moderate body mass index. Conclusion: Mixture modelling for dietary pattern analysis has advantages over both factor and cluster analysis. In contrast to these other methods, it is easy to estimate pattern prevalence, to describe patterns and to use patterns to predict disease taking classification uncertainty into account. Owing to substantial error in food consumptions, any analysis will usually find some patterns that cannot be well validated. While knowledge of classification uncertainty may aid pattern evaluation, any method will better identify patterns from food consumptions measured with less error. Mixture models may be useful to identify individuals who under-report food consumption

    Active Discovery of Network Roles for Predicting the Classes of Network Nodes

    Full text link
    Nodes in real world networks often have class labels, or underlying attributes, that are related to the way in which they connect to other nodes. Sometimes this relationship is simple, for instance nodes of the same class are may be more likely to be connected. In other cases, however, this is not true, and the way that nodes link in a network exhibits a different, more complex relationship to their attributes. Here, we consider networks in which we know how the nodes are connected, but we do not know the class labels of the nodes or how class labels relate to the network links. We wish to identify the best subset of nodes to label in order to learn this relationship between node attributes and network links. We can then use this discovered relationship to accurately predict the class labels of the rest of the network nodes. We present a model that identifies groups of nodes with similar link patterns, which we call network roles, using a generative blockmodel. The model then predicts labels by learning the mapping from network roles to class labels using a maximum margin classifier. We choose a subset of nodes to label according to an iterative margin-based active learning strategy. By integrating the discovery of network roles with the classifier optimisation, the active learning process can adapt the network roles to better represent the network for node classification. We demonstrate the model by exploring a selection of real world networks, including a marine food web and a network of English words. We show that, in contrast to other network classifiers, this model achieves good classification accuracy for a range of networks with different relationships between class labels and network links

    CLASSIFICATION OF RICE-PLANT GROWTH PHASE USING SUPERVISED RANDOM FOREST METHOD BASED ON LANDSAT-8 MULTITEMPORAL DATA

    Get PDF
    Data on rice production is crucial for planning and monitoring national food security in a developing country such as Indonesia, and the classification of the growth phases of rice plants is important for supporting this data. In contrast to conventional field surveys, remote sensing technology such as Landsat-8 satellite imagery offers more scalable, inexpensive and real-time solutions. However, utilising Landsat-8 for classification of rice-plant phase required spectral pattern information from one season, because these spectral patterns show the existence of temporal autocorrelation among features. The aim of this study is to propose a supervised random forest method for developing a classification model of rice-plant phase which can handle the temporal autocorrelation existing among features. A random forest is a machine learning method that is insensitive to multicollinearity, and so by using a random forest we can make features engineering to select the best multitemporal features for the classification model. The experimental results deliver accuracy of 0.236 if we use one temporal feature of vegetation index; if we use more temporal features, the accuracy increases to 0.7091. In this study, we show that the existence of temporal autocorrelation must be captured in the model to improve classification accuracy

    Automated Quality Assessment of Printed Objects Using Subjective and Objective Methods Based on Imaging and Machine Learning Techniques.

    Get PDF
    Estimating the perceived quality of printed patterns is a complex task as quality is subjective. A study was conducted to evaluate how accurately a machine learning method can predict human judgment about printed pattern quality. The project was executed in two phases: a subjective test to evaluate the printed pattern quality and development of the machine learning classifier-based automated objective model. In the subjective experiment, human observers ranked overall visual quality. Object quality was compared based on a normalized scoring scale. There was a high correlation between subjective evaluation ratings of objects with similar defects. Observers found the contrast of the outer edge of the printed pattern to be the best distinguishing feature for determining the quality of object. In the second phase, the contrast of the outer print pattern was extracted by flat-fielding, cropping, segmentation, unwrapping and an affine transformation. Standard deviation and root mean square (RMS) metrics of the processed outer ring were selected as feature vectors to a Support Vector Machine classifier, which was then run with optimized parameters. The final objective model had an accuracy of 83%. The RMS metric was found to be more effective for object quality identification than the standard deviation. There was no appreciable difference in using RGB data of the pattern as a whole versus using red, green and blue separately in terms of classification accuracy. Although contrast of the printed patterns was found to be an important feature, other features may improve the prediction accuracy of the model. In addition, advanced deep learning techniques and larger subjective datasets may improve the accuracy of the current objective model

    Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns – an investigation using modelled scattering data

    Get PDF
    This document is the Accepted Manuscript version of the following article: Emmanuel Oluwatobi Salawu, Evelyn Hesse, Chris Stopford, Neil Davey, and Yi Sun, 'Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns – an investigation using modelled scattering data', Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 201, pp. 115-127, first published online 5 July 2017. Under embargo. Embargo end date: 5 July 2019. The Version of Record is available online at doi: https://doi.org/10.1016/j.jqsrt.2017.07.001. © 2017 Elsevier Ltd. All rights reserved.Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles’ orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle’s size and size PADs.Peer reviewe

    Automatic Annotation of Spatial Expression Patterns via Sparse Bayesian Factor Models

    Get PDF
    Advances in reporters for gene expression have made it possible to document and quantify expression patterns in 2D–4D. In contrast to microarrays, which provide data for many genes but averaged and/or at low resolution, images reveal the high spatial dynamics of gene expression. Developing computational methods to compare, annotate, and model gene expression based on images is imperative, considering that available data are rapidly increasing. We have developed a sparse Bayesian factor analysis model in which the observed expression diversity of among a large set of high-dimensional images is modeled by a small number of hidden common factors. We apply this approach on embryonic expression patterns from a Drosophila RNA in situ image database, and show that the automatically inferred factors provide for a meaningful decomposition and represent common co-regulation or biological functions. The low-dimensional set of factor mixing weights is further used as features by a classifier to annotate expression patterns with functional categories. On human-curated annotations, our sparse approach reaches similar or better classification of expression patterns at different developmental stages, when compared to other automatic image annotation methods using thousands of hard-to-interpret features. Our study therefore outlines a general framework for large microscopy data sets, in which both the generative model itself, as well as its application for analysis tasks such as automated annotation, can provide insight into biological questions
    • …
    corecore