6 research outputs found

    Reduced pattern training based on task decomposition using pattern distributor

    Get PDF
    Task Decomposition with Pattern Distributor (PD) is a new task decomposition method for multilayered feedforward neural networks. Pattern distributor network is proposed that implements this new task decomposition method. We propose a theoretical model to analyze the performance of pattern distributor network. A method named Reduced Pattern Training is also introduced, aiming to improve the performance of pattern distribution. Our analysis and the experimental results show that reduced pattern training improves the performance of pattern distributor network significantly. The distributor module’s classification accuracy dominates the whole network’s performance. Two combination methods, namely Cross-talk based combination and Genetic Algorithm based combination, are presented to find suitable grouping for the distributor module. Experimental results show that this new method can reduce training time and improve network generalization accuracy when compared to a conventional method such as constructive backpropagation or a task decomposition method such as Output Parallelism

    Model selection in omnivariate decision trees using Structural Risk Minimization

    Get PDF
    As opposed to trees that use a single type of decision node, an omnivariate decision tree contains nodes of different types. We propose to use Structural Risk Minimization (SRM) to choose between node types in omnivariate decision tree construction to match the complexity of a node to the complexity of the data reaching that node. In order to apply SRM for model selection, one needs the VC-dimension of the candidate models. In this paper, we first derive the VC-dimension of the univariate model, and estimate the VC-dimension of all three models (univariate, linear multivariate or quadratic multivariate) experimentally. Second, we compare SRM with other model selection techniques including Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC) and cross-validation (CV) on standard datasets from the UCI and Delve repositories. We see that SRM induces omnivariate trees that have a small percentage of multivariate nodes close to the root and they generalize more or at least as accurately as those constructed using other model selection techniques.The authors thank the three anonymous referees and the editor for their constructive comments, pointers to related literature, and pertinent questions which allowed us to better situate our work as well as organize the ms and improve the presentation. This work has been supported by the Turkish Scientific Technical Research Council TUBITAK EEEAG 107E127Publisher's VersionAuthor Pre-Prin

    Task decomposition with pattern distributor networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Classifiability-based omnivariate decision trees

    No full text
    Top-down induction of decision trees is a simple and powerful method of pattern classification. In a decision tree, each node partitions the available patterns into two or more sets. New nodes are created to handle each of the resulting partitions and the process continues. A node is considered terminal if it satisfies some stopping criteria (for example, purity, i.e., all patterns at the node are from a single class). Decision trees may be univariate, linear multivariate, or nonlinear multivariate depending on whether a single attribute, a linear function of all the attributes, or a nonlinear function of all the attributes is used for the partitioning at each node of the decision tree. Though nonlinear multivariate decision trees are the most powerful, they are more susceptible to the risks of overfitting. In this paper, we propose to perform model selection at each decision node to build omnivariate decision trees. The model selection is done using a novel classifiability measure that captures the possible sources of misclassification with relative ease and is able to accurately reflect the complexity of the subproblem at each node. The proposed approach is fast and does not suffer from as high a computational burden as that incurred by typical model selection algorithms. Empirical results over 26 data sets indicate that our approach is faster and achieves better classification accuracy compared to statistical model select algorithms

    Classifiability-Based Omnivariate Decision Trees

    No full text
    corecore