370 research outputs found

    Topological Foundations of Cognitive Science

    Get PDF
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda ** Defining a 'Doughnut' Made Difficult, N .M. Gotts ** A Theory of Spatial Regions with Indeterminate Boundaries, A.G. Cohn and N.M. Gotts ** Mereotopological Construction of Time from Events, Fabio Pianesi and Achille C. Varzi ** Computational Mereology: A Study of Part-of Relations for Multi-media Indexing, Wlodek Zadrozny and Michelle Ki

    Clinical guidelines as plans: An ontological theory

    Get PDF
    Clinical guidelines are special types of plans realized by collective agents. We provide an ontological theory of such plans that is designed to support the construction of a framework in which guideline-based information systems can be employed in the management of workflow in health care organizations. The framework we propose allows us to represent in formal terms how clinical guidelines are realized through the actions of are realized through the actions of individuals organized into teams. We provide various levels of implementation representing different levels of conformity on the part of health care organizations. Implementations built in conformity with our framework are marked by two dimensions of flexibility that are designed to make them more likely to be accepted by health care professionals than standard guideline-based management systems. They do justice to the fact 1) that responsibilities within a health care organization are widely shared, and 2) that health care professionals may on different occasions be non-compliant with guidelines for a variety of well justified reasons. The advantage of the framework lies in its built-in flexibility, its sensitivity to clinical context, and its ability to use inference tools based on a robust ontology. One disadvantage lies in its complicated implementation

    Classification, Individuation and Demarcation of Forests: Formalising the Multi-Faceted Semantics of Geographic Terms

    Get PDF
    Many papers have considered the problem of how to define "forest". However, as we shall illustrate, while most definitions capture some important aspects of what it means to be a forest, they almost invariably omit or are very vague regarding other aspects. In the current paper we address this issue, firstly by providing a definitional framework based on spatial and physical properties, within which one can make explicit the implicit variability of the natural language forest concept in terms of explicit parameters. Our framework explicitly differentiates between the functions of classification, individuation and demarcation that comprise the interpretation of predicative terms. Whereas ontologies have traditionally concentrated predominantly on classification, we argue that in many cases (especially in the case of geographic concepts) criteria for individuation (i.e. establishing how many distinct individual objects of a given type exist) and demarcation (establishing the boundary of an object) require separate attention, involve their own particular definitional issues and are affected by vagueness in different ways. We also describe a prototype Prolog system that illustrates how our framework can be implemented

    Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI

    Get PDF
    This article belongs to the Special Issue Sensors and Wireless Sensor Networks for Novel Concepts of Things, Interfaces and Applications in Smart SpacesRecent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI) environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors' knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP) application for the elaboration of live market researches.This work was supported in part by Projects CICYT TIN2011-28620-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02.Publicad
    • 

    corecore