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Summary

Task decomposition methods modularize a large neural network into several mod-

ules. These modules are integrated together to form a modular neural network.

Compared with normal neural networks, the classification accuracy can be improved

using task decomposition. In the thesis, a new method named Pattern Distrib-

utor (PD) is presented as a new task decomposition method. PD method can

perform better than ordinary task decomposition networks (for example, Output

Parallelism). The thesis is focused on the following aspects:

1. The structure of PD networks is introduced and a theoretical model is pre-

sented to compare the performance of PD networks with OP networks. The

analysis shows that PD networks can outperform OP networks. A technique

called Reduced Pattern Training (RPT) is introduced to the PD network to

reduce training time and further decrease classification error.

2. According to the theoretical model, the distributor module’s performance in

a PD network greatly affects the classification accuracy of the whole network.

How to combine classes in the distributor module is a key issue for designing

a PD network. Several theorems and corollaries are presented for class com-

bination in the distributor module and for the relations in the non-distributor

modules. Based on these theorems and corollaries, three greedy combination

algorithms are proposed. We also present another two combination algorithms

based on FLD analysis and evolutionary algorithm.

Compared with other typical decomposition methods (for example, Output Paral-

lelism), the PD method can improve the generalization accuracy for classification

problem and at the same time, even reduce the training time. The PD method can

be easily transplanted to real-world applications, for instance, illness analysis, image

and letter processing, molecular biology, sound recognition and so on.
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Chapter 1

Introduction

1.1 Research Motivation

Multiple layer perceptron (MLP) neural network is widely used as a powerful clas-

sifier for nonlinear classification problems (Rumelhart, et al., 1986; Bishop, 1995;

Haykin, 1999). However, it still suffers from several drawbacks when applied to

complex behavioral problems (Auda et al., 1996). Learning a complex behavior re-

quires bringing together several different kinds of knowledge and processing, which

is impossible to be achieved for global neural networks like MLP (Feldman, 1989;

Simon, 1981). For the “stability-plasticity dilemma” problem, Carpenter and Gross-

berg (1988) argued that when two tasks have to be learnt consecutively by a sin-

gle network, the learning of the second task will interfere with the previous learn-

ing. Another common problem for multiple-task neural networks is the “temporal

crosstalk”problem (Jacobs and Jordan, 1991), which means that a network tends

to introduce high internal interference because of the strong coupling among their

hidden-layer weights when several tasks have to be learnt simultaneously.

A widely used approach to overcome these shortcomings is to decompose the

original problem into sub-problems (modules) and perform local and encapsulated

computation for each sub-problem. Task decomposition methods modularized the

single large neural network into several modules. These modules are integrated to-

gether to form a modular neural network. Various task decomposition methods have

been presented. Compared with normal neural networks, the recognition rate can

be improved using task decomposition.

1



1.2. Problem Definitions and Overall Solutions 2

There are three main task decomposition methods, which are ensemble learning,

domain decomposition and class decomposition. For ensemble learning and domain

decomposition, though the whole problem is divided into several learners or modules

and the task for each learner or module is relatively small, the internal interference

between classes can not be avoided. Class decomposition algorithms are designed

for the problem with several or many classes. The introduction of class decomposi-

tion is to reduce the internal interference between classes. However, there are still

some shortcomings in existing class decomposition methods. For example, some

algorithms decompose a K -class problem into K two-class sub-problems or several

sub-problems (Chen and You, 1993; Ishihara and Nagano, 1994; Anand et al., 1995;

Guan and Li, 2000, 2002b). For each sub-problem, the dimension is reduced, but

the number of training samples is not reduced. Some other methods split a K -class

problem into (K
2 ) two-class sub-problems (Friedman, 1996; Lu and Ito, 1999) and the

size of each sub-problem’s training pattern set is reduced. However, if the original

K -class problem is complex (K is large), a large number of modules will be needed

to learn the sub-problems and thus resulting in excessive computational cost. To

overcome these shortcomings, in the thesis, we will continue to explore and refine

task decomposition methods.

1.2 Problem Definitions and Overall Solutions

Classification problems and regression problems are two categories of problems

widely used in real life. Classification problems generally refer to those problems

where one attempts to predict category labels (class, group, etc.) from one or more

continuous and/or discrete variables. Regression problems are generally those where

one attempts to predict continuous variables from one or more continuous and/or

discrete variables. In the thesis, we will design new classifiers for classification prob-

lems. Thus, our discussion will be focused on classification problems. As many

algorithms originally designed for classification problems can be extended to regres-

sion problems, i.e. decision tree classifiers, our algorithms would also be applicable

to regression problems after some revisions. Research on regression problems will

be one of our future directions.
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There are four main components for a classification problem. The first one is

the categorical outcome, which is the characteristic we hope to predict. The second

component of a classification problem is the continuous and discrete variables (or

the predictor variables) which are the characteristics related to the outcome variable

of interest. The third component of a classification problem is the learning dataset.

This is a dataset which includes values for both the category labels and predictor

variables. The fourth component of the classification problem is the test or future

dataset, which is used for testing the classification accuracy of the classifiers. This

test dataset may or may not exist in practice.

Our research is focused on problems with several or many classes, i.e., the num-

ber of classes is greater than three.

Output Parallelism (OP), presented by Guan and Li, is regarded as a typical

class decomposition for neural networks (2000 and 2002a). OP method decomposes

the original complex problem into a set of smaller sub-problems without any prior

knowledge concerning the decomposition of the problem. For example, for an orig-

inal classification problem with K output classes, the first step is to divide this

original problem into R sub-problems each of which has ri (i = 1, 2, 3, ...,R) output

classes where
∑

ri = K output classes. Each sub-problem is composed of the whole

input problem space and a fraction of the output problem space. Each sub-problem

is then solved by building and training a module (small size neural network).Thus, R

modules will be trained independently according to the corresponding sub-problems

and the collection of such modules will be the overall solution of the original prob-

lem. See Figure 1.1.

The basic idea of Pattern Distributor (PD) is an expansion from the OP method.

In the OP network, all the unknown patterns enter each module directly. We may

consider to incorporate a special module called a distributor module before the mod-

ules of the OP network. Thus, when an unknown pattern enters the network, it is

processed by the distributor module first. The distributor module decides which

module will continue to classify this pattern. The distributor module has a higher

position as compared to the other modules in the network. The overview of the new
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Figure 1.1: Modular networks based on Output Parallelism

architecture is shown in Figure 1.2.

When unseen input patterns enter the network, they are firstly processed by the

distributor module. The distributor module assigns these patterns to different mod-

ules. Each non-distributor module only classifies a portion of the unseen patterns.

While in OP networks, each module will classify all the unseen patterns. Because

a non-distributor module in the PD networks only processes a portion of the whole

test set, the number of wrongly-classified patterns could be smaller than that of its

counterpart in the OP network. Detailed analysis will be presented in Chapter 3.

Thus, the classification accuracy could be increased.

A non-distributor module in a PD network only classifies patterns belonging

to a few classes. The unseen patterns of other classes will not enter that module.

Thus, that module can be learned only using the training patterns and validation

patterns which belong to its own classes. The patterns belonging to other classes

can be removed. This is the basic idea for Reduced Pattern Training (RPT). The

training time could be saved using RPT and the classification accuracy could also

be increased.

In the above consideration, we ignored the distributor module’s performance and
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Figure 1.2: Modular networks based on Pattern Distributor method

assume the distributor module classifies all the patterns correctly. In fact, it’s nearly

impossible. If the distributor module’s classification error is large, the PD network

can hardly achieve better performance than the OP network. In Chapter 3, we de-

duce the condition in which the PD network achieves better classification accuracy

than the corresponding OP network.

Sometimes, in a PD network, some non-distributor modules are large (it means

the module needs to classify a large number of classes). Since the PD method could

improve classification accuracy of the network, we may continue to apply the PD

method to these non-distributor modules. We expect it will further improve the

performance of the whole network. For example, in Figure 1.2, we may substitute

Module 1 with a sub-PD network. Thus, a multi-level PD network is formed. The

details of multi-level PD networks are discussed in Chapter 4.

It was mentioned that the distributor module’s performance greatly affects the

whole PD network. Thus, we hope to decrease the classification error of the dis-

tributor module. Each output of the distributor module is a combination of several

classes. The combinations for all the outputs of the distributor module are grouped
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into a combination set. For the distributor modules, different combination sets lead

to different classification accuracies. Now we have a question: Could we find com-

bination sets which ensure that the PD module achieve high performance? How to

find them?

To answer the above question, an algorithm, called Greedy Based Combination

Selection (GCS), is proposed to find a good combination set for the distributor mod-

ule. The algorithm starts from the combination set that has K elements (K is the

number of classes of the problem), i.e. {{1},{2}, . . ., {K}}. Here {1}, {2}, . . .,

{K}are the combinations in the combination set. In each epoch, the combination

with the largest classification error is selected, e.g. combination {2}. Then we tem-

porarily combine the combination with other combinations and find a suitable one

based on classification error test, e.g. {3}, and combine them together, i.e. {2,3}
and proceed to the next epoch. Thus, step by step, the elements in the combination

set are reduced. If some stopping criteria are satisfied, stop the algorithm. This

way we can find a suitable combination set. For the details of this algorithm, please

refer to Chapter 5.

The above algorithm can find a combination set with near optimal (minimum)

classification error for the distributor module. However, it needs relatively large

computation effort. In order to reduce computation, another algorithm, namely

Simplified Greedy Based Combination Selection (SGCS), is proposed. In this algo-

rithm, we still need to do the classification error test for temporarily combinations,

but the number of tests is reduced. Thus, the computation effort is saved. And we

still could find a combination set for the distributor module with small classification

error.

GCS and SGCS work well for a distributor module. However, they usually will

lead to an imbalanced combination set. An imbalanced combination set means some

combinations have more classes than other ones. In other words, some outputs of

the PD module have more classes than the other outputs. An imbalanced com-

bination set may bring harmful effect to the whole PD network. It will result in

non-PD modules with imbalanced workload. And the modules with heavy workload
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are hard to make a satisfactory classification. There are two approaches to solve

the problem. One is to continue to apply the PD method to the non-distributor

modules with many classes. This approach will lead to a multi-layer PD network.

The other approach is to add restriction to the maximum number of classes in a

combination.

Based on the idea of the second approach, the work load between the distributor

modules and non-distributor modules is considered and a new rule, call the
√

K

Rule-of-thumb (K is the number of classes in the data set) is deduced. According

to this rule, the maximum number of classes in a combination should not exceed√
K. By adding this constraint to the GCS algorithm, Restricted Greedy Based

Combination Selection (RGCS) designed for single-layer PD networks is proposed.

In Chapter 6, another two combination selection algorithms are presented, namely

Cross-talk based Combination Selection (CTCS) and Genetic Algorithm based Com-

bination Selection (GACS). These two algorithms are designed for single-layer PD

networks. CTCS generates a cross-talk table based on the Fisher’s linear discrim-

inant (FLD). Then a combination set is produced based on the cross-talk analysis

using some regulations. GACS uses the evolutionary method to find a suitable com-

bination set. The
√

K rule is used in both algorithms.

1.3 Research Contribution

The algorithms presented in this thesis work towards developing task decomposition

based algorithms with the following characteristics:

1. Can lead to improved performance in terms of better generalization.

All task decomposition algorithms result in reduced generalization accuracy

compared with normal MLP neural networks. In our research, we try to further

improve the classification rate by introducing the concept of Pattern Distrib-

utor. The introduction of distributor module greatly reduces the workload of

other modules and the whole network’s performance could be improved. How-

ever, the distributor module’s performance greatly affects the classification

accuracy of the whole network. In order to boost the distributor module’s
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classification accuracy, several combination algorithms are proposed. These

algorithms can find good combinations for the distributor module. Thus, the

PD network’s performance could be ensured.

2. Improves the overall training time.

The class decomposition algorithms are designed to improve the classification

rate of the problem. Normally, if using series training (training the modules

one after another), the overall training time will increase. To save training

times, some methods use parallel training to substitute series training (Guan

and Li, 2000 and 2002a). In our PD networks, the improvement of gener-

alization accuracy does not sacrifice the training time. The training time of

non-distributor modules could be greatly reduced by removing the patterns of

unrelated classes. Thus, even using series training, the overall training time for

the PD network can be even smaller than other class decomposition methods.

3. Find near-optimal combination sets for Pattern Distributor modules

automatically.

It was mentioned before that the distributor modules’ classification accuracy

will greatly affect the performance of the whole network. Several combination

selection algorithms are presented to find good combination sets for the distrib-

utor modules. Thus, we design our combination selection algorithms by which

we decompose the patterns automatically in a fashion that is independent of

human judgment.

4. Can be easily modified and extended.

We expect that the proposed algorithm can be applied, with minor adjust-

ments, to other training algorithms that involve learning based on training

patterns. The PD method should be easily combined with other task de-

composition methods. For instance, the PD method can be combined with

Mixture-of-expert systems (Jacobs et al., 1991) and Recursive Percentage-

based Hybrid Pattern training algorithm (Guan and Ramanathan; 2004). We

can apply the PD method to the modules of these systems to boost the perfor-

mance of the whole network. The PD method can also be easily transplanted

to real-world applications, for instance, medical analysis, image processing,

molecular biology, letter recognition and so on.
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Our research is focused on multi-class classification problems. The larger the

number of classes in the problem, the more likely the combination selection al-

gorithms can find a satisfactory combination set. Thereby, the PD network can

perform better than other class decomposition methods. For researchers or users in

the area of speech recognition and image analysis, the PD network may enlighten

them to set up more powerful classifiers which can improve the classification accu-

racy.

Our PD methods still have some constraints. Firstly, the PD method is not suit-

able for problems with just a few classes, i.e., the problems with three or less classes.

There is another issue in our research. The whole PD network’s performance is not

only on the distributor modules but also on the non-distributor modules. Several

combination selection algorithms are proposed to reduce the classification error of

a distributor module, so the distributor module can have good performance. How-

ever, we only have preliminary analysis for non-distributor modules (see Chapter

5). Further analysis of the non-distributor modules remains a future research task.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 reviews related literature

and presents them in the context of neural networks, decision tree systems and task

decomposition. Chapter 3 presents the structure of single-layer PD networks, a the-

oretical analysis is offered to evaluate the performance of a PD network. Chapter

4 presents the idea of multi-layer PD networks. In Chapter 5, three greedy based

combination selection algorithms are presented to find a near-optimal combination

set for a distributor module. Chapter 6 presents two other combination algorithms

for single-layer PD network and compares all the combination selection algorithms.

Chapter 7 presents an overall discussion on PD networks and concludes the thesis.



Chapter 2

Related Work

2.1 Introduction

In this chapter, we will give some background information on neural networks and

constructive backpropagation algorithm as they are applied in our research. There-

after, a review on decision tree algorithms will be given. Our PD network - a task

decomposition approach, appears to have some similarity with the decision tree al-

gorithms. Next, we will cover various task decomposition methods, focusing on

those based on neural networks. These task decomposition methods fall into three

categories, Ensemble learning, domain decomposition and class decomposition. Our

PD method belongs to the class decomposition category.

2.2 Background

2.2.1 Neural Networks

A neural network, also known as an artificial neural network, simulates cortical struc-

tures of the human brain in a fundamental manner. It is composed of a large number

of interconnected neurons or nodes which work together to solve problems. There

are various of neural network models such as Hopfield nets, the Boltzmann machine,

Kohonen self-organizing feature maps and Multi-layer perceptrons (MLPs) (Rumel-

hart, et al., 1986; Bishop, 1995; Haykin, 1999). In these neural networks, MLPs are

the most popular ones, which are feedforward neural networks with multi-layered

structures. Among these multi-layer structures, three-layered structure is the most

widely used. Typically, a three-layer MLP has an input layer, a hidden layer and

10
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Figure 2.1: Architecture of a typical three-layer MLP neural network

an output layer. The signal propagates through the network from the input layer

to the output layer (Figure 2.1).

MLPs have been successfully applied to solve various problems. Generally, the

training of MLPs is carried out with a standard backpropagation type of training al-

gorithm. This training algorithm performs gradient descent only in the weight space

of a network with a fixed topology, and it is useful when the network architecture is

selected properly. A problem can not be learnt well with a too small network, but a

size too large will lead to overfitting and poor generalization performance (Geman,

etc., 1992). There are three major approaches for solving it. Firstly, a large number

of networks with different sizes are trained and then the “best” structure is chosen

using some criterion based on information theory (Akaike, 1974; Rissanen, 1975;

Schwartz, 1978). The second one is that we train a relatively large network for the

problem and then use pruning methods to reduce the size of the network (Reed,

1993; Poggio and Girosi, 1990). The last one, also called constructive algorithm,

starts from a small network and then grows hidden nodes over it until a satisfactory

solution is reached (Lehtokangas, 1999; Kwok and Yeung, 1997). Compared with

the former two approaches, the construction algorithm sets up a relatively smaller

network and is more effective in resources. Constructive Backpropagation (CBP) by

Lehtokangas (1999) may be the most noted one. We will give a brief introduction

to CBP algorithm.
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Figure 2.2: Training a new hidden unit in CBP learning. Y represents previously
added connections to network output units

2.2.2 Constructive Backpropagation (CBP) Algorithm

In our training course for neural network modules, the Constructive Backpropaga-

tion algorithm is used. The CBP can be depicted briefly as follows (Lehtokangas,

1999):

1. Initialization: The network has no hidden units. Only bias weights and short-

cut connections from the input units to the output units feed the output units.

Train the weights of this initial configuration by minimizing the sum of squared

errors:

E =
P∑

p=1

K∑

k=1

(opk − tpk)
2 , (2.1)

where P is the number of training patterns, K is the number of output units,opk

is the actual output value of the kthoutput unit for the pth training pattern

and tpk is the desired output value of the kth output unit for the pth training

pattern.
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2. Training a new hidden unit : Connect inputs to the new unit (let the new unit

be the ith hidden unit, i > 0) and connect its output to the output units as

shown in Figure 2.2. Adjust all the weights connected to the new unit (both

input and output connections) by minimizing the modified sum of squared

errors:

Ei =
P∑

p=1

K∑

k=1

[a(
i−1∑
j=0

wjkopj + wikopi)− tpk]
2 , (2.2)

where wjk is the connection from the jth hidden unit to the kth output unit (w0k

represents a set of weights which are the bias weights and shortcut connections

trained in step 1), opj is the output of the jth hidden unit for the pth training

pattern (op0 represents inputs to bias weights and shortcut connections), and

a(·) is the activation function. Note that in the new ith unit perspective, the

previous units are fixed. In other words, we are only training the weights

connected to the new unit (both input and output connections).

3. Freezing a new hidden unit : Fix the weights connected to the unit permanently.

4. Testing for convergence: If the current number of hidden units yields an ac-

ceptable solution, then stop the training. Otherwise go back to step 2.

2.3 Decision Tree Classifiers

Decision tree classifiers are also widely used in the classification problems. The basic

idea of decision tree classifiers is to break up a complex decision into a number of

simpler decisions. It has some similarities to task decomposition algorithms, which

also use the concept of “divide-and-conquer”.

2.3.1 Review of Decision Tree Classifiers

Decision tree systems exist long compared with neural networks. Researchers have

proposed various methods for the tree structure design (Argentiero et al., 1982; Bar-

tolucci, 1976; Casey and Nagy, 1984; Diday and Moreau 1986; Gelfand and Guo,



2.3. Decision Tree Classifiers 14

1991; Gustafson, 1980; Kargupta et al., 2006; Kim and Landgrebe 1990; Kulka-

rni, 1976; Li and Dong, 2003; Li and Dubes, 1986; Pedrycz and Sosnowski, 2005;

Quinlan and Rivest 1989; Rounds, 1980; Yun and Fu, 1983). Some of them had

no claim of optimality and utilized a priori knowledge for the design (Argentiero

et al., 1982; Gu et al., 1983; Landeweerd, 1983; Wang and Suen, 1987) while oth-

ers applied mathematical programming methods such as dynamic programming or

branch-and bound techniques (Kulkarni, 1976; Payne and Meisel, 1977). There are

various heuristic methods to construct decision tree classifiers. They can be grouped

into four categories: bottom-up approach, top-down approach, hybrid approach and

tree growing-pruning approach. In bottom-up approach, decision trees are created

from leaf to root according to certain principles, such as recognizing the most fre-

quently appearing classes first (Landeweerd et al., 1983). In top-down approach,

sets of classes are continually divided into smaller subsets of classes (Li and Dubes,

1986). Hybrid methods use both bottom-up and top-down approaches sequentially

(Kim and Landgrebe, 1990). Tree growing-pruning approach may be the most pop-

ular one. It first grows a huge tree according to bottom-up approach or top-down

algorithm, and then prunes unused or unnecessary branches (Breiman et al, 1984;

Esposito et al., 1997; Gelfand, 1991; Quinlan, 1993 and 2003).

The most popular decision tree classifier may be Quinlan’s ID3, standing for

“Iterative Dichotomizer (version) 3” (Pao, 1989). Later versions include C4.5 and C5

(Quinlan, 1993 and 2003). Since various decision trees have similar design principles,

now we give a brief review to ID3 to show how decision trees work. Figure 2.3 shows

an example for an ID3 decision tree system. The ID3 decision tree learning algorithm

computes the Information Gain G on each feature F, for a K -class problem, defined

as:

G(S, F ) = Entropy(S)−
∑

v∈values(F )

Sv

S
Entropy(Sv) , (2.3)

where S is the total input data and Sv is the subset of S for which feature F has a

value v. The Entropy(S) is given by

Entropy(S) = −
K∑

i=1

pilog2(pi) , (2.4)

where pi represents the probability of class i. The feature with the highest informa-

tion gain, i.e. B, is chosen as the root node of the tree. Then, the training set is
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Figure 2.3: An example for an ID3 decision tree classifier

divided into subsets SB according to the different values of B and a new decision

tree is recursively built over each value of B using the corresponding training sub-

set SB. A leaf-node or a decision-node is formed when all the instances within the

available training subset are from the same class. For detecting anomalies, the ID3

decision tree outputs binary classification decision of “0” to indicate normal and “1”

to indicate anomaly class assignments to test instances.

2.3.2 Shortcomings of Decision Tree Classifiers

Though various decision tree classifiers have been used to solve the classification

problems, they still have some drawbacks. Ordinary decision tree classifiers can

guarantee a good classification rate when processing the problems which have sim-

ple decision space. However, their performance is downgraded when facing problems

with very complex discrimination surfaces. Most decision tree classifiers allow over-

laps in order to improve the recognition rate, but too many overlaps will cause the

number of terminals to be much larger than the number of classes, thus greatly

reducing the efficiency of the classifier. Besides, there are often many levels of nodes

in a decision tree system. Thus, when unknown patterns enter the system, the pro-
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cessing time is relatively long.

Our PD method can overcome the above shortcomings. The neural network mod-

ules in PD networks can handle complex decision surfaces easily. In a PD network,

the number of the non-distributor modules (they can be seen as the leaf-node in

PDs) can not be larger than the number of classes. The efficiency of such a classifier

is much higher than a decision tree classifier. The number of layer of PD networks

is also much smaller than that of decision tree classifiers. Thus, the processing time

of the PD networks is relatively short.

2.4 Task Decomposition

Task decomposition means the kind of approaches in which we divide a relatively

complicated mission into a set of simple tasks and combine their decision in some

way. There are mainly three types of task decomposition approaches, namely en-

semble learning, data decomposition and class decomposition. Firstly, we look at

ensemble learning.

2.4.1 Ensemble Learning

The idea of ensemble learning is based on the assumption that “several minds are

better than one”. Using learner ensemble, the individual decisions of a set of learn-

ers are combined in some way, i.e., using either weighted or unweighted voting, to

classify new samples.

Kearns and Valiant (1994) proved that learners can be combined to form an ar-

bitrarily good ensemble hypothesis when enough data is available. Recently, learner

ensemble has been shown to be a highly effective approach. Bagging (Breiman,

1996) and boosting (Bauer and Kohavi, 1999; Freund, 1995, 1999 and 2001; Freund

and Schapire, 1996, 1997 and 1999; Meir and Ratsch, 2003) introduce diversity in

the learners by manipulating the training samples. In bagging, each weak learner

randomly makes bootstrap copy of the original training set and using these as new

training sets. Some training samples can appear multiple times in the aggregate.



2.4. Task Decomposition 17

Boosting is commonly known as the best “off the shelf” classifier in literature

(Hastie et al., 2001). Like bagging, boosting utilizes the training patterns to create

diverse learners. Unlike bagging, however, boosting uses the entire training set to

perform the manipulation in each learner. In each iteration, a learner is trained and

a hypothesis is returned based on the training set. The error of the hypothesis is

used to calculate a corresponding weight for each training patterns based on the

concept that more importance is given to the wrongly learnt patterns. The weight

will be used for the learner in the next iteration. The final classifier is produced by

using a weighted factor on the individual learners.

2.4.2 Domain Decomposition

Domain Decomposition is a category of decomposition methods based on the char-

acteristics of input data space. Domain decomposition has some similarity with

learner ensemble. Instead of introducing diversity in the weak learners by manipu-

lating the data and weighing erroneous patterns, data decomposition often removes

the patterns which have been learnt correctly and learn the erroneous pattern us-

ing new learners (or modules). The advantage is that a finite number of learners

or modules are required for learning the patterns. Testing is commonly performed

using a sieving network. Some data decomposition algorithms are discussed below.

Mixture-of-experts

We know that strong interference among neural networks will lead to slow learn-

ing and poor generalization. The most direct idea for domain decomposition is that if

the input data are partitioned into several subspaces and simple systems are trained

to fit the local data, the interference will be reduced. Hampshire and Waibel (1989)

described a network of this kind that can be used when the division into subtasks is

known prior to training. Then Jacobs et al. (1990) developed a related system that

allocates instances to experts (or modules) through learning. In the Jacobs’ system,

during the training process, weight changing is only restricted in the gating network

and a few experts if a instance’s output is incorrect. The error function used in the

above two systems does not encourage localization. Thus, Jacobs et al. revised the
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Figure 2.4: The mixture-of-experts system (Jacobs et al., 1991)

error function and developed the famous mixture-of-experts system (Jacobs et al.,

1991). See Figure 2.4. The error function is as follows:

E = −log
∑

i

piexp[−1

2
(d− oi)

2] , (2.5)

where oi is the output of expert i, and pi is the proportional contribution of expert i

to the combined output vector and d is the desired output vector. After that, Jordan

and Jacobs (1994) designed a hierarchical mixtures-of-experts architecture based on

mixture-of-experts and introduced an Expectation-Maximization (EM) algorithm.

The EM algorithm decouples the estimation process in a manner that fits well with

the modular structure of the architecture. Titsias and Likas (2002) designed a sys-

tem in which both the gating network units and the specialized experts are suitably

defined from the hierarchical mixture.

Multi-sieving

Lu et al. (1994) proposed the multi-sieving neural network, in which patterns are

classified by a rough sieve at the beginning and they are reclassified further by finer

ones in the subsequent stages. In the algorithm, a neural network is trained using
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all the available data until stagnation occurs. At that point, the valid outputs of

the patterns are compared with actual outputs. The patterns whose valid outputs

are close to the actual outputs are considered learnt and therefore isolated along

with their corresponding network. The remaining patterns are further trained using

another network and the process is repeated until all the patterns are learnt.

Subset selection

Many papers have been written on the possibility of using a subset of training

patterns for training instead of the whole dataset. According to the Mahalannobi-

his distances which are close to patterns of other classes, Foody (1998) divided the

patterns into border patterns and core patterns and explored different influence of

these patterns to the classification accuracy.

The topology based dynamic selection (Gathercole et al., 1994) chooses subsets

of training patterns based on their difficulty. The difficulty of a pattern is deter-

mined by whether the pattern can be learnt with some accuracy. More and more

”difficult” patterns are chosen until a desired subset size is reached. Evolutionary

algorithms are used to determine the suitability of a pattern to be part of the subset

based on the structure the population induced on the training pattern.

Recursive Percentage-based Hybrid Pattern training Recursive

Percentage-based Hybrid Pattern training proposed by Guan and Ramanathan

(2004) uses an efficient recursive combination of global and local search to find a set

of pseudo global optimal solutions to a given problem. The hybrid algorithm uses

Genetic Algorithms (GA) to find a partial solution with a set of learnt and unlearnt

patterns. In each recursion, the GA automatically learns the ”easy-to-learn” pat-

terns first while the more ”difficult” patterns are passed on to the next recursion.

Neural networks are used to learn to perfection the learnt patterns and GA is used

again to tackle the previously unlearnt patterns. This is to allow all training pat-

terns to receive attention according to their level of difficulty. The entire process

is repeated recursively until a new recursion leads to overfitting. At the end of the

training (after N recursions), N solution neural networks would have been trained.

Then, a Kth Nearest Neighbour algorithm [13] based distributor is used to match
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Figure 2.5: A RPHP problem solver

a test pattern to its nearest neighbour. When a test pattern is presented to the

system, the system would have to choose one of the N solutions to produce the

output. See Figure 2.5 for the network structure. The theory behind their approach

is that when training emphasis is given to the difficult patterns in turn, it is possible

to obtain an accurate classifier.

2.4.3 Class Decomposition

Another category of decomposition methods is Class Decomposition. Unlike data

decomposition, which uses the information of feature space for decomposition, and

learner ensemble, which gathers the results from weak learners, class decomposition

divides the network based on the characteristics of output space.

Splitting a K-class problem into K 2-class sub-problem

Chen and You (1993) proposed an approach which splits a K -class problem into

K two-class sub-problems. One sub-network is trained to learn one sub-problem

only. Therefore, each sub-network is used to discriminate one class of patterns from

patterns belonging to the remaining classes, and there are K modules in the overall

structure. This approach is also introduced by Anand et al. (1993) and Ishihara and

Nagano (1994). Such a two-class classification problem often has imbalanced data

distribution. Anand et al. (1993) further pointed out that the standard backpropa-

gation algorithm converges slowly for learning these imbalanced two-class problems,
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Figure 2.6: Problem decomposition based on Output Parallelism

and thus developed a modified backpropagation algorithm for the imbalanced two-

class data set. Their experiments showed that the modified algorithm is faster than

the standard one.

Output parallelism

Output parallelism (Guan and Li, 2000, 2002) is a powerful extension to the

above class decomposition method. Using output parallelism, a complex problem

can be divided into several sub-problems as chosen, each of which is composed of the

whole input vector and a fraction of the output vector. Each module (for one sub-

problem) is responsible for producing a fraction of the output vector of the original

problem. These modules are grown and trained in parallel and incorporated with

the constructive backpropagation algorithm (Lehtokangas, 1999). Figure 2.6 shows

an example in which a K -class problem is divided into r sub-problems.

The pairwise classifier and the min-max modular network

The pairwise classifier (Friedman, 1996) and the min-max modular network (Lu

and Ito, 1999) have similar decomposition idea. Both of them divide a K -class prob-

lem into (K
2 ) two-class sub-problems. Each of the two-class sub-problems is learned

independently while the training data belonging to the other K − 2 classes are ig-

nored. However, the final combination mechanisms used in the pairwise classifier

and the min-max modular network are greatly distinct. In the pairwise classifier,
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Figure 2.7: An example of the min-max modular network which consist N · N
individual modules, Ni MIN unit and one MAX unit

the final output is selected from the (K
2 ) decision boundaries by performing the

maximizing operation. The combination scheme in the min-max modular network

is relatively complicated.

Figure 2.7 shows an example for the min-max modular network. M ij is used to

discriminate classes i and j. In these modules (excluding MIN, MAX units), only

half of the modules needs to be computed; for the other half are their inverse. The

trained modules for each class are integrated using minimization principle. Then

the outputs from the MIN units are integrated using maximization principle.

Hierarchical incremental class learning

To make use of the correlation between classes or sub-networks, Guan and Li

(2002) proposed an approach named hierarchical incremental class learning. In this

approach, a K -class problem is divided into K sub-problems. The sub-problems

are learnt sequentially in a hierarchical structure with K sub-networks. Each sub-

network takes the output from the sub-network immediately below it as well as the

original input as its input. The output from each sub-network contains one more

class than the sub-network immediately below it, and this output is fed into the

sub-network above it as shown in Fig. 2.8. This method not only reduces harmful
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Figure 2.8: The networks structure for hierarchical incremental class learning (Guan
and Li, 2002)

interference among hidden layers, but also facilitates information transfer between

classes during training. It shows better classification performance than traditional

class decomposition methods. Moreover, Guan and Wang (2007) tried to combine

hierarchical incremental class learning to Output Parallelism. Experimental results

showed the improved recognition rate for classification problems. Later, reduced

pattern training method is combined with this method to improve the network per-

formance (Bao and Guan, 2006; Guan and Bao, 2006).

2.4.4 Limitations

We have reviewed various task decomposition methods. All these algorithms are

effective ones, yet each of them has strengths and drawbacks. Boosting and bagging

can augment the performance of weak learners using a probability based weight sys-
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tem, the accuracy of the algorithms depends on the number of weak learners which

is problem dependent (Meir and Ratsch, 2003). The number of learners used nor-

mally is very large compared with domain decomposition and class decomposition.

In our PD networks, the number of modules normally is smaller than the number of

classes in the problem. Thus, the modules (or learners) are normally much smaller

than those in ensemble learning, so the resources could be saved.

In the domain decomposition methods, subset selection algorithms (Gathercole

et al., 1994; Foody, 1998; Lasarzyck et al., 2004) aim to reduce the computational

intensity of training by using a subset of the patterns available as a representative of

the whole pattern set. The subset used can be either static (Foody, 1998) or dynamic

(Gathercole et al., 1994; Lasarzyck et al., 2004). The subsets of patterns are selected

using either numerical methods or using evolutionary computation. While the com-

putation intensity is definitely reduced by the use of this algorithm, we should take

into account that using a subset of patterns does not guarantee optimal accuracy.

Further, the size of the subset plays an important role in the performance of the

algorithm, and this again, is a problem dependent value. The mixture-of-experts

systems (Jacobs et al., 1991; Jordan and Jacobs, 1994) divide the feature space into

many clusters and use a module (or an expert) for each cluster. However, the size

and number of the clusters also play an important role in the performance of the al-

gorithm and they depend on the problem itself too. The multi-sieving algorithm (Lu

et al., 1995) uses a succession of networks to train the system until all the patterns

are learnt. While the algorithm is an efficient one, its accurate performance depends

on the value of a predefined error tolerance, which is a problem dependant value.

The algorithm, therefore, is not entirely adapted to the problem topology. Recur-

sive Percentage-based Hybrid Pattern training (Guan and Ramanathan, 2004) uses

GA to find the suitable subset for recursion modules. However, the computation

overhead for this method can not be ignored. Another drawback for these domain

decomposition algorithms is that these algorithms can only reduce the size of the

data set, but the dimension of the data set does not change. Thus, the internal

interferences (that exists within each module due to the coupling of output units)

are not reduced. Using the PD method, the selection of subset for each module only

depends on the classes, no on the input space, so it is much simpler than that using
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domain decomposition methods. The PD method is based on class decomposition,

so it can avoid the internal interferences due to the coupling among output units.

Class decomposition methods can effectively reduce the dimension of the prob-

lem. However, the reviewed class decomposition methods have other shortcomings.

For the algorithms that divide a K -class problem into K two-class sub-problems

(Chen and You, 1993; Ishihara and Nagano, 1994; Anand et al., 1995), Output Par-

allelism (Guan and Li, 2000, 2002b), and the hierarchical incremental class learning

network (Guan and Li, 2002a), though the dimension is reduced, the size of each

sub-problem’s training pattern set is still as large as the original problem. In our

PD networks, in most modules, the technique of Reduced Pattern Training is used.

Thus, for these modules, the number of patterns used for training and validation is

reduced with the final recognition rate either comparable or improved. The pairwise

classifier (Friedman, 1996) and the min-max modular network (Lu and Ito, 1999)

which splits a K -class problem into (K
2 ) two-class sub-problems can reduce the size

of training set for each sub-problem. However, if the original K -class problem is

complex (K is large), a large number of modules will be needed to learn the sub-

problems and thus resulting in excessive computational cost. In the PD networks,

the number of modules is normally smaller than the number of classes. Compared

with the pairwise classifiers and the min-max modular networks, the PD networks

use less modules, especially when K is very large. Thus, the PD method saves com-

putation efforts.



Chapter 3

Single-layer PD Networks

3.1 Design of Single-layer PD Networks

In Chapter 1, A brief description of PD networks is provided. In this chapter, we

will focus the discussion on single-layer PD networks.

In a Single-layer PD network, a special module called a distributor module is

introduced in order to improve the performance of the whole network. The distribu-

tor module and the other modules in the PD network are arranged in a hierarchical

structure. The distributor module has a higher position as compared to the other

modules in the network. This means an unseen input pattern will be recognized

by the distributor module first. The structure of a typical PD network is shown

in Figure 3.1. Each output of the distributor module consists of a fraction of the

overall output classes of the original problem. The PD method could shorten the

training time and improve the generalization accuracy of a network compared with

ordinary task decomposition methods.

In this chapter, our discussion is restricted to single-layer PD networks. Section

3.2 presents a theoretical model to compare the performance of a single-layer PD

network with the typical task decomposition network - Output Parallelism network.

Section 3.3 presents some discussion to the model. In section 3.4, we introduce the

Reduced Pattern Training method to improve the PD networks’ performance. In

Section 3.5, the experimental results are shown and analyzed. Conclusions are pre-

sented in Section 3.6.

26
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Figure 3.1: A typical Pattern Distributor network

3.2 A Theoretical Model for Single-layer PD Net-

works

There are two types of modules in a single-layer Pattern Distributor network, dis-

tributor module and non-distributor module (for simplicity, non-distributor modules

are just called modules). Normally, a PD network consists of one distributor module

and several non-distributor modules.

Class decomposition is often used in solving classification problems. Compared

with ordinary methods in which only a neural network is constructed to solve the

problem, class decomposition divides the problem into several sub-problems and

trains a neural network module for each problem. Then the results from these mod-

ules are integrated to obtain the solution for the original problem. OP is a typical

class decomposition method. Here we present a model to show that the PD method

has better performance than the OP method when the recognition rate of the dis-

tributor module is guaranteed.

Consider a classification problem with K output classes. To solve the problem,

a PD network with one distributor module and r non-distributor modules is con-

structed. See Figure 3.2 for details. There are r outputs in the distributor module

and each non-distributor module is connected to an output of the distributor mod-
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Figure 3.2: A single-layer PD network used to solve a K-class problem

ule. Each output of the distributor module is a combination of several classes. For

an unknown pattern, the distributor module only recognizes and dispatches it to one

of the outputs. Then the connected non-distributor module will continue the classifi-

cation to specify which class it belongs to. In other words, a non-distributor module

needs to recognize the pattern among several classes. Assume Module j which is

a non-distributor module needs to recognize K(j) classes. Different non-distributor

modules are assumed to have no overlapping classes, we have the relationship:

K =
r∑

j=1

K(j) . (3.1)

Figure 3.3 shows the OP network used to solve the above K -class problem. For

the convenience of comparison, we assume that the OP network has the same out-

put grouping as the PD network. There are also r modules in the OP network and

Module j needs to recognize K(j) classes among all the patterns. When an unknown

test pattern is presented to the OP network, it is processed by each module (Module

1 to Module r), and the final result is obtained by integrating all the results from

Module 1 to Module r.

In the PD network, a non-distributor module only recognizes the patterns which

have been dispatched to it by the distributor module. These patterns most likely
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Figure 3.3: The OP network used for a K-class problem

belong to one of the classes covered by that module. Of course, the distributor

module may make wrong decisions and mistakenly sends wrong patterns to that

module. The OP network is different. Each module needs to recognize all the

patterns. In other words, Module j in the OP network needs to differentiate the

patterns belonging to it from those patterns which do not. Now we denote the

probability of error having Module j processing the patterns that belong to one of

the classes of Module i by pji. If we do not implement winner-takes-all selection, a

pattern can be regarded as a wrongly classified pattern if one or more modules give

wrong decisions. When a test pattern belonging to one of the classes of module j

enters the network, the probability of error in the OP network can be written in the

following form:

p
(OP )
j = p1j

r∏
i=2

(1− pij) + p2j

r∏

i=1;i6=2

(1− pij) + · · ·+ prj

r∏

i=1;i6=r

(1− pij)

+ p1jp2j

r∏

i=1;i6=1,2

(1− pij) + p1jp3j

r∏

i=1;i6=1,3

(1− pij) + · · ·

+ p(r−1)jprj

r∏

i=1;i6=r−1,r

(1− pij)

+ · · ·+ (p1jp2j · · · p(r−1)jprj) .

(3.2)

The first r terms represent the probability of a test pattern being classified wrongly

by one module. The following 1
2
r(r − 1) terms represent the probability of the test
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pattern being classified wrongly by two modules, and so on. Equation (3.2) can be

rewritten as:

p
(OP )
j = p1j + p2j + · · ·+ prj − (p1jp2j + p1jp3j + · · ·+ p(r−1)jprj)

+ (p1jp2jp3j + · · ·+ p(r−2)jp(r−1)jprj)− · · ·+ (−1)r−1(p1jp2j · · · p(r−1)jprj) .

(3.3)

Here r is the number of modules and is normally not a large number. So the number

of terms in the above equation is not a large number. pij is a small positive real

number. In other words, pijpkj is much smaller than pij. We can ignore the terms

of the product of two and more pij’s. Thus,

p
(OP )
j ≈ p1j + p2j + · · ·+ prj . (3.4)

The number of test patterns classified wrongly by the OP network is:

N (OP ) =
r∑

j=1

Njp
(OP )
j ≈

r∑
j=1

Nj(p1j + p2j + · · ·+ prj) =
r∑

j=1

[Nj

r∑

k=1

pkj] , (3.5)

where Nj is the number of patterns belonging to the classes of Module j. It can also

be written as:

N (OP ) =
r∑

k=1

(N1pk1 + N2pk2 + · · ·+ Nrpkr) . (3.6)

Now we define pk∗ as the probability of error when Module k processes the patterns

not belonging to the classes of Module k. Equation (3.6) can be revised as:

N (OP ) =
r∑

k=1

[Nkpkk + (N −Nk)pk∗] , (3.7)

where pkk is the probability of error when Module k processes the patterns belonging

to it, N is the number of test patterns and Nk is the number of patterns belonging

to the classes of Module k.

It should be mentioned that in the above OP network, each module can be

trained separately using all the training patterns, whereas for the PD network, we

can also train these modules separately. If we use all the training patterns to train

these modules, then the weights and hidden units of the non-distributor modules

will be the same as those of the corresponding modules in the OP network. After

the training of the PD network is completed, the distributor module will be the first

to classify any unseen input pattern. The corresponding output unit in the pattern
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distributor will have the largest output value among all the output units. Then

only the corresponding module will be activated. After that, the input pattern is

presented to this module only and then this module will complete the classification

process. Only the distributor module and the corresponding non-distributor module

are used in the classification process.

Let p0 be the probability of error of the distributor module. Then the number

of test patterns which are classified wrongly by the distributor module is

M0 = N · p0 . (3.8)

Assume the distributor module classifies patterns wrongly in a uniform manner. In

other words, the number of wrongly classified patterns by the distributor module

to each non-distributor module is proportional to the number of patterns entering

that non-distributor module. The number of correct patterns that enter Module j is

Nj(1− p0). Then, the number of patterns classified wrongly by Module j is written

as:

Mj = Nj(1− p0)pjj . (3.9)

Thus, the number of patterns classified wrongly by the PD network can be expressed

as:

M (PD) =
r∑

j=0

Mj = N · p0 + (1− p0)
r∑

j=1

Nj · pjj . (3.10)

Comparing the OP network with the PD network, we have

N (OP ) −M (PD) =
r∑

j=1

[Njpjj + (N −Nj)pj∗]−N · p0 − (1− p0)
r∑

j=1

Nj · pjj

=
r∑

j=1

(N −Nj)pj∗ −N · p0 + p0

r∑
j=1

Nj · pjj .

(3.11)

Similar to the analysis made earlier, p0pjj is much smaller than pj∗ and p0, so

N (OP ) −M (PD) ≈
r∑

j=1

(N −Nj)pj∗ −N · p0 . (3.12)

Now we have derived the condition under which the PD network can achieve better

classification accuracy than the OP network:
r∑

j=1

(N −Nj)pj∗ > N · p0 . (3.13)
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We know that each module needs to process all the test patterns in an OP network,

while in a PD network each non-distributor module only needs to process a sub-set

of the test patterns. Intuitively, if the number of wrongly-classified patterns by the

distributor module in the PD network is smaller than the sum of the number of

patterns wrongly classified by each module when processing patterns not belonging

to it in the corresponding OP network, the PD network will perform better.

3.3 Some Discussion to the Model

1.) Class decomposition can still be applied to the modules of the OP network and

PD network so that these modules can be further decomposed into sub-modules.

If each sub-module is used to recognize one class from all the patterns, then there

will be N sub-modules in the whole OP network. Of course, these sub-modules

may belong to different modules. Figure 3.4(a) shows an example of a 6-class OP

network. There are two modules that are further partitioned into 6 sub-modules.

Figure 3.4(b) shows a fully decomposed OP network for this 6-class problem. In

both OP networks, all the training patterns are used to train these sub-modules. So

the sub-modules in Figure 4(a) are the same as their counterparts in Figure 4(b).

In Figure 4(a), the sub-modules are grouped into two modules. For an unknown

pattern, the outputs from Sub-modules 1, 2, 3 are considered together to give the

result of Module 1, similar for Module 2. Then the results from Module 1 and Mod-

ule 2 are considered together to give the final output. In the OP network of Figure

4(b), the outputs from all the sub-modules are considered together to give the final

output. In fact, there is little difference between the OP networks in Figures 4(a)

and 4(b). Note that the non-distributor modules in the PD network are the same

as the counterparts in the OP network. Thus, by decomposing the modules into

sub-modules, we can compare the performance of the PD network with that of the

fully decomposed OP network. In most of our experiments, we used networks like

such.

2.) In Equation (3.4), we have ignored the situation in which two or more

modules make wrong decisions at the same time because the situation appears

much less frequently compared to the situation in which only one module makes
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Figure 3.4: Two OP networks for a 6-class problem

wrong decisions. If we do consider that situation,p
(OP )
j will be a little smaller than

p1j + p2j + · · ·+ prj.

3.) In the above model, we do not consider the implementation of winner-takes-

all for the OP network. In reality, winner-takes-all is used for selecting a unit among

several candidate units to produce the final output. The purpose of a conventional

winner-takes-all network is to select a unit with the highest activation strength from

a set of candidates. Using winner-takes-all, the network may still choose the correct

output even if some modules make wrong decisions. For example, consider a test

pattern that belongs to Class A in Module 1. When the pattern enters Module

1 of the OP network, Module 1 produces the correct answer - Class A. However,

when the pattern enters Module 2 of the OP network, Module 2 gives an incorrect

answer and thinks it belongs to Class B. If the output corresponding to Class A is

larger than that of Class B, the OP network can still give a correct decision. Using

winner-takes-all will slightly reduce the final classification error of the OP network

than not using it.
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3.4 Motivation for Reduced Pattern Training

In a PD network, an unseen pattern is firstly classified by the distributor module to

decide which module will continue to process it. Then the corresponding module will

be activated. Thus only two modules are used to process that pattern. Now we look

at all the test patterns. We note that each non-distributor module only processes

a subset of the test patterns. In other words, each non-distributor module only

needs to recognize the patterns belonging to it if the distributor module classifies all

the test patterns correctly. Also, if the distributor module classifies some patterns

wrongly, the mistake can not be corrected by the later modules. This motivates us

to train a non-distributor module using only the patterns belonging to it. Such a

method is called Reduced Pattern Training (RPT). Similarly, the method of using

the whole training set to train each non-distributor module is called Full Pattern

Training (FPT).

When we train Module j using FPT, the module will carry information of the in-

stances that do not belong to its own classes. Such information does not contribute

to the classification accuracy of Module j. So it is useless. Also, training time would

be reduced when training using RPT compared with FPT.

Moreover, training Module j together with unnecessary patterns may reduce the

ability of Module j to classify the patterns belonging to Module j correctly. There

are two aspects. Firstly, the objective of training is to let each module reach its best

classification accuracy when processing the patterns dispatched to it. Using FPT,

a module may be able to attain its best performance when it needs to process all

the test instances. However, it may not attain its best performance when processing

only a subset of the test instances. Secondly, for patterns not belonging to Module j

it would have the outputs as 0 during the learning process. (In our experiments, if

a pattern belongs to some class, the corresponding output is 1, otherwise, 0). With

the introduction of those patterns not belonging to Module j, there are much more

patterns with an output label 0 than patterns with an output label 1 in the learning

process. So the patterns with an output label 0 will be more influential in updating

the weights and therefore in computing the training error function. In contrast, the

patterns with an output label 1 will become less influential in the decision of weight
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updates. After the training process is over, it is likely that the trained network may

mislabel some test patterns, in particular those patterns with an output label 1.

From the above observations, we conclude those unnecessary patterns are harmful

to the module training. Our experimental results confirmed that RPT is crucial for

a PD network to obtain good performance.

Reduced pattern training might not be applicable to OP, because the modules

in an OP network operate in parallel and each module must deal with all the test

patterns in the test process. Training these modules using reduced patterns may

lead to information loss. And it may lead to poor accuracy when the test patterns

are presented.

3.5 Experimental Results for Single-layer PDs

3.5.1 Experimental Scheme

The CBP algorithm was used to train the network in the experiments (Lehtokangas,

1999). CBP can reduce the excessive computational cost significantly and it does

not require any prior knowledge concerning decomposition. In our experiments,

RPROP is used. In order to reduce the number of freely adjustable parameters,

often leading to a tedious search in parameter space, the increase and decrease fac-

tors η+ and η− are set to fixed values: η+ = 1.2 and η− = 0.5. See Riedmiller and

Braun’s paper for considerations which led to these values (1993). At the beginning

of the algorithm, all update-values ∆ij are set to an initial value ∆0. A good choice

may be ∆0 = 0.1. However, the choice of this parameter is not critical at all, for

it is adapted as learning proceeds. In order to prevent the weights from becoming

too large, the maximum weight-step determined by the size of the update-value is

limited. The upper bound is set by the second parameter of RPROP, ∆max. The

default upper bound is set somewhat arbitrarily to ∆max = 50. Usually, the con-

vergence is rather insensitive to this parameter as well. The minimum step size is

constantly fixed to ∆min = 1.0e− 6. The initial weights selected from −0.25 · · · 0.25

randomly. In order to avoid large computational cost and overfitting, a method

called early stopping based on validation set is used as the stopping criteria. Please

refer to RPROP algorithm for detail.
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The set of available patterns is divided into three sets: a training set is used to

train the network, a validation set is used to evaluate the quality of the network

during training and to measure overfitting, and a test set is used at the end of train-

ing to evaluate the resultant network. The size of the training, validation, and test

sets is 50%, 25% and 25% of the problem’s total available patterns.

Four benchmark classification problems, namely Vowel, Glass, Segmentation,

and Letter Recognition were used to evaluate the performance of the single-layer PD

networks. These classification problems were taken from the PROBEN1 benchmark

collection (Prechelt, 1994) and University of California at Irvine (UCI) repository

of machine learning database (Blake and Merz, 1998). In the set of experiments

undertaken, the first three classification problems were conducted 20 times and the

Letter Recognition problem was conducted 8 times (due to the long training time).

All the hidden units and output units use the sigmoid activation function and Eth

is set at 0.1 (refer Appendix for detail). When a hidden unit addition was required,

8 candidates were trained and the best one selected. All the experiments were sim-

ulated on a Pentium IV - 2.4GHZ PC. The sub-problems were solved sequentially

and the CPU time expended was recorded respectively.

For the experiments in later chapters, the scheme is the same as that used here.

3.5.2 Experiments for Single-layer PD Network Based on
Full and Reduced Pattern Training

A. Glass

This data set is used to classify glass types. The data set consists of 9 inputs,

6 outputs, and 643 patterns (divided into 321 training patterns, 161 validation pat-

terns, and 161 test patterns). These patterns were normalized and scaled so that

each component lies within [0, 1].

Figure 3.5 shows the OP network structure used for this problem. The OP net-

work is composed of 6 sub-modules and each sub-module recognizes one class from
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Figure 3.5: The OP network used for the Glass problem

Figure 3.6: The PD network used in the Glass problem

all the patterns. As described in Discussion 1 in Section 2, these sub-modules are

combined into 2 modules in the OP network. The sub-modules which recognize class

1, class 3 and class 5 are combined into Module 1 and the remaining sub-modules

are grouped into Module 2.

Table 3.1 lists some data which are used in expression (3.13). Here Ni represents

the number of patterns in the test data set belonging to the classes of Module i while

N denotes the overall number of the patterns. pii is the probability of error when

Module i processes the patterns belonging to Module i and pi∗ is the probability

of error when Module i processes the patterns not belonging to Module i. Now we
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Table 3.1: Classification errors in different OP modules for the Glass data

Output Parallelism Ni pii(%) N −Ni pi∗(%)
Module 1 67 8.4142 94 4.7340
Module 2 94 18.1383 67 2.1642

Table 3.2: Results for the Glass data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)

Ordinary method 168.1 46 796 16.0870
(no task decomposition)
Output Parallelism 63.7 253.5 2848.5 14.2547

(2 modules, 6 sub-modules) (in parallel)
197.7

(in series)
Distributor 82.9 30.6 387.2 2.4224

module
Overall 85.2 280.9 3200.5 10.0
network (in parallel)

Pattern (FPT) 298.7
Distributor (in series)

Overall 82.9 391.2 4413.8 7.8261
network (in parallel)
(RPT) 194.3

(in series)

show that Discussion 2 in Section 3.3 is reasonable. There are two modules in the

OP network. From Table 3.1, we have p11 = 8.4124% and p12 = p1∗ = 4.7340%.

So p11 ∗ p12 = 0.4%, which is much smaller than p11 and p12. It is similar that

p21 ∗ p22 = 0.39%, which is much smaller than p21 and p22. Ignoring these terms has

little effect to the final results. In other words, the situation in which two or more

modules making wrong decisions at the same time can be ignored. Now we follow

up Discussion 3 in Section 3.3 - the effect of winner-takes-tall. From Table 3.1, we

can compute the classification error before the implementation of winner-takes-all,

which is N1p11 + N2p1∗ + N1p2∗ + N2p22 = 17.7562%. The result is slightly larger

than the result using winner-takes-all, which is 14.2547% (see Table 3.2). It also

matches our analysis in Discussion 3, Section 3.3.
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The PD network structure for this problem is shown in Figure 3.6. The distrib-

utor module has two outputs, one has the combination {1,3,5} while the other has

{2,4,6}. Module 1 consists of 3 sub-modules, identical to its counterpart in the OP

network, and same for Module 2.

Table 3.2 shows the experimental results of the ordinary method, the OP method,

the PD method with FPT and the PD method with RPT. The ordinary method is a

method in which a single-module neural network was constructed to solve the prob-

lem. Constructive Backpropagation (CBP) algorithm is still used in the ordinary

method. “Indep. Param.” stands for the total number of independent parameters

(i.e., the number of weights and biases in the network). “C. Error” stands for clas-

sification error. Training time (in parallel) is the maximum training time among

all the modules (all modules were trained in parallel). Training time (in series)

stands for the sum of training time for all the modules (all modules were trained

in series). Using the ordinary and the OP methods, the classification errors were

16.0870% and 14.2547% respectively, while using the PD method, the classification

errors were 10% for FPT and 7.8261% for RPT. Comparing with the classification

errors from the former two approaches, the classification errors obtained by the PD

network are much smaller. It can be also noted that the classification error is further

reduced when using RPT instead of FPT.

Now we explain why the PD network can achieve smaller classification error than

the other two methods. According to our analysis, if Expression (3.13) is satisfied,

the PD network will have better classification accuracy. Using the data in Table 5.1,

we have
∑2

j=1(N −Nj)pj∗ ≈ 5.9 . From the classification error Np0 of the distrib-

utor module in Table 3.2, we find Np0 ≈ 3.9 . Thus, Condition (3.13) is satisfied,

which means that using the PD network will get smaller classification error. From

Table 2, we can see that the number of hidden units and the number of indepen-

dent parameters in the PD network are larger than those in the ordinary network

and the OP network. This can be attributed to the fact that the PD network has

more modules than the other two. From Table 2, we can also note the changes of

the training time using the above three methods. With series training, the training

time of FPT (298.7s) is larger than those of the ordinary network (168.1s) and the
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Table 3.3: Classification errors in different OP modules for the Vowel data

Output Parallelism Ni pii(%) N −Ni pi∗(%)
Module 1 69 9.8551 178 2.9775
Module 2 96 32.0833 151 3.2450
Module 3 82 34.7561 165 5.8788

OP network (197.7s) due to a large number of modules in the PD method. How-

ever, the training time of RPT (194s) is reduced compared to that of FPT and is

thus comparable to the training time of the other two networks. The reason for

this is that the number of training instances used in RPT is smaller than that in

FPT. With parallel training, the training time of the PD network (RPT or FPT)

is similar to those of the other two methods, and it is even shorter than that of the

ordinary method. From the above analysis, we see that the PD method, especially

RPT, performs better than the other methods.

B. Vowel

The input patterns of this data set are 10 element real vectors representing vowel

sounds that belong to one of 11 classes. It has 990 patterns in total (they are di-

vided into 495 training patterns, 248 validation patterns, and 247 test patterns).

The patterns were normalized and scaled so that each component lies within [0, 1].

The distributor module has 3 outputs, {1,2,3}, {4,5,6,7} and {8,9,10,11}. Module 1

recognizes classes 1, 2, 3 and consists of 3 sub-modules. Module 2 recognizes classes

4,5,6,7 and consists of 4 sub-modules, while Module 3 recognizes classes 8,9,10,11

and consists of 4 sub-modules. The OP network has the same Module 1, Module 2

and Module 3 as the PD network.

The experimental results of the ordinary method, the OP method and the PD

method for the Vowel data are listed in Table 3.4. Using the ordinary method and

the OP method, the classification errors were 37.1660% for the ordinary method and

25.5466% for the OP method respectively, while using the PD method, the classi-

fication errors were 24.8987% for FPT and 18.7045% for RPT. The classification

error obtained by FPT is much smaller than the classification error of the ordinary

method and resembles that of the OP method. While for RPT, the classification er-
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Table 3.4: Results for the Vowel data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)

Ordinary method 237.9 23.6 640.2 37.1660
(no task decomposition)
Output Parallelism 58.7 184.4 2333.8 25.5466

(3 modules, 11 sub-modules) (in parallel)
418.9

(in series)
Distributor 117 24.5 376 6.6802

module
Overall 117 210.6 2730.2 24.8987
network (in parallel)

Pattern (FPT) 534.3
Distributor (in series)

Overall 117 229.4 2955.8 18.7045
network (in parallel)
(RPT) 245.6

(in series)

ror is decreased to 18.7045%, which is much smaller than those of FPT and the other

two methods. We can compute the number of wrongly-classified patterns using the

data in Table 3.3 to explain why the PD method can get smaller classification errors

than the other two methods. We have
∑3

j=1(N −Nj)pj∗ ≈ 19.9 while Np0 ≈ 16.5 .

Expression (3.13) is satisfied. Thus the PD network has smaller classification errors.

From Table 3.4, we can see that the number of hidden units and the number of

independent parameters in the PD network (RPT or FPT) are larger than those in

the ordinary and OP networks. Table 3.4 also shows the training time using these

methods. Using series training, the training time of FPT (534.3s) is longer than

those of the ordinary network (237.9s) and the OP network (418.9s). The training

time of RPT (245.6s) is much reduced compared to that of FPT and is also smaller

than those of the former two networks. If parallel training is used, the training

process of the PD network can save more time. From the above analysis, we see

that RPT outperforms the others.

C. Segmentation

This data set consists of 18 inputs, 7 outputs, and 2310 patterns (1155 train-
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Table 3.5: Classification errors in different OP modules for the Segmentation data

Output Parallelism Ni pii(%) N −Ni pi∗(%)
Module 1 246 10.4129 331 0.2417
Module 2 331 0.9215 246 0.6098

Table 3.6: Results for the Segmentation data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)

Ordinary method 693.8 29 887 5.7366
(no task decomposition)
Output Parallelism 610.2 152.1 3175 5.1820

(7 sub-modules) (in parallel)
1719.6

(in series)
Distributor 213.4 13.9 329.9 1.0399

module
Overall 1002.2 128.5 2754.9 5.4419
network (in parallel)

Pattern (FPT) 2219.2
Distributor (in series)

Overall 213.4 128.9 2762.9 4.6101
network (in parallel)
(RPT) 706.9

(in series)

ing patterns, 578 validation patterns, and 577 test patterns). The patterns were

normalized and scaled so that each component lies within [0, 1]. The distributor

module has 2 outputs, {3,4,5} and {1,2,6,7}. Module 1 recognizes classes 3, 4, 5 and

consists of 3 sub-modules. Module 2 recognizes classes 1, 2, 6, 7 and consists of 4

sub-modules. The OP network has the same module composition as the PD network.

Table 3.6 shows the simulation results of the ordinary method, the OP method,

the PD method (FPT and RPT). Using the ordinary method and the OP method,

the classification errors were 5.7366% and 5.1820% respectively, while using the PD

method, the classification errors were 5.4419% for FPT and 4.6101% for RPT. From

Table 3.5, we have
∑2

j=1(N −Nj)pj∗ ≈ 2.3. From Table 3.6, we find Np0 ≈ 6.0. So

Expression (3.13) is not satisfied and FPT has a larger classification error than the
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Table 3.7: Classification errors in different OP modules for the Letter data

Output Parallelism Ni pii(%) N −Ni pi∗(%)
Module 1 1359 20.833 3641 2.856
Module 2 1333 24.812 3667 1.084
Module 3 1195 25.109 3805 3.035
Module 4 1113 11.051 3889 1.826

OP network. It is also noted that the classification error is decreased when using

RPT to replace FPT. From Table 3.6, we can see that the number of hidden units

and the number of independent parameters in the PD networks are larger than those

in the ordinary and OP networks. From Table 3.6, we also notice changes in train-

ing time using the above three methods. Under series training, the training time

of FPT (2219.2s) is larger than the training times of the ordinary network (693.8s)

and the OP network (1719.6s) due to a large number of modules in the PD network.

However, the training time of RPT (706.9s) is reduced compared to that of FPT

and the OP network and is thus comparable to the training time of the ordinary

method. With parallel training, the training time of RPT is the smallest one. From

the above analysis, we see that RPT performs better than the other methods.

D. Letter recognition

The goal of this data is to recognize digitized patterns. Each element of the input

vector is a numerical attribute computed from a pixel array containing the letters.

This data set consists of 16 inputs, 26 outputs, and 20000 patterns (10000 training

patterns, 5000 validation patterns, and 5000 test patterns). All the patterns were

normalized and scaled so that each component lies within [0, 1]. The distributor

module has 4 outputs, {1,2,3,4,5,6,7}, {8,9,10,11,12,13,14}, {15,16,17,18,19,20} and

{21,22,23,24,25,26}. Module 1 recognizes classes 1,2,3,4,5,6,7. Due to the long train-

ing time of this problem, Module 1 is not further divided into sub-modules. Module

2 recognizes classes 8,9,10,11,12,13,14, Module 3 recognizes classes 15,16,17,18,19,20

and Module 4 recognizes classes 21,22,23,24,25,26. The OP network has the same

module composition as the PD network. For a fair comparison with the PD network,

sub-modules are not used in the OP network.
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Table 3.8: Results for the Letter data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)

Ordinary method 20845.05 73.6 3607 21.672
(no task decomposition)
Output Parallelism 5519 173.4 6586.8 19.260

(4 modules) (in parallel)
18112.6

(in series)
Distributor 2510 219.5 4019.0 12.195

module (in parallel)
8497

(in series)
Overall 6110 386.25 8384.5 20.515
network (in parallel)

Pattern (FPT) 26723.8
Distributor (in series)

Overall 2510 344.25 7391.0 15.855
network (in parallel)
(RPT) 14094.5

(in series)
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The experimental results of the ordinary method, the OP method and the PD

method for the Letter data are listed in Table 3.8. Using the ordinary method

and the OP method, the classification errors were 21.672% for the ordinary method

and 19.260% for the OP method respectively. Using the PD method, the classi-

fication error were 20.515% for FPT and 15.855% for RPT. The classification er-

ror obtained by FPT resembles the classification errors using the ordinary method

and the OP method. Using RPT, the classification error is much smaller than

the classification errors of the other three networks. From Table 3.7, we have
∑4

j=1(N − Nj)pj∗ ≈ 330.3. From Table 3.8, we find Np0 ≈ 609.8. So Expres-

sion (3.13) is not satisfied, which means that FPT has a larger classification error.

From Table 3.8, we see that the number of hidden units and the number of inde-

pendent parameters in the PD network are larger than those in the ordinary and

OP networks. Table 3.8 also shows the training time using these methods. Under

series training, the training time of FPT (26723.8s) is larger than those of the or-

dinary network (18112.6s) and the OP network (20845.05s). The training time of

RPT (14094.5s) is greatly decreased compared to that of FPT and is also smaller

than those of the former two networks. If parallel training was used, the training

process of RPT could save more time. From the above analysis, we can see that

RPT performs better than the others.

3.6 Conclusions

In this chapter, we discussed the single-layer PD network. In this design, a spe-

cial module called the distributor module was introduced in order to improve the

accuracy of the whole network. A theoretical model was proposed to compare the

performance of PD with that of OP - a typical class decomposition method. The

analysis showed that PD can outperform OP when the classification accuracy of

the distributor module is guaranteed. The experimental results confirmed this. In

order to further improve the performance of the PD network, RPT was introduced.

RPT apparently increased the accuracy of the PD network and reduced the whole

training time. For these reasons, in our experiments in later chapters, RPT is used

in each set of experiments.



Chapter 4

Multi-layer PD Networks

4.1 Introduction

The last chapter discussed single-layer PD networks comprehensively based on a

theoretical model. Here we extend the concept of single-layer PD networks to

multi-layer PD networks. In single-layer PD networks, the non-distributor mod-

ules often need to recognize several classes (i.e. three or more classes). In order

to improve the classification rate of these non-distributor modules, OP can be used

on these modules. Or these non-distributor modules are further decomposed into

sub-modules. Enlightened by the above idea, we may extend the PD method to

these non-distributor modules to improve their performance. Multi-layer PD net-

works are the outcome by applying the PD method to the non-distributor modules

of single-layer PD networks.

4.2 Design of Multi-layer PD Networks

If there are two or more distributor modules in a PD network and these distributor

modules are arranged in a hierarchical structure, the PD network is called a multi-

layer PD network. Figure 4.1 shows a 2-layer PD network. There are two distributor

modules in the networks, one sitting in the first level of the network and the other

in the second level of the network. For the remaining non-distributor modules, some

modules are positioned in Level 2 and others are in Level 3. An imbalanced multi-

layer PD network is defined as the multi-layer PD network whose non-distributor

modules are positioned in different layers of the network. The network in Figure 4.1

is a typical imbalanced multi-layer PD network.

46



4.2. Design of Multi-layer PD Networks 47

Figure 4.1: An imbalanced 2-layer PD network

When an unseen input pattern enters the network, it is processed by the first

level distributor module and classified into one of its outputs. Then the correspond-

ing module will continue to classify it. If the pattern is not classified to the first

output of the first level distributor module, a non-distributor module continues to

process this pattern. Thus, the number of modules which process the pattern will

be two in this situation. If the pattern is classified to the first output of the first

level distributor module, the second level distributor module continues to process

this pattern. After that, a non-distributor module will continue to recognize it. In

this situation, the number of modules which process the pattern will be three.

In fact, besides imbalanced multi-layer PD networks, balanced multi-layer PD

networks can also be used. In a balanced multi-layer PD network, all the non-

distributor modules are positioned in the same layer. Figure 4.2 shows an example

of a balanced 2-layer PD network.

In the above example, after the first level distributor module (Distributor mod-

ule 1) partitions the original problem into two sub-problems, each sub-problem will

then be handled by the corresponding second level distributor module and the sec-

ond level distributor module will perform the classification task and further separate

the sub-problem into smaller sub-problems. Then the other modules will perform

the remaining classification tasks.
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Figure 4.2: A balanced 2-layer PD network

In the above balanced 2-layer PD network, the set of distributor modules can

be seen as a whole. In other words, distributor modules 1, 2 and 3 are integrated

into a super distributor module. The PD method is used in this super distributor

module and the super distributor module is divided into three small modules.

4.3 Theoretical Analysis for Two-layer PD Net-

works

A Multi-layer PD network can be seen as build-in single-level PD networks in the

modules of the original PD network. Firstly, we give some simple analysis for an

imbalanced 2-level PD network. Assume a classification problem is solved using a

2-level PD network similar to the one shown in Figure 4.3. The classification prob-

lem has K classes. Class 1 to class r1 are recognized using Module 1, class r1 + 1 to

class r2 are recognized using Module 2, class r2 + 1 to class r3 are recognized using

Module 3 and class r3 + 1 to class K are recognized using Module 4. Assume the

number of the patterns which belong to class 1 to class r1 is N1, the number of the

patterns which belong to class r1 + 1 to class r2 is N2, the number of the patterns

which belong to class r2 + 1 to class r3 is N3, and the number of the patterns which

belong to class r3 + 1 to class K is N4.
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Figure 4.3: An imbalanced 2-layer PD network with 4 non-distributor modules

Let p1 be the probability of error of Distributor module 1. Then the number of

test patterns which are classified wrongly by Distributor module 1 is

M1 = N · p1 , (4.1)

where N is the number of the overall test patterns. Assume the distributor modules

classify patterns wrongly in a uniform manner. In other words, the number of

wrongly classified patterns by the distributor modules to each output is proportional

to the number of patterns entering that non-distributor module. The number of

correct patterns that enter Distributor module 2 is (N1 + N2)(1− p1). The number

of patterns classified wrongly by Distributor module 2 is written as:

M2 = (N1 + N2)(1− p1)p2 , (4.2)

where p2 be the probability of error of Distributor module 2.

Assume that the probability of error of Module i is denoted by p
(n)
i (here n

represents a non-distributor module). Let M
(n)
i be the number of patterns classified

wrongly by Module i. Then we have

M
(n)
i = Ni(1− p1)(1− p2)p

(n)
i , (4.3)

where i = 1, 2;

M
(n)
i = Ni(1− p1)p

(n)
i , (4.4)
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Figure 4.4: A single-layer PD network with 4 non-distributor modules

where i = 3, 4. The number of patterns classified wrongly by all the two distributor

modules is expressed as:

M2 = N · p1 + (N1 + N2)(1− p1)p2 . (4.5)

Because pi is a small positive real number, pipj is much smaller than pi. Equation

(4.5) can be written as:

M1 + M2 ≈ N · p1 + (N1 + N2)p2 . (4.6)

From Expressions (4.3), (4.4) and (4.6), the number of patterns wrongly classified

by the whole imbalanced two-layer PD network is written as

M (iPD) = M1 + M2 +
4∑

i=1

M
(n)
i

≈ Np1 + (N1 + N2)p2 + N1p
(n)
1 + N2p

(n)
2 + N3p

(n)
3 + N4p

(n)
4 .

(4.7)

Figure 4.4 shows a single-layer PD network used to solve the above problem. In

this network, the four non-distributor modules are the same as those in the above

2-layer PD network 1. Let the probability of error of the distributor module is p
(s)
0 .

1Same as those in the imbalanced two-layer PD networks, in the single layer PD, class 1 to
class r1 are recognized using Module 1, class r1 +1 to class r2 are recognized using Module 2, class
r2 + 1 to class r3 are recognized using Module 3 and class r3 + 1 to class K are recognized using
Module 4.
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Figure 4.5: A balanced two-layer PD network with 4 non-distributor modules

Then the number of patterns which are wrongly classified by the whole network is

M (sPD) = Np
(s)
0 +

4∑
i=1

Ni(1− p
(s)
0 )p

(n)
i

≈ Np
(s)
0 +

4∑
i=1

Nip
(n)
i .

(4.8)

From Equation (4.7) and (4.8), we can derive the condition that the imbalanced

2-layer PD network performs better than the single-layer PD network, which is

M (iPD) −M (sPD) = Np1 + (N1 + N2)p2 −Np
(s)
0 < 0 . (4.9)

Thus,

p2 <
N(p

(s)
0 − p1)

N1 + N2

, (4.10)

where p1 and p2 are the probability of error of Distributor module 1 and 2 of the

2-layer PD network respectively and p
(s)
0 is the probability of error of the distributor

module in the single-layer PD network. When Expression (4.10) is satisfied, the

2-layer PD will have better performance.

Now we look at a balanced 2-layer PD network. See Figure 4.5. We can regard

the three distributor modules as an integration. It is obvious that if the distributor

modules in the balanced 2-layer network make fewer mistakes than the distributor

module in the single-layer network, the 2-layer network will have better performance.
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Let p(d) be the probability of error of all the distributor modules in the 2-layer PD

network. We have

p(d) =
(N1 + N2)(p1 + p2) + (N3 + N4)(p1 + p3)

N
, (4.11)

where pi be the probability of error of Distributor module i(i = 1, 2, . . . , 3). The

condition that allows the balanced 2-layer PD network to outperform the single-layer

PD network can be written as:

p(d) − p
(s)
0 < 0 , (4.12)

which means that the condition for the 2-layer PD network outperforms the single-

layer PD network is that the probability of error of all the distributor modules p(d)

in the 2-layer PD network is smaller than the probability of error of the distributor

module p
(s)
0 in the single-layer PD network.

From the discussion above, it can be seen that when the classification error of

distributor modules is small enough, the multi-layer PD networks can achieve lower

classification error than the single-layer PD networks. For other multi-layer PD

configuration, we can reach similar results using similar analysis.

4.4 Experimental Results for Multi-layer PD Net-

works

Here some experimental results are presented for multi-level PD networks. The set

up of these experiments was the same as that in Chapter 3.

4.4.1 Experimental Results for Balanced Two-layer PD Net-
works

A. Vowel

The structure of the balanced 2-layer PD network is the same as the network in

Figure 4.5. Distributor module 1 has 2 outputs, {3,4,6,5,7,11} and {8,9,10,1,2}. The

two outputs of Distributor module 2 is {3,4,6} and {5,7,11} and the two outputs

of Distributor module 3 is {1,2,10} and {8,9}. Module 1 recognizes classes 3,4,6
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Table 4.1: Results of the balanced 2-layer PD for the Vowel data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)
51.8 72.8 917.6 9.1296

Distributor (in parallel)
Single- module 189.6
layer (in series)

Pattern 51.8 139.5 1839 18.1983
Distributor Overall (in parallel)

network 345.35
(in series)

88 95.55 1212.6 7.8702
Distributor (in parallel)

Two- modules 238.35
layer (in series)

Pattern 88 162.25 2134 16.9231
Distributor Overall (in parallel)

network 394.1
(in series)

and consists of 3 sub-modules. Module 2 recognizes classes 5,7,11 and consists of 3

sub-modules. It is similar that Module 3 recognizes classes 1,2,10 and consists of 3

sub-modules and Module 4 recognizes classes 8,9 and also consists of 2 sub-modules.

For the comparison, a single-layer PD network whose structure is the same as the

network in Figure 4.4 is used. The distributor module of the single-layer PD network

has 4 outputs, {3,4,6},{5,7,11},{1,2,10} and {8,9} and consists of 4 sub-modules.

Its non-distributor modules are the same as their counterparts used in the 2-layer

PD network.

The experimental results of the single-layer PD network and the multi-layer PD

network using RPT are listed in Table 4.1. According the analysis in Section 4.3, if

p(d) < p
(s)
0 , the multi-layer PD network will have higher recognition rate. From Table

4.1, the classification error of the distributor modules (7.8702%) using the multi-

layer PD network is smaller than that using the single-layer PD network (9.1296%).

Using the single-layer PD network, the classification error is 18.1983%, while using

the multi-layer PD network, the classification error is 16.9231%. Thus, the multi-

layer PD network performs better than the single-layer PD network and it matches
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our analysis. The classification error decreases about 1.3% in this example. From

Table 4.1, we can see that the number of hidden units and the number of inde-

pendent parameters in the multi-layer PD network are a little larger than those in

the single-layer PD network because the multi-layer PD has more modules than the

single-layer PD. Table 4.1 also shows the training time using these methods. Using

series training, the training time of the multi-layer PD (394.1s) is a little longer than

that of the single-layer PD (345.35s).

B. Segmentation

The structure of the 2-layer PD network is also the same as the network in Figure

4.5. Distributor module 1 has 2 outputs, {1,2,3} and {4,5,6,7}. The two outputs of

Distributor module 2 is {1} and {2,3} and the two outputs of Distributor module

3 is {4,5} and {6,7}. Module 1 recognizes class 1. Module 2 recognizes classes 2,3

and consists of 2 sub-modules. It is similar that Module 3 recognizes classes 4,5 and

consists of 2 sub-modules and Module 4 recognizes classes 6,7 and also consists of

2 sub-modules. For comparison, a single-layer PD network whose structure is the

same as the network in Figure 4.4 is used. The distributor module of the single-layer

PD network has 4 outputs, {1},{2,3},{4,5},{6,7} and consists of 4 sub-modules. Its

non-distributor modules are the same as their counterparts used in the 2-layer PD

network.

Table 4.2 shows the experimental results of the single-layer PD network and the

multi-layer PD network using Reduced Pattern Training (RPT). Using the single-

layer PD network, the classification error was 4.7660%, while using the multi-layer

PD network, the classification error was 4.6447%. There is just a little improvement

for this problem. According the analysis in Section 4.3, if p(d) < p
(s)
0 , the multi-

layer PD network will have higher recognition rate. From Table 4.2, the distributor

modules’ classification error of the balanced multi-layer PD network (3.9515%) is a

little smaller than that of the single-layer PD network (4.0035%). Thus, the per-

formance of the multi-layer PD network improves a little. From Table 4.2, we can

see that the number of hidden units and the number of independent parameters in

the multi-layer PD network are larger than those in the single-layer PD network.

This can be attributed to the fact that the multi-layer PD has more modules than
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Table 4.2: Results of the balanced 2-layer PD for the Segmentation data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)

276.6 61.4 1304 4.0035
Distributor (in parallel)

Single- module 461.7
layer (in series)

Pattern 276.6 128.9 2730 4.7660
Distributor Overall (in parallel)

network 521.5
(in series)

220.9 58.4 1244 3.9515
Distributor (in parallel)

Two- modules 538.9
layer (in series)

Pattern 220.9 1165.8 3506 4.6447
Distributor Overall (in parallel)

network 598.7
(in series)

the single-layer PD. From Table 4.2, we can also note the changes of the training

time using the above two methods. With series training, the training time of the

multi-layer PD network (598.7s) is a little longer than that of the single-layer PD

network (521.5s) due to a large number of modules in the PD method. With parallel

training, the training time of the multi-layer PD network is even shorter than that

of the single-layer PD network.

C. Pen-Based Recognition

The data set has 16 inputs and 10 outputs, together 7494 instances (3747 train-

ing instances, 1873 validation instances and 1874 test instances). The patterns were

normalized and scaled so that each component lies within [0, 1]. The structure of

the balanced 2-layer PD network is also the same as the network in Figure 4.5. Dis-

tributor module 1 has 2 outputs, {1,2,6,10} and {3,4,5, 7,8,9}. The two outputs of

Distributor module 2 is {1,6} and {2,10} and the two outputs of Distributor mod-

ule 3 is {3,4,5} and {7,8,9}. Module 1 recognizes classes 1, 6. Module 2 recognizes

classes 2, 10. It is similar that Module 3 recognizes classes 3,4,5 and Module 4 rec-

ognizes classes 7,8,9. For comparison, a single-layer PD network whose structure is
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Table 4.3: Results of the balanced 2-layer PD for the Pen-Based Recognition data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)

966.5 6114.25 2124.5 4.8319
Distributor (in parallel)

Single- module 2914.8
layer (in series)

Pattern 966.5 276.79 5220.22 5.0961
Distributor Overall (in parallel)

network 3145.55
(in series)
1160.25 196.7 3642.6 1.5792

Distributor (in parallel)
Two- modules 3077.95
layer (in series)

Pattern 1160.25 359.24 6738.32 1.8490
Distributor Overall (in parallel)

network 3308.7
(in series)

the same as the network in Figure 4.4 is used. The distributor module of the single-

layer PD network has 4 outputs, {1,6}, {2,10}, {3,4,5} and {7,8,9} and consists of

4 sub-modules. Its non-distributor modules are the same as their counterparts used

in the 2-layer PD network.

Table 4.3 shows the experimental results of the single-layer PD network and the

multi-layer PD network for the Letter recognition data. Using the single-layer PD

network, the classification error is 5.0961%, while using the multi-layer PD network,

the classification error 1.8490%. The classification error decreases about 7/11. There

is significant improvement. According the analysis in Section 4.2, if p(d) < p
(s)
0 , the

multi-layer PD network will have higher recognition rate. From Table 4.3, the classi-

fication error of the distributor modules is reduced using the multi-layer PD network

(1.5792%) compared to that using the single-layer PD network (4.8319%). Thus,

the multi-layer PD network outperformed the single-layer PD network. From Table

4.3, we can see that the number of hidden units and the number of independent

parameters in the multi-layer PD network are larger than those in the single-layer

PD network. This can be attributed to the fact that the multi-layer PD has more
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modules than the single-layer PD. From Table 4.3, we can also note the changes of

the training time using the above two methods. With series training, the training

time of the multi-layer PD network (3308.7s) is a little longer than that of the single-

layer PD network (3145.55s) due to a large number of modules in the PD method.

4.4.2 Experimental Results for Imbalanced Two-layer PD
Networks

A. Vowel

For this problem, the structure of the imbalanced 2-layer PD network is also the

same as the network in Figure 4.3. Distributor module 1 has 2 outputs, {3,4,6,5,7,11},
{1,2,10} and {8,9}. The two outputs of Distributor module 2 is {3,4,6} and {5,7,11}.
Module 1 recognizes classes 3,4,6 and consists of 3 sub-modules. Module 2 recognizes

classes 5,7,11 and consists of 3 sub-modules. It is similar that Module 3 recognizes

classes 1,2,10 and consists of 3 sub-modules and Module 4 recognizes classes 8,9 and

also consists of 2 sub-modules. For the ease of comparison, a single-layer PD network

whose structure is the same as the network in Figure 4.4 is used. The distributor

module of the single-layer PD network has 4 outputs, {3,4,6},{5,7,11},{1,2,10} and

{8,9} and consists of 4 sub-modules. Its non-distributor modules are the same as

their counterparts used in the 2-layer PD network.

Table 4.4 shows the experimental results for the imbalanced 2-layer PD network

and the single-layer PD network. Using the single-layer PD network, the classifi-

cation error is 18.1983%, while using the multi-layer PD network, the classification

error is 17.6316%. According to the analysis in Section 4.2, if Expression (4.10) is

satisfied, the multi-layer PD network will have higher recognition rate. Using the

data in Table 4.4,
N(p

(s)
0 −p1)

N1+N2
= 247

140
(9.1296 − 2.5101) ≈ 11.68, which is greater than

p2 = 10.6071. Thus, the imbalanced two-layer PD network can achieve better classi-

fication accuracy. The classification error decreases about 0.5% in this example, just

a minor improvement in this problem. From Table 4.4, we can see that the number

of hidden units and the number of independent parameters in the multi-layer PD

network are a little larger than those in the single-layer PD network because the

multi-layer PD has more modules than the single-layer PD. Table 4.4 also shows the
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Table 4.4: Results of the imbalanced 2-layer PD for the Vowel data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)
51.8 72.8 917.6 9.1296

Distributor (in parallel)
Single- module 189.6
layer (in series)

Pattern 51.8 139.5 1839 18.1983
Distributor Overall (in parallel)

network 345.35
(in series)

80.4 53.65 676.8 2.5101
Distributor (in parallel)
module 1 173.94

(in series)
Two- 20.45 24.85 320.2 10.6071
layer Distributor (in parallel)

Pattern module 2 40.9
Distributor (in series)

80.4 145.2 1918.4 17.6316
Overall (in parallel)
network 370.59

(in series)



4.4. Experimental Results for Multi-layer PD Networks 59

Table 4.5: Results of the imbalanced 2-layer PD for the Pen-Based Recognition data

Method Training time Hidden Indep. C.error
(s) Units Param. (%)

966.5 6114.25 2124.5 4.8319
Distributor (in parallel)

Single- module 2914.8
layer (in series)

Pattern 966.5 276.79 5220.22 5.0961
Distributor Overall (in parallel)

network 3145.55
(in series)

979.5 106.2 1962.6 0.8485
Distributor (in parallel)
module 1 2608.4

(in series)
Two- 135.8 62.4 1157.2 0.9733
layer Distributor (in parallel)

Pattern module 2 263.5
Distributor (in series)

979.5 331.14 6215.52 1.4541
Overall (in parallel)
network 3112.3

(in series)

training time using these methods. Using series training, the training time of the

multi-layer PD (370.59s) is a little larger than that of the single-layer PD (345.35s).

B. Pen-Based Recognition

For the data set, the structure of the imbalanced 2-layer PD network is the same

as the network in Figure 4.3. Distributor module 1 has 3 outputs, {1,2,6,10}, {3,4,5}
and {7,8,9}. The two outputs of Distributor module 2 is {1,6} and {2,10}. Module

1 recognizes classes 1, 6. Module 2 recognizes classes 2, 10. It is similar that Module

3 recognizes classes 3,4,5 and Module 4 recognizes classes 7,8,9. For comparison, a

single-layer PD network whose structure is the same as the network in Figure 4.4 is

used. The distributor module of the single-layer PD network has 4 outputs, {1,6},
{2,10}, {3,4,5} and {7,8,9} and consists of 4 sub-modules. Its non-distributor mod-

ules are the same as their counterparts used in the 2-layer PD network.
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Table 4.5 shows the experimental results for the imbalanced 2-layer PD network

and the single-layer PD network. Using the single-layer PD network, the classifi-

cation error is 5.0961%, while using the multi-layer PD network, the classification

error is 1.4541%. According to the analysis in Section 4.2, if Expression (4.10) is

satisfied, the multi-layer PD network will have higher recognition rate. Using the

data in Table 4.5,
N(p

(s)
0 −p1)

N1+N2
= 1874

750
(5.0961 − 1.4541) ≈ 9.1, which is much greater

than p2 = 0.9733. Thus, the imbalanced two-layer PD network achieves much better

classification accuracy. The classification error decreases about 3.5% in this exam-

ple, about 7/10 of the classification error of the single-layer PD network. It is a

greater improvement in this problem. From Table 4.5, we can see that the number

of hidden units and the number of independent parameters in the multi-layer PD

network are a little larger than those in the single-layer PD network because the

multi-layer PD has more modules than the single-layer PD. Table 4.5 also shows the

training time using these methods. Using series training, the training time of the

multi-layer PD (3112.3s) is close to that of the single-layer PD (3145.55s).

4.5 Discussion and Conclusions

In this chapter, the idea of multi-layer PD networks is discussed. The theoretical

analysis shows that the multi-layer PD network can achieve higher recognition rate

than single-layer PDs when some condition is satisfied. The experimental results

confirm with the analysis. The experimental results also show that the improve-

ment may not be uniform. For the Segmentation data set, only minor improvement

is achieved. For the Vowel data set, medium improvement is acquired. While for the

Pen-Based Recognition problem, there is major improvement. It should be noted

that the multi-layer PD network may not have better classification rate than the

corresponding single-layer PD network sometimes, i.e., when Expression (4.10) or

(4.12) is not satisfied.

There is a question: Do the multi-layer PD network always have better classifi-

cation accuracy than the single-layer PD network for a problem? The answer is no.

We can not guarantee that the single-layer PD networks always outperform the OP

networks. Only when Expression (3.13) is satisfied, the single-layer PD has better
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performances than the OP. A multi-layer PD can be regarded as several combina-

tions of several single-layer PDs. If the classification error of one or more distributor

modules is large enough, it is possible that the multi-layer PD has low performance.

It is similar that the balanced multi-layer PD does not always outperform the

imbalanced one. The overall classification mainly depends on the grouping of classes

in the distributor modules, not on the number of distributor modules. Because of

the complexity of the feature space, grouping classes with balanced network config-

uration often leads to large classification error in the distributor module. For the

Pen-Based Digits problem, the balanced 2-layer PD has larger classification error

than imbalanced ones. In the next two chapters, we will discuss how to find good

grouping for a distributor module.



Chapter 5

Greedy Based Class Combination
Methods

5.1 Introduction

In Chapter 3, a theoretical model was proposed to analyse the classification rate of

a PD network. From there, it can be seen that the performance of a PD network

depends greatly on the accuracy of the distributor module. How to group and com-

bine the classes becomes a key issue in designing a PD network.

Firstly, we define two concepts - combination and combination set. If some

classes are grouped together and denoted using the same label, we call them a com-

bination. The combination of classes H1, H2 and H3 is represented as {H1, H2, H3}.
Once some classes are combined, they will become a new class in the distributor

module. Therefore, Combination {H1, H2, H3} is also called class {H1, H2, H3} in-

stead. A combination set is an aggregation of combinations where each class in the

original problem appears only once. A combination set is denoted by {C1, , Cr}. The

combination set for a distributor module means that the distributor module uses

the elements in that combination set as its outputs. For example, in a 6-class prob-

lem, {{1,2,3},{4,5},{6}} is a combination set. Here, C1 = {1, 2, 3}, C2 = {4, 5},
C3 = {6}. Its corresponding distributor module has three outputs, the first one

{1,2,3}, the second one {4,5} and the last one {6}.

A distributor module does not always attain high performance if the combination

set for that module is arbitrarily chosen. Choosing different combination sets will

lead to different classification accuracies of the distributor module. Thus, developing

62
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algorithms to guide the selection of combination sets for the distributor module is

necessary. In this chapter and the next, we present several combination methods.

In this chapter, we propose combination algorithms based on a greedy approach.

The proposed greedy approach is a simple and straightforward approach to solve

optimization problems. Greedy algorithms are short-sighted in their approach in

the sense that they make decisions on the basis of information at hand without wor-

rying about the effect these decisions may have in the future (Bendall and Margot,

2006; Corman et al., 2001). They are easy to invent, easy to implement and most

of the time efficient. Before presenting the algorithms, we take a closer look at the

distributor module and the non-distributor modules.

5.2 Analysis of the Distributor Module

As mentioned before, the outputs of the distributor module can be represented as a

combination set. Our research shows that the distributor module for a combination

set has relations with the neural networks for the elements of the combination set.

Here we describe our findings. Before presenting them, we define three concepts -

the classification error of a class, the classification error of a combination and the

classification error of a combination set.

Definition 5.1—The classification error of class j : The classification error

of class j means the classification error of the neural network which is used to clas-

sify class j patterns and non-class j patterns. To obtain the classification error of

class j, all patterns not belonging to class j are labeled as patterns of class ; a single

neural network is then used for the resulting two-class classification problem. Then

the classification error of class j is the classification error of that neural network.

Definition 5.2—The classification error of Combination j : Once some

classes are combined into Combination j, these classes denoted using the same label.

Thus they will become a new class Z in the distributor module. The classification

error of combination j means the classification error of the neural network which is

used to classify that new class Z patterns and non-Z patterns.
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Definition 5.3—The classification error of Combination set W : The

classification error of Combination set W is defined as the classification error of the

distributor module which uses Combination set W as its outputs.

For example, when the PD method is used to solve a 6-class problem, the classifi-

cation error of Combination set {{1,2,3},{4,5},{6}} refers to the classification error

of the distributor module. The distributor module has 3 outputs. One is {1,2,3},
another is {4,5} and the last output is {6}. Generally, OP is often applied in this

distributor module, which means that the distributor module is further decomposed

into several sub-modules. In the above example, the distributor module is further

divided into 3 sub-modules where each sub-module has one output. Please refer to

Discussion 1 in chapter 3 for detail.

Theorem 5.1 Generally, the classification error of a combination set is equal to

half of the sum of the classification errors of the elements in that combination set.

Because an element in a combination set is a combination, the classification er-

ror of an element of the combination set means the classification error of a neural

network designed to differentiate the patterns belonging to that combination and

the patterns not belonging to that combination (see definition 5.2).

PROOF:

Assume Combination set W = C1, C2, . . . , Cr. By applying OP to the distributor

module for Combination set W, the distributor module is divided into r sub-modules.

Sub-module j is used to select the patterns of combination Cj from all the patterns.

For each sub-module, there are two situations in which the sub-module will make

wrong decisions on an input pattern: (1) The pattern belongs to the class of that

sub-module, while the sub-module does not think so. In other words, after the pat-

tern enters that sub-module, the sub-module outputs a relatively small value. (2)

The pattern does not belong to the class of that sub-module, while the sub-module

regards it belonging to the class. In other words, the sub-module outputs a rel-

atively large value for the pattern. For the first situation, assume the number of

wrongly-classified patterns in sub-module j is Aj1, and for the second situation, Aj2.
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Now we look at all the sub-modules in the distributor module. Winner-takes-all

is used in merging the final results from these sub-modules. Thus, to a wrongly-

classified pattern, if situation (1) occurs in a sub-module, the situation (2) must

appear in another sub-module. In other words, situation (1) and (2) must appear

in pairs because of the use of winner-takes-all. Therefore, we have the relationship:

r∑
j=1

Aj1 =
r∑

j=1

Aj2 . (5.1)

Thus, the number of wrongly classified patterns by the distributor module can be

written as:

M1 =
r∑

j=1

Aj1 =
r∑

j=1

Aj2 =
r∑

j=1

(Aj1 + Aj1)

2
. (5.2)

Now we look at the classification error of Combination Cj. A neural network is set

up to classify the patterns of Combination Cj and the patterns of non-Combination

Cj. To simplify, we name that neural network NN j. It is similar to Sub-module j in

the distributor module. There are also two situations in which NN j will make wrong

decisions. (1) The pattern belongs to Combination Cj, while NN j thinks it does

not belong to that combination. (2) The pattern does not belong to Combination

Cj, while NN j considers it belongs to Combination Cj. For the first situation,

assume the number of wrongly classified pattern in NN j is Bj1, and for the second

situation, Bj2. Because the training patterns of NN j are the same as those of Sub-

module j, it is obvious that Bj1 = Aj1 and Bj2 = Aj2. Consider the existence of the

complementary class - non-Combination Cj, so the number of wrongly- classified

patterns in NN j is

Pj = Bj1 + Bj2 = Aj1 + Aj2 . (5.3)

Thus, the sum of the wrongly-classified patterns of the elements in Combination set

W is

M2 =
r∑

j=1

Pj =
r∑

j=1

(Aj1 + Aj2) = 2M1 . (5.4)

Therefore, the classification error of a combination set is equal to half of the sum of

the classification errors of the elements in that combination set. (END PROOF)



5.2. Analysis of the Distributor Module 66

Table 5.1: The classification errors of the elements of combination set
W (Segmenation data)

1 2 3 4 5 6 7
C.error(%) 0.70 0 2.94 1.89 4.11 0.11 0.86

Now we illustrate with an actual example to show that Theorem 5.1 is correct.

We look at the Segmentation problem which has 7 classes. Assume Combination set

W = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}. A distributor module is set up for W. We

find the classification error of W is M1 = 5.18%. Then seven neural networks are

set up to evaluate the classification errors of the elements of W. See Table 5.1. We

can see that the sum of the classification error of these elements is M2 = 10.61%.

Putting aside the error which is brought about by the neural network itself 1 , we

can see that M1 is two times of M1.

Corollary 5.1 Assume that the distributor module for Combination set W = {C1,

C2, . . ., Cr} has the classification error Ew; Ec−max is the maximum classification

error of Combination C1, C2, . . . , Cr, then Ec−max and Ew satisfies the following

relation:

Ew <
r

2
Ec−max . (5.5)

The classification error of Combination Cj means the classification error of

the neural network which is used to classify Combination Cj’s patterns and non-

Combination Cj’s patterns. From Theorem 5.1, it can easily reach this corollary.

Corollary 5.1 gives an upper bound of the classification error of a combination

set. From this, it can be seen that with the reduction of the number of combinations

and the maximum classification error of the combinations in the combination set,

the classification error of the distributor module will decrease. An extreme case is

that r = 1, which means the combination set only has one element or the distributor

module for this combination set has only one output. In this case, the distributor

module passes all the input patterns to the next module instead of classifying them,

1There are factors contributing to the classification error. The first one is the classifier itself.
Neural networks are not perfect classifiers. The second one is the initial parameter selection and
so on.
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thus Ew and Ec−max will be zero. The distributor module loses its functions in

the case. It is obvious that this extreme case should be avoided in the design of the

combination selection algorithms as it will make the distributor module meaningless.

Therefore, we prescribe the minimum number of outputs in a distributor module as

2 in the algorithms. In other words, a candidate combination set for a distributor

module has at least 2 elements.

Our greedy algorithms are designed to reduce the maximum classification error

of combinations in the combination set. Thus, we can find good combination sets.

However, the distributor module is not the only factor to dominate the performance

of the whole network. Non-distributor modules influence the performance of whole

network. Therefore, we discuss the non-distributor modules in the next section.

5.3 Analysis of the Non-distributor Modules

Before starting the discussion, it is necessary for us to describe the characteristics of

standard classifiers. In mathematics, a classifier is a device or system that predicts

a discrete set of labels Y from a discrete or continuous feature space X. Generally,

a classifier can not map all the data perfectly, especially for those unknown pat-

terns. Normally, an actual classifier should attain better discrimination rate when

it is used for simple tasks compared with more difficult tasks. Because simple take

and difficult one are just relative concepts, we illustrate with the following examples.

For example, we create a classifier for a two-class problem (i.e., we train a neural

network for the problem), mapping the feature space into two classes. We say this

task is a simple one. Now we add some random noise to the feature space, i.e. these

noise data are randomly distributed in the feature space. For comparison, we keep

the test data untouched and just add noise to the data for training and validation.

Then we use the same method to set up a classifier for this problem (i.e., we train

the neural network using the original data with added noise data). The task with

noise is relatively difficult compared with the former one. In common sense, the

discrimination rate of the classifier will decrease when noise is added in.
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For another instance, a classifier (i.e. a neural network) is built for a three-class

problem, projecting the feature space into three points. Now we add the patterns

which do not belong to any of the three classes to the feature space. These patterns

belong to a fourth class and are somewhat like noise, but they are not randomly

distributed in the feature space like the noise in the above example. As in the last

example, we keep the test data unchanged and just add these patterns to the data

for training and validation. Then we set up the classifier using the original data and

added data. We can regard the patterns not belonging any of the three classes as

the members of an unknown class. Each output of the original classifier is trained

to select one class among the three classes, while each output of the new classifier is

trained to choose one class among the four classes (though only three outputs exist).

Compared with the original classifier, the new classifier has more tasks to do. We

can also regard the added patterns as some type of noise. In this sense, the new

classifier’s task is also harder than the former one. Thus, the discrimination rate of

the classifier will also decrease.

Now we illustrate an actual example to confirm this observation. Look at the

Segmentation problem. This problem totally has 7 classes. We take out the patterns

belonging to class 3, 4 and 5 and group these patterns into a 3-class problem. The

data are divided into training set, validation set and test set. Then a MPL NN is

trained to classify this 3-class problem using the training set and the validation set.

The test set is applied to test the classification error of the neural network, which is

8.62%. After that, we just add the patterns belonging to class 6 to the training set

and the validation set, at the same time we keep the test set unchanged. Then we

set up the new neural network based on the new training set and the new validation

set, and test it using the test set. We find the classification error becomes 11.75%,

which is greater than the former classification error. This shows that a classifier can

indeed attain better discrimination rate when it is used for simple task compared

with relatively difficult task.

Let us go back to the discussion on non-distributor modules.

Theorem 5.2 Generally, in a non-distributor module, the classification error will
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increase if a new class is added to this module.

RPT is used in the training of a non-distributor module. In other words, only the

patterns belonging to the classes of that module are used for training and validation.

Thus, when we add a new class to the module, the training patterns of the new class

will also join the training set, and same for the validation set. The test patterns

of the new class will also join the test set using for evaluating the classification error.

PROOF:

Consider a non-distributor module in a PD network. Before adding the new class

to that module, the module needs to recognize m classes. Its classification error is

E1. For convenience, these classes are marked as class 1, class 2, . . . , class m. The

module has m outputs and each output selects patterns from one class out of all the

patterns. Assume using the old test set, the number of wrongly classified patterns

is T1.

Now the patterns of class m + 1 are added to the module 2. We train the new

module using the original patterns and added patterns. The new module has m + 1

output nodes. Output 1 to output m’s function is the same as that in the old

module, which is selecting one class’ patterns from all the patterns. But there is

still some difference between them. Each output of the old classifier is trained to

select one class from m classes, while each output of the new classifier is trained

to choose one class from m + 1 classes. The task in the new module is relatively

difficult compared with the old one. According to the discussion earlier, normally,

an actual classifier should attain better discrimination rate when it is used for simple

tasks compared with more difficult tasks. Thus, if we test the new module using

the old test set, output 1 to output m in the new module will normally export more

wrongly classified patterns than those in the old one (Of course, in some extreme

cases, the class m + 1 is far away from class 1 to m. It is possible that the number

of wrongly-classified patterns may not increase. However, in a normal situation, the

number of wrongly-classified patterns will be larger.). Assume using the old test

set, the number of wrongly classified patterns exported by output 1 to output m

in the new module is T
′
1. For the new test set is the old test set added with some

2When the new class is added to the module, the training patterns, validation patterns and test
patterns of this class are also added to their counterparts.
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patterns of class m + 1, if we test the module using the new test set, assume the

number of wrongly classified patterns exported by output 1 to output m in the new

module is T2. Then T2 should be greater than T
′
1, because output 1 to output m may

give additional wrong results when they process the patterns belonging to class m+1.

In the above, we analyzed the change of wrongly classified patterns in output 1

to output m. Assume the error distribution across class 1 to m + 1 is similar. Now

we look at output m + 1, which select patterns of class m + 1 from all the patterns.

Assume the number of test patterns of class j is Nj. Define nj as the number of

the wrongly classified patterns in output j before adding class m + 1 and n
′
j as the

number of the wrongly classified patterns after adding class m+1. Because we have

no information on the number of wrongly classified patterns in output m + 1 here,

we assume
n
′
m+1

Nm+1
=

n
′
1+n

′
2+···+n

′
m

N1+N2+···+Nm
, which means the rate of wrongly classified patterns

of output m + 1 is equal to the average rate of wrongly classified patterns of the

other outputs. It is a reasonable assumption since we have no information of class

m + 1.

Now we compute the overall classification error of the new module.

E2 =

∑m+1
j=1 n

′
j∑m+1

j=1 Nj

=
1∑m

j=1 Nj

·
∑m

j=1 Nj∑m+1
j=1 Nj

· (
m∑

j=1

n
′
j + n

′
m+1)

=

∑m
j=1 n

′
j∑m

j=1 Nj

+
1∑m

j=1 Nj ·
∑m+1

j=1 Nj

(n
′
m+1

m∑
j=1

Nj −Nm+1

m∑
j=1

n
′
j)

=

∑m
j=1 n

′
j∑m

j=1 Nj

> E1 .

(5.6)

Thus, we can see that the classification error will increase when adding a new class

to a non-distributor module.(End Proof)

Corollary 5.2 In a non-distributor module, the classification error normally in-

creases with new classes added to that module.

This theorem can be deduced from Theorem 5.2. Those new classes can be added
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one by one. According to Theorem 5.2, the classification error will be increased.

Corollary 5.3 If a non-distributor module is split into two new non-distributor

modules, for each new module, its classification error is smaller than that of the old

module.

PROOF:

Assume the old non-distributor module is called Module 0 and the two new mod-

ules are called Module 1 and Module 2. Assume the classification errors of the new

modules are E1 and E2 respectively and the classification error of the old module is

E0. Module 0 can be regarded as adding new classes to Module 1 or Module 2, we

have E0 > E1 and E0 > E2.(END PROOF)

5.4 Three Greedy Based Combination Algorithms

5.4.1 Introduction

The objective of these algorithms is to find a combination set so that the distribu-

tor module has small classification errors. From Theorem 5.1, it can be seen that

if the combination set is composed of the combinations with small classification

errors, then the distributor module will have small classification error. Thus, our

algorithms in this chapter are based on finding combination with small classification

error. After that, we use these combinations to buildup a combination set. In this

way, the distributor module will have good performance.

In these algorithms, classification errors will be the measures of the difficulty in

discriminating among the patterns of a particular class and the patterns from all

the other classes. Classification errors are used to guide the whole process of finding

a suitable combination set.

Corollary 5.1 shows that in order to reduce the classification error of the com-

bination set Ew, we should encourage the reduction of the number of elements r in

the combination set and the maximum classification error Ec−max in the design of

the algorithms. Theorem 5.2 and Corollary 5.2 show that in order to reduce the
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number of wrongly classified patterns by the non-distributor modules, we should

encourage small non-distributor modules, or the non-distributor modules with small

classes. However, if the number of elements r in the combination set is very small,

the number of classes in some combination(s) will be relatively large. Thus, some

non-distributor modules will be very large. Thus, in our design of these algorithms,

we should consider this tradeoff and solve this problem.

In this chapter, we present three combination algorithms based on greedy meth-

ods. In the first algorithm, Greedy Combination Selection (GCS), we do not con-

sider the number of classes in a combination. It seems that the first algorithm

can not avoid the appearance of large non-distributor modules. We know large

non-distributor modules can lead to relatively large classification error of the whole

network. To improve the performance of the whole network, we must reduce the

classification error of the non-distributor modules. Regarding each non-distributor

module as an independent sub-problem, we can improve the module’s classification

rate by applying the PD method to this sub-problem. In this way, we alleviate this

problem by building a multi-layer PD network. If a combination has more than 2

classes, we do not connect the corresponding output to a non-distributor module,

but connect it to a 2nd-level distributor module. If an output from the 2nd-level

distributor module also has many classes, we use the 3rd-level distributor module,

and so on. We do this continuously until all the non-distributor modules process

simple tasks. By building a multi-layer PD network, we can avoid the appearance

of large non-distributor modules.

The second algorithm, namely Simplified Greedy Combination Selection (SGCS),

is a simplification of the first algorithm. In the first algorithm, we need to check

many classification errors of the combinations. The second one is based on the anal-

ysis in Section 5.4.4. The analysis shows that in most cases, the classification error

after combination is related to the classification errors before combination. The

relation is used to reduce the effort of computing those classification errors. Thus,

the second algorithm can save computing time compared with the first one. At the

same time, the two algorithms can obtain similar results.
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The third algorithm is called Restricted Greedy Combination Selection (RGCS).

We mentioned that the distributor module prefers a small r, the number of elements

in the combination set, which leads to large non-distributor modules. Large non-

distributor modules, however, lead to relatively large classification errors. Therefore,

instead using a multi-layer PD network, in this algorithm, we compromise by bal-

ancing between the distributor module and the non-distributor modules.

5.4.2 Greedy Combination Selection (GCS) Algorithm

Corollary 5.1 shows that in order to reduce the classification error of the combination

set Ew, we should reduce the number of elements r in the combination set and the

maximum classification error Ec−max in the design of the algorithm. The minimum

of r is 2. This algorithm is designed for multi-layer PD networks. If we choose a

small r, each element of the combination set will have many classes. Then GCS

algorithm is used to these elements. Level by level, GCS algorithm is continuously

applied. At last, the size of the whole PD network will be very large. In other

words, the network will have many modules. The computation load for setting up

the network will be very large. That is not desirable. Thus, in this algorithm, we

do not reduce r indefinitely. Once Ec−max becomes small enough, the algorithm will

stop and not try to reduce r further.

In each epoch of GCS algorithm, the classification errors of the classes (or combi-

nations) are listed. Then the class with the maximum classification error is selected

and temporarily combined with one of the other classes. After that, we find the

temporary combination with the minimum classification error. If the minimum

classification error is smaller than the classification error of the selected class, the

temporary combination will be fixed and we proceed to the next epoch. We will

prove in Theorem 5.3 that the combination set of the next epoch will be smaller

than, at least no more than that of the pervious epoch. Greedy Combination Selec-

tion (GCS) Algorithm is described as follows:

1. Find the classification error of each class E{i} . Record the largest classification

error, i.e. Einit
c−max. Mark all the classes as “non-excluded”.
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2. Set epoch = 1.

3. Find class j with the largest classification error among all the “non-excluded”

classes.

4. Choose another “non-excluded” class and temporarily combine it with class j.

For instance, class i, combine it with class j, i.e. {i, j}. Thus, the two classes

become one class and measure the classification error E{i,j}.

5. Repeat Step 4 for all the remaining “non-excluded” classes.

6. Find the combination with the smallest classification error in the temporary

combinations which have been measured in Steps 4 and 5, i.e. combination

{t,j} with the smallest classification error E{t,j}.

7. Compare E{t,j} with E{j}. If E{t,j} > E{j} , mark class j as “excluded”.

Update the class information and go to Step 8. Otherwise, fix combination

{t,j}. Update the information of the classes. After fixing combination {t,j},
{t,j} would become one class, the information of the original class t and j is

removed and new information of {t,j} is added. Thus, the number of classes

is reduced by 1. Mark class {t,j} as “non-excluded”.

8. If there is only one “non-excluded” class remaining or there are just two classes

remaining or the maximum classification error Ec−max in all the updated classes

is much smaller than Einit
c−max

3 , stop. Otherwise, set epoch epoch = epoch + 1

and go to step 3.

In the algorithm, a class which is marked as “non-excluded” means that class

will be seen as a potential candidate to be combined with other classes. Oppositely,

a class marked as “excluded” will be not regarded as a potential candidate for com-

bination.

3Assume A and B are positive numbers. If 10A < B, we can consider that A is much smaller
than B. In our experiments, we find that for a multi-class problem, normally, the overall classifi-
cation error of the whole classifier is larger than, at least close to Einit

c−max. Thus, if the distributor
module has the classification error is smaller than Einit

c−max/10, the wrongly classified patterns by
the distributor module will be very small compared with that by the whole network. We can say
that the distributor module has a relatively high classification rate.
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Figure 5.1: A special 9-class problem in a 2-dimensional feature space

In Step 6 of the GCS algorithm, we find the combination (i.e. /t,j/) with the

smallest classification error E{t,j}. In Step 7, we compare E{t,j} with Ej and if

E{t,j} > Ej, mark class j as ”excluded”. In the situation such that E{t,j} > Ej, the

smallest classification error of the temporary combinations is always larger than the

selected class j. It hints that the temporary classification error may be increased

due to class combination. One may be curious when this situation will appear. Here

is an example for this situation.

See Figure 5.1. Assume that a 9-class problem is to be solved in a 2-dimensional

feature space. For convenience, the inputs of the patterns are normalized into [0, 1].

Assume the patterns are evenly distributed in the feature space and the wrongly-

classified patterns are mainly distributed near the border between classes. Assume

the number of wrongly classified patterns is proportional to the length of the bor-

der. From the figure, we can see that the border length of class 5 is four units,

while the border length of class 1,3,7,9 is two units and the border length of class

2,4,6,8 is three units. Assume that the classification error of class 5 is 4t, then the

classification error of classes 2, 4, 6 and 8 is 3t and the classification error of classes

1, 3, 7 and 9 is 2t. Using GCS, in the first epoch, class 5 is selected as it has the

maximum classification error. We need to combine class 5 with another class. If

class 5 is combined with class 1, 3, 7 or 9, the classification error will be 6t. If

class 5 is combined with class 2, 4, 6 or 8 instead, the classification error with be 5t.
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No matter which class is chosen for combination, the classification error will increase.

Then we show that our GCS algorithm can find a combination set with relatively

small classification error of the distributor module.

Theorem 5.3 Using GCS algorithm, the classification error of the combination set

in the next epoch will be smaller than or no more than that in the previous epoch.

Here the classification error of the combination set means the classification error

of the distributor module for this combination set (see definition 5.3). For example,

in a 6-class problem, at the beginning of using GCS algorithm, the combination set

is {{1},{2},{3},{4},{5},{6}}. If classes 3 and 4 are combined in the next epoch,

then the combination set is {{1},{2},{3,4},{5},{6}}, whose classification error will

be no more than the classification error of {{1},{2},{3},{4},{5},{6}}.

PROOF:

In each epoch, the classes or combinations form a combination set. There are two

situations. Please see Step 7. (1) The smallest classification error of the temporary

combinations is not smaller than the selected class j, class j are marked “excluded”

and the combination set will be kept the same as that in the previous epoch. Thus,

the overall classification errors will be equal to that in the previous epoch. (2) The

smallest classification error of the temporary combinations is smaller than the se-

lected class j. The temporary combination with the smallest classification error is

fixed and the overall classification errors of the elements will be smaller than that

in the previous epoch. Thus, according to Theorem 5.1, we can see that the clas-

sification error of the combination set in next epoch can not be larger than that in

the previous epoch.(End Proof)

In our experiments, Situation (2) appears much more often than Situation (1).

Thus, in most cases, the classification error of the combination set in the next epoch

will become smaller.

Corollary 5.4 The classification error of the combination set obtained by GCS al-
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gorithm will be no larger than the classification error for the fully decomposed com-

bination set Output Parallelism (OP).

PROOF:

Assume a classification problem which is composed with M classes. Fully de-

composed OP can also be regarded as a special distributor module which has M

outputs, whose combination set is {C1, C2, . . ., CM}. At the beginning of Epoch 1,

the combination set is {C1, C2, . . ., CM}. According to Theorem 5.3, the classifica-

tion error of the combination set in next epoch can not be larger than that in the

last epoch. Thus, the classification error of the combination set reached by the GCS

algorithm will be no larger than the classification error for the fully decomposed

combination set.(End Proof)

From the above two theorems, we can see that the GCS algorithm can gradually

reach a better combination set.

5.4.3 An Example for GCS Algorithm

Here we will illustrate using an example to show how GCS algorithm progresses step

by step. It should be noted that this example simply shows how GCS works while

no results of the final PD network are given. The final results of the PD network

will be presented in the experiments section. Refer to the Vowel problem. The input

patterns of this data set are 10 real vectors representing vowel sounds that belong

to one of 11 classes. Now we use GCS to find a combination set for the first-level

distributor module.

The classification error of each class is computed and listed here:

Class 1 2 3 4 5 6 7 8 9 10 11
C.error(%) 2.00 2.39 2.00 2.81 5.43 8.40 4.72 3.95 7.45 2.19 6.84

Epoch 1:

Class 6 has the largest classification error. Combine class 6 with the other classes

respectively and compute the classification error.

{6,1}/12.02 {6,2}/16.48 {6,3}/11.72 {6,4}/5.36 {6,5}/6.03
{6,7}/15.36 {6,8}/11.64 {6,9}/16.44 {6,10}/11.2 {6,11}/14.90
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Combination {6,4} has the smallest classification error, fix it. Update the class in-

formation.

Class 1 2 3 {4,6} 5 7 8 9 10 11
C.error(%) 2.00 2.39 2.00 5.36 5.43 4.72 3.95 7.45 2.19 6.84

Epoch 2:

Class 9 has the largest classification error. Combine class 9 with the other classes

respectively and compute the classification error.

{9,1}/7.31 {9,2}/13.60 {9,3}/7.17 {9,4,6}/11.01 {9,5}/13.52
{9,7}/9.62 {9,8}/2.59 {9,10}/3.36 {9,11}/7.45

Combination {9,8} has the smallest classification error, fix it. Update the class in-

formation.

Class 1 2 3 {4,6} 5 7 {8,9} 10 11
C.error(%) 2.00 2.39 2.00 5.36 5.43 4.72 2.59 2.19 6.84

Epoch 3:

Class 11 has the largest classification error. Combine class 11 with the other

classes respectively and compute the classification error.

{11,1}/9.09 {11,2}/10.06 {11,3}/7.37 {11,4,6}/3.44
{11,5}/13.50 {11,7}/10.10 {11,8,9}/7.71 {11,10}/10.38

Combination {11,4,6} has the smallest classification error, fix it. Update the class

information.

Class 1 2 3 {4,6,11} 5 7 {8,9} 10
C.error(%) 2.00 2.39 2.00 3.44 5.43 4.72 2.59 2.19

Epoch 4:

Class 5 has the largest classification error. Combine class 5 with the other classes

respectively and compute the classification error.

{5,1}/9.64 {5,2}/7.77 {5,3}/13.91 {5,4,6,11}/3.37
{5,7}/8.32 {5,8,9}/10.89 {5,10}/10.95

Combination {5,11,4,6} has the smallest classification error, fix it. Update the class

information.

Class 1 2 3 {4,5,6,11} 7 {8,9} 10
C.error(%) 2.00 2.39 2.00 3.37 4.72 2.59 2.19
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Epoch 5:

Class 7 has the largest classification error. Combine class 7 with the other classes

respectively and compute the classification error.

{7,1}/10.53 {7,2}/9.65 {7,3}/8.18
{7,4,5,6,11}/3.16 {7,8,9}/2.17 {7,10}/7.19

Combination {7,8,9} has the smallest classification error, fix it. Update the class

information.

Class 1 2 3 {4,5,6,11} {7,8,9} 10
C.error(%) 2.00 2.39 2.00 3.37 2.17 2.19

Epoch 6:

Class {4,5,6,11} has the largest classification error. Combine class {4,5,6,11}
with the other classes respectively and compute the classification error.

{4,5,6,11,1}/5.24 {4,5,6,11,2}/9.41 {4,5,6,11,3}/4.57
{4,5,6,11,7,8,9}/0.97 {4,5,6,11,10}/4.80

Combination {4,5,6,11,7,8,9} has the smallest classification error, fix it. Update the

class information.

Class 1 2 3 {4,5,6,11,7,8,9} 10
C.error(%) 2.00 2.39 2.00 0.97 2.19

Epoch 7:

Class 2 has the largest classification error. Combine class 2 with the other classes

respectively and compute the classification error.

{2,1}/4.15 {2,3}/1.08 {2,4,5,6,7,8,9,11}/5.63 {2,10}/6.30

Combination {2,3} has the smallest classification error, fix it. Update the class in-

formation.

Class 1 {2,3} {4,5,6,11,7,8,9} 10
C.error(%) 2.00 1.08 0.97 2.19

Epoch 8:

Class 10 has the largest classification error. Combine class 10 with the other

classes respectively and compute the classification error.

{10,1}/1.25 {10,2,3}/3.99 {10,4,5,6,7,8,9,11}/5.63
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Combination {10,1} has the smallest classification error, fix it. Update the class

information.

Class {1,10} {2,3} {4,5,6,11,7,8,9}
C.error(%) 1.25 1.08 0.97

Epoch 9:

Class {1,10} has the largest classification error. Combine class {1,10} with the

other classes respectively.

{1,10,2,3}/0.97 {1,10,4,5,6,7,8,9,11}/1.08

Combination {10,1,2,3} has the smallest classification error, fix it. Update the class

information.

Class {1,10,2,3} {4,5,6,11,7,8,9}
C.error(%) 0.97 0.97

In this example, the GCS algorithm is used to compute the combination set

for the Vowel problem. The final combination set is {{1,2,3,10},{4,5,6,7,8,9,11}}.
Using theorem 5.1, we can evaluate that the classification error of the distributor

module for this combination set is about 0.97%. Totally 65 classification errors of

combinations (or classes) are computed in the algorithm, including 11 classification

errors of the original classes. Compared with the classification error of the distrib-

utor module in Chapter 3, which is 6.68%, 0.97% is very small.

5.4.4 Simplified Greedy Combination Selection (SGCS) Al-
gorithm

When two classes are combined into one, it seems that the classification error after

combination is hard to forecast. Sometimes, combining classes can lead to better

classification accuracy, while in other times, it will not. Here we explore the reason

of the change of classification errors brought about by combining classes.

Combining classes changes the border status in the feature space and thus brings

about the change of classification errors. For example, there are two adjacent classes

S1 and S2 in an N -class problem. We divide the border of class S1 into two parts

according to its relationship with class S2: (1) the border area which is adjacent to
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Figure 5.2: The distribution of patterns in the case that the two classes are adjacent

class S2, denoted as B(S1,S2), (2) the border area which is not adjacent to class S2,

denoted as B(S1,non−S2). Similarly, the border of class S2 is also divided into two

parts: (1) the border area which is adjacent to class S1, denoted as B(S2,S1). (2) the

border area which is not adjacent to class S1, denoted as B(S2,non−S1). See Figure

5.2. The patterns of the left circle belong to class S1 and those in the right circle

belong to class S2. we can see that B(S2,S1) = B(S1,S2) = ÂDB, B(S1,non−S2) = ÂCB

and B(S2,non−S1) = ÂEB.

Before combination, the overall border of two classes is B(S2,S1) + B(S1,S2) +

B(S1,non−S2) + B(S2,non−S1) . After the two classes are combined into one, the border

status is changed. The overall border becomes B(S1,non−S2) + B(S2,non−S1).

Normally, in a pattern recognition problem, the patterns around the border are

most difficult to recognize and the wrongly-classified patterns are usually distributed

around the border. There are many factors which affect classification errors, for ex-

ample, border situation, the selection of classifiers, the initial parameters of the

classifiers and so on. Now we ignore the other factors and focus on the effect of

border on the classification error, and we have the following theorem.

Theorem 5.4 Assume a classifier whose classification error is only determined by

the border situation between classes. The classification error of class S1 is denoted
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Figure 5.3: The distribution of patterns in the case that the two classes are not
adjacent

by E1 and the classification error of class S2 is denoted by E2. Classes S1 and S2

are combined into one class. The classification error after combination - Ec satisfies

the following relation:

|E1 − E2| ≤ Ec ≤ E1 + E2 . (5.7)

PROOF:

There are three situations of the border between two classes. The first, also

the most universal, situation is that the two classes are adjacent. The second one is

that the two classes are not adjacent, which means the two classes have not common

border. The third one is that one class is fully embedded inside another class, which

means the class only has common border with one class and has no common border

with the other classes.

We look at the second situation first. The two classes are not adjacent and

B(S1,S2) and B(S2,S1) are zero. See Figure 5.3. Because the classification error is only

determined by the border, it is obvious that Ec = E1 + E2 .

Then we look at the third situation, the border of one class is fully embedded

into the other class. See Figure 5.4. In this case, B(S1,non−S2) or B(S2,non−S1) is zero,

we have Ec = E1 − E2 (in the case B(S2,non−S1) = 0) or Ec = E2 − E1 (in the case

B(S1,non−S2) = 0).
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Figure 5.4: The distributions of patterns in the case that class 2 is Fully embedded
in class 1

Now we look at the first situation. One can refer to Figure 5.2. Before com-

bination, the overall border is B(S2,S1) + B(S1,S2) + B(S1,non−S2) + B(S2,non−S1), then

after combination, the border becomes B(S1,non−S2) + B(S2,non−S1). It is obvious

that B(S1,non−S2) + B(S2,non−S1) is smaller than B(S2,S1) + B(S1,S2) + B(S1,non−S2) +

B(S2,non−S1) and is greater than |B(S1,non−S2)−B(S2,non−S1)|. For the classification er-

ror is only determined by the length of the border, we have |E1−E2| < Ec < E1+E2.

From the above analysis, we can see that the classification error after the com-

bination is |E1 − E2| ≤ Ec ≤ E1 + E2. (End Proof)

In Theorem 5.4, we only considered the change of the classification errors brought

about by the variety of the bordering conditions. There are also other factors which

may affect the classification errors during combination. Classifiers themselves are a

factor. Different classifiers tend to have different classification errors for the same

problem. In our research, neural networks are used as classifiers. The represen-

tations of neural networks also have influence to the classification error of neural

networks. For example, in a two-class problem, binary representation and 1-out-2

representation may achieve different results (Lu and Ito, 1995). Moreover, the initial

parameters of classifiers also influence the classification errors.
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We know neural networks are not perfect classifiers which can utilize all the infor-

mation carried by the patterns. In a two-class problem, if the border is complicated,

it will not be easy for the neural network to plot the perfect border between two

classes. Generally, the more complicated the real border, the harder for the neural

network to describe it. When two classes are combined into one, the border varies

and the complication of border is also changed. In most situations, the border after

combination will become longer and more complicated. Of course, it may become

simple in some cases and it is only a minority in all the cases. If we ignore this mi-

nority cases and count the factor which is brought by neural networks themselves,

from expression (5.7), we will have the following expression:

Ec ≥ |E1 − E2| . (5.8)

According to our experimental results, Expression (5.8) is satisfied in about 89%

cases of all the cases. For example, in section 5.4.3, we computed the classification

errors of 54 temporary combinations. Expression (5.8) is satisfied in 50 cases, and

only in 4 cases, it does not work.

From Expression (5.8), we can see that if E1 is much larger than E2 and vice

versa, Ec is unlikely to be small. In GCS algorithm, when the class with the max-

imum classification error is selected, combining it with the classes having small

classification errors will hardly attain lower classification errors. Thus, we do not

need to compute all the combination candidates in each epoch of GCS algorithm.

Based on the above analysis, we present Simplified Greedy Combination Selec-

tion (SGCS) Algorithm.

1. Find the classification error of each class E{i} . Record the largest classification

error, i.e. Einit
c−max. Mark all the classes as “non-excluded”.

2. Set epoch = 1.

3. Find class j with the largest classification error among all the “non-excluded”

classes.Order the classification errors of the remaining “non-excluded” classes
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in descending order. Use a queue to record the ordering of those classes.

Assume the number of classes in the queue is N.

4. Set p = 1.

5. Choose the class at the pth position in the queue and temporarily combine it

with class j. For instance, class i, combine it with class j, i.e. {i, j}. Thus, the

two classes become one class and measure the classification error E{i,j}.

6. Find the combination with the smallest classification error in the p temporary

combinations which have been measured in this epoch 4.i.e. combination {t,j}
with the smallest classification error E{t,j}.

7. If there are no element in the (p + 1)th position, Compare E{t,j} with E{j}.If

E{t,j} > E{j} , mark class j as “excluded”. Update the class information and

go to Step 9. If E{t,j} ≤ E{j}, fix combination {t, j} and go to Step 8. If there

is an element in the (p+1)th position, find the class at the (p+1)th position in

the queue, i.e., class m in the queue. Compute ε = E{j} − E{m} and compare

E{t,j} with ε. If E{t,j} > ε, set p = p + 1 and go to Step 5. If E{t,j} ≤ ε , fix

combination {t, j}.

8. Update the information of the classes. After fixing combination {t, j},{t, j}
becomes one class, the information of the original class t and j is removed and

new information of {t, j} is added. Thus the number of classes is reduced by

1. Mark class {t, j} as “non-excluded”.

9. If there is only one “non-excluded” class remaining or there are just two classes

remaining or the maximum classification error in all the updated classes is

much smaller than Einit
c−max

5, stop. Otherwise, set epoch = epoch + 1 and go to

step 3.

4Because Step 5 to 6 may be run for more than one time, it is possible that there are several
candidates.

5Assume A and B are positive numbers. If 10A < B, we consider that A is much smaller than
B.
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5.4.5 An Example for SGCS Algorithm

Here we illustrate using an example to show how SGCS algorithm progresses step

by step. It should be noted that this example just shows how SGCS works and we

don’t give the results of the final PD network until later. Still refer to the Vowel

problem. Now we use SGCS algorithm to find a combination set for the distributor

module.

The classification error of each class is computed and listed here:

Class 1 2 3 4 5 6 7 8 9 10 11
C.error(%) 2.00 2.39 2.00 2.81 5.43 8.40 4.72 3.95 7.45 2.19 6.84

Epoch 1:

1. Class 6 has the largest classification error. Now we want to find the best class

which is suitable to combine with class 6. There are 10 candidates. Order

them in descending order, which is 9,11,5,7,8,4,2,10,1,3.

2. Combine class 6 with class 9, compute the classification error E{6,9} = 16.44

Compute ε = E{6} − E{11} = 8.4− 6.84 < E{6,9}.

3. Combine class 6 with class 11, compute the classification error E{6,11} = 14.90

In the two computed classification errors, E{6,11} is the minimum one. Com-

pute ε = E{6} − E{5} = 8.4− 5.43 < E{6,11}.

4. Combine class 6 with class 5, compute the classification error E{6,5} = 6.03,

E{6,5} is the minimum in the computed classification errors. Compute ε =

E{6} − E{7} = 8.4− 4.72 < E{6,5}.

5. Combine class 6 with class 7, compute the classification error E{6,7} = 15.36,

E{6,5} is the minimum in the computed classification errors. Compute ε =

E{6} − E{8} = 8.4− 3.95 < E{6,5}.

6. Combine class 6 with class 8, compute the classification error E{6,8} = 11.64,

E{6,5} is the minimum in the computed classification errors. Compute ε =

E{6} − E{4} = 8.4− 2.81 < E{6,5}.

7. Combine class 6 with class 4, compute the classification error E{6,4} = 5.36,

E{6,4} is the minimum in the computed classification errors. Compute ε =

E{6} − E{2} = 8.4− 2.39 > E{6,4}.
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There is no need to continue because ε > E{6,4}, fix {6,4}. Update the class infor-

mation.

Class 1 2 3 {4,6} 5 7 8 9 10 11
C.error(%) 2.00 2.39 2.00 5.36 5.43 4.72 3.95 7.45 2.19 6.84

Epoch 2:

1. Class 9 has the largest classification error. Now we want to find the best class

which is suitable to combine with class 9. There are 9 candidates. Order them

in descending order, which is 11,5,{4,6},7,8,2,10,1,3.

2. Combine class 9 with class 11, compute the classification error E{9,11} = 7.45

Compute ε = E{9} − E{5} = 7.45− 5.43 < E{9,11}.

3. Combine class 9 with class 5, compute the classification error E{9,5} = 13.52,

E{9,11} is the minimum in the computed classification errors. Compute ε =

E{9} − E{4,6} = 7.45− 5.36 < E{9,11}.

4. Combine class 9 with class {4,6}, compute the classification error E{9,4,6} =

11.01, E{9,11} is the minimum in the computed classification errors. Compute

ε = E{9} − E{7} = 7.45− 4.72 < E{9,11}.

5. Combine class 9 with class 7, compute the classification error E{9,7} = 9.62,

E{9,11} is the minimum in the computed classification errors. Compute ε =

E{9} − E{8} = 7.45− 3.95 < E{9,11}.

6. Combine class 9 with class 8, compute the classification error E{9,8} = 2.59,

E{9,8} is the minimum in the computed classification errors. Compute ε =

E{9} − E{2} = 7.45− 2.39 > E{9,8}.

Thus, fix {8,9}. Update the class information.

Class 1 2 3 {4,6} 5 7 {8,9} 10 11
C.error(%) 2.00 2.39 2.00 5.36 5.43 4.72 2.59 2.19 6.84

Epoch 3:

1. Class 11 has the largest classification error. Now we want to find the best class

which is suitable to combine with class 11. There are 8 candidates. Order them

in descending order, which is 5,{4,6},7,{8,9},2,10,1,3.
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2. Combine class 11 with class 5, compute the classification error E{5,11} = 13.50

Compute ε = E{11} − E{4,6} = 6.84− 5.36 < E{5,11}.

3. Combine class 11 with class {4,6}, compute the classification error E{11,4,6} =

3.44, E{4,6,11} is the minimum in the computed classification errors. Compute

ε = E{11} − E{7} = 6.84− 4.72 < E{4,6,11}.

4. Combine class 11 with class 7, compute the classification error E{11,7} = 10.10,

E{4,6,11} is the minimum in the computed classification errors. Compute ε =

E{11} − E{8,9} = 6.84− 2.59 > E{4,6,11}.

Thus, fix {4,6,11}. Update the class information.

Class 1 2 3 {4,6,11} 5 7 {8,9} 10
C.error(%) 2.00 2.39 2.00 3.44 5.43 4.72 2.59 2.19

Epoch 4:

1. Class 5 has the largest classification error. Now we want to find the best class

which is suitable to combine with class 5. There are 7 candidates. Order them

in descending order, which is 7, {4,6,11},{8,9},2,10,1,3.

2. Combine class 5 with class 7, compute the classification error E{5,7} = 8.32

Compute ε = E{5} − E{4,6,11} = 5.43− 3.44 < E{5,7}.

3. Combine class 5 with class {4,6,11}, compute the classification error E{5,4,6,11} =

3.37, E{5,4,6,11} is the minimum in the computed classification errors. Compute

ε = E{5} − E{8,9} = 5.43− 2.59 < E{5,4,6,11}.

4. Combine class 5 with class {8,9}, compute the classification error E{5,8,9} =

10.89, E{5,4,6,11} is the minimum in the computed classification errors. Com-

pute ε = E{5} − E{2} = 5.43− 2.39 < E{5,4,6,11}.

5. Combine class 5 with class 2, compute the classification error E{5,2} = 7.77,

E{5,4,6,11} is the minimum in the computed classification errors. Compute

ε = E{5} − E{10} = 5.43− 2.19 < E{5,4,6,11}.

6. Combine class 5 with class 10, compute the classification error E{5,10} = 10.95,

E{5,4,6,11} is the minimum in the computed classification errors. Compute

ε = E{5} − E{1} = 5.43− 2.00 > E{5,4,6,11}.
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Thus, fix {4,5,6,11}. Update the class information.

Class 1 2 3 {4,5,6,11} 7 {8,9} 10
C.error(%) 2.00 2.39 2.00 3.37 4.72 2.59 2.19

Epoch 5:

1. Class 7 has the largest classification error. Now we want to find the best class

which is suitable to combine with class 7. There are 6 candidates. Order them

in descending order, which is {4,5,6,11},{8,9},2,10,1,3.

2. Combine class 7 with class {4,5,6,11}, compute the classification error E{7,4,5,6,11} =

3.16 Compute ε = E{7} − E{8,9} = 4.72− 2.59 < E{7,4,5,6,11}.

3. Combine class 7 with class {8,9}, compute the classification error E{7,8,9} =

2.17, E{7,8,9} is the minimum in the computed classification errors. Compute

ε = E{7} − E{2} = 4.72− 2.39 > E{7,8,9}.

Thus, fix {7,8,9}. Update the class information.

Class 1 2 3 {4,5,6,11} {7,8,9} 10
C.error(%) 2.00 2.39 2.00 3.37 2.17 2.19

Epoch 6:

1. Class {4,5,6,11} has the largest classification error. Now we want to find the

best class which is suitable to combine with class {4,5,6,11}. There are 5

candidates. Order them in descending order, which is 2, 10, {7,8,9},1,3.

2. Combine class {4,5,6,11} with class 2, compute the classification error E{2,4,5,6,11} =

9.41 Compute ε = E{4,5,6,11} − E{10} = 3.37− 2.19 < E{2,4,5,6,11}.

3. Combine class {4,5,6,11} with class 10, compute the classification error E{10,4,5,6,11} =

4.80, E{10,4,5,6,11} is the minimum in the computed classification errors. Com-

pute ε = E{4,5,6,11} − E{7,8,9} = 3.37− 2.17 < E{10,4,5,6,11}.

4. Combine class {4,5,6,11} with class {7,8,9}, compute the classification error

E{4,5,6,11,7,8,9} = 0.97, E{4,5,6,11,7,8,9} is the minimum in the computed classifica-

tion errors. Compute ε = E{4,5,6,11} − E{1} = 3.37− 2.00 > E{4,5,6,11,7,8,9}.

Thus, fix {4,5,6,7,8,9,11}. Update the class information.
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Class 1 2 3 {4,5,6,11,7,8,9} 10
C.error(%) 2.00 2.39 2.00 0.97 2.19

Epoch 7:

1. Class 2 is the class with the largest classification error. Now we want to find

the best class which is suitable to combine with class 2. There are 4 candidates.

Order them in descending order, which is 10,1,3,{4,5,6,7,8,9,11}.

2. Combine class 2 with class 10, compute the classification error E{2,10} = 6.30

Compute ε = E{2} − E{1} = 2.39− 2 < E{2,10}.

3. Combine class 2 with class 1, compute the classification error E{2,1} = 4.15,

E{2,1} is the minimum in the computed classification errors. Compute ε =

E{2} − E{3} = 2.39− 2 < E{2,1}.

4. Combine class 2 with class 3, compute the classification error E{2,3} = 1.08,

E{2,3} is the minimum in the computed classification errors. Compute ε =

E{2} − E{4,5,6,7,8,9,11} = 2.39− 0.97 > E{2,3}.

Thus, fix {2,3}. Update the class information.

Class 1 {2,3} {4,5,6,11,7,8,9} 10
C.error(%) 2.00 1.08 0.97 2.19

Epoch 8:

1. Class 10 is the class with the largest classification error. Now we want to

find the best class which is suitable to combine with class 10. There are 3

candidates. Order them in descending order, which is 1,{2,3},{4,5,6,7,8,9,11}.

2. Combine class 10 with class 1, compute the classification error E{1,10} = 1.25

Compute ε = E{10} − E{2,3} = 2.19− 1.08 < E{1,10}.

3. Combine class 10 with class {2,3}, compute the classification error E{2,3,10} =

3.99, E{1,10} is the minimum in the computed classification errors. Compute

ε = E{10} − E{4,5,6,7,8,9,11} = 2.19− 0.97 < E{1,10}.

4. Combine class 10 with class {4,5,6,7,8,9,11}, compute the classification error

E{4,5,6,7,8,9,10,11} = 5.63, E{1,10} is the minimum in the computed classification

errors.
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Because all the combination candidates are used, fix {1,10}. Update the class infor-

mation.

Class {1,10} {2,3} {4,5,6,11,7,8,9}
C.error(%) 1.25 1.08 0.97

Epoch 9:

1. Class {1,10} is the class with the largest classification error. Now we want to

find the best class which is suitable to combine with class {1,10}. There are 2

candidates. Order them in descending order, which is {2,3},{4,5,6,7,8,9,11}.

2. Combine class {1,10} with class {2,3}, compute the classification error E{1,10,2,3} =

0.97 Compute ε = E{1,10} − E{4,5,6,7,8,9,11} = 1.25− 0.97 < E{1,10,2,3}.

3. Combine class 10 with class {4,5,6,7,8,9,11}, compute the classification error

E{1,4,5,6,7,8,9,10,11} = 1.08, E{1,2,3,10} is the minimum in the computed classifica-

tion errors.

Because all the combination candidates are used, fix {1,10,2,3}. Update the class

information.

Class {1,10,2,3} {4,5,6,11,7,8,9}
C.error(%) 0.97 0.97

In this example, the ICSPD algorithm is used to compute the combination set

for the Vowel problem. The final combination set is {{1,2,3,10}, {4,5,6,7,8,9,11}}.

Discussion:

Comparing the results using SGCS algorithm with that using the GCS algo-

rithm, we can see that the final combination set is the same. Eight epochs are

used for both algorithms. We computed 65 classification errors for those classes or

combinations in GCS algorithm, while only 43 classification errors are computed in

SGCS algorithm. Because for both algorithms, the time consumed is mainly on the

computation of classification errors, the SGCS algorithm saves 1/3 time compared

with the GCS algorithm.
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5.4.6 The
√

K Rule-of-thumb

The number of wrongly classified patterns by the whole PD network can be expressed

as:

T = N · Ew + (1− Ew)(N1E1 + N2E2 + · · ·+ NrEr) , (5.9)

where N is the number of overall patterns, Nj is the number of patterns belonging

to non-distributor Module j. Ew is the classification error of the distributor module

and Ej is the classification error of non-distributor Module j.

Assume that the maximum classification error of the non-distributor modules is

Emax. From Expression (5.9), we have

T ≤ N · Ew + (1− Ew)(N1Emax + N2Emax + · · ·+ NrEmax)

= N · Ew + N · (1− Ew)Emax .
(5.10)

From the analysis in chapter 3, EwEmax is much smaller than Ew or Emax. Thus,

Expression (5.10) can be revised as

T ≤ N · (Ew + Emax) . (5.11)

From Expression (5.11), we can see if Ew + Emax is minimized, the number of the

wrongly classified patterns of the whole PD network T will be a relatively small

number. Thus, we need to evaluate the relation between Emax and Ew. Seems it is

a hard problem to set up the relation between them.

According to Theorem 5.2, a non-distributor module having a relatively large

number of classes tends to have larger classification errors. According to Theorem

5.3, a distributor module with a large number of combinations or outputs tends to

have larger classification errors. The concrete relation should be problem dependent.

For the ease of evaluation, we assume the classification error is proportional to the

number of outputs or classes. We have

Ew = e0(r − 1) , (5.12)

where r is the number of outputs in the distributor module and e0 is some constant.

If the distributor module only has one output, it is obvious that the classification
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error of the distributor module is zero. Thus, in Equation (5.12), Ew is proportional

to (r − 1).

Emax = e1(m− 1) , (5.13)

where m is number of outputs in the non-distributor module. Because the two

module is for the same problem, we assume e1 = e0 . Then Expression (5.11) can

be revised as

T ≤ N · e0 · (m + r − 2) . (5.14)

For m·r ∼ K, where K is the number of classes in the problem. In order to minimize

m + r, we have m = r ∼ √
K.

The above analysis shows that the maximum number of classes in a non-distributor

module should be close to
√

K. Thus, we set a rule such that the number of classes

in each non-distributor module can not exceed
√

K. This rule is called the
√

K

Rule-of-thumb. This rule is used in several of our combination selection algorithms,

including the combination selection algorithms presented in the next chapter. In

the next chapter, we will verify the rule from experiments.

5.4.7 Restricted Greedy Combination Selection (RGCS) Al-
gorithm

Compared with multi-layer PD networks, the single-layer PD network has the shorter

processing time for unknown patterns. In this section, we want to develop a com-

bination selection algorithm for single-layer PD networks. The parameter
√

K (K

is the number of classes in the problem) in fact strikes a balance between the dis-

tributor modules and those non-distributor modules. One may wonder whether we

should add the restriction
√

K to the distributor module. Our answer is no. Now

we explain the reason.

In the course of deducing the
√

K rule, we assume the classification error is pro-

portional to the number of outputs or classes for the ease to evaluation. It is an

acceptable assumption when we lack the information of classes and combinations.

However, in our greedy based combination selection algorithms, we compute the

classification error of temporary combinations in each epoch. In other words, we
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have the information of combinations. At the same time, for the distributor module,

we can estimate the classification error of the temporary combination set in each

epoch according to Theorem 5.1. We do not need to assume the classification error

of the distributor module is proportional to the number of outputs. Thus, we do

not apply the
√

K rule to the distributor module.

In our actual experiments, some negative effect may be generated if we insist on

applying the
√

K rule to the distributor module. Here we give an example. For the

Vowel problem which has 11 classes, firstly, we just apply the
√

K rule for the non-

distributor modules and set the maximum number of classes in a non-distributor

module is 3 (Refer Section 5.4.8 for detail). Then RGCS find the combination set

{{4,6,11}, {7,8,9}, {1,10}, {2,3}, {5}}, which has 5 combinations. The classification

errors for these combinations are listed as follows: {4,6,11}/3.44%, {7,8,9}/2.17%,

{1,10}/1.25%, {2,3}/1.08%, {5}/5.43%. Now we want to farther apply the
√

K rule

to the distributor module while keeping the
√

K rule satisfied in non-distributor

modules. The maximum number of outputs of the distributor module is set to be

4. Therefore, we need to combine {5} to {1,10} or {2,3}. Through computation,

we find that {5,1,10}/10.12% and {5,2,3}/9.72%. We can estimate the classifica-

tion error of the combination set according to Theorem 5.1. In either situation, the

classification error of the distributor module after combination is larger than that

before combination. This example shows that using the
√

K rule to the distributor

module may bring negative effect.

For the above reason, we do not add the restriction
√

K to the distributor mod-

ule. We still need to apply the
√

K rule to these non-distributor modules, because

we do not have enough information to trace the classification error of the corre-

sponding non-distributor modules in our greedy based combination algorithms.

The RGCS algorithm is similar to the GCS algorithm. The main difference

between them is that we add the restriction to the maximum number of classes in a

combination. Before presenting the RGCS algorithm, we define two concepts. Noc

is defined as the number of original classes in a combination. For example, the Noc

in combination {3,4} is 2. Sometimes combination {3,4} is also called class {3,4} for
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that after combination, class 3 and class 4 become one class. Noc−max is defined as

the maximum number of original classes in a combination. Noc−max is set according

to the
√

K rule. For simplicity, we just set it as the maximum integer which is equal

or smaller than
√

K. An “excluded” class means a class that we no longer choose

as the candidate for combining with others. The RGCS algorithm is described as

follows:

1. Find the classification error of each class E{i} . Mark all the classes as “non-

excluded”.

2. Set epoch = 1.

3. Find class j with the largest classification error among all the “non-excluded”

classes.

4. Choose another “non-excluded” class and temporarily combine it with class j.

For instance, class i, combines it with class j, i.e. {i, j}. Thus, the two classes

become one class. If the Noc in the combination is larger than Noc−max, cancel

the combination; otherwise, measure the classification error E{i,j}.

5. Repeat Step 4 for all the remaining “non-excluded” classes.

6. If all the combinations in Step 4 and 5 are cancelled, mark class j as “excluded”

class and go to Step 8. Otherwise, find the combination with the smallest

classification error in the temporary combinations which have been measured

in Steps 4 and 5, i.e. combination {t,j} with the smallest classification error

E{t,j}.

7. Compare E{t,j} with E{j}. If E{t,j} > E{j} , mark class j as “excluded” and go

to Step 8. Otherwise, fix combination {t,j}, thus {t,j} becomes one class. If

the Noc in combination {t,j} is equal to Noc−max, exclude {t,j}.

8. Update the information of the classes.

9. If there is only one “non-excluded” class remaining, stop. Otherwise, set epoch

epoch = epoch + 1 and go to step 3.
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5.4.8 An Example for RGCS

Here we will illustrate using an example to show how RGCS algorithm progresses

step by step. It should be noted that this example just show how RGCS works and

we do not give the results of the final PD network until later. We still look at the

Vowel problem. Now we use RGCS to find a combination set for the single-layer PD

network. In the problem,
√

K =
√

11. The maximum integer which is smaller than

is 3. Thus, we set Noc−max = 3.

The classification error of each class is computed and listed here:

Class 1 2 3 4 5 6 7 8 9 10 11
C.error(%) 2.00 2.39 2.00 2.81 5.43 8.40 4.72 3.95 7.45 2.19 6.84

Epoch 1:

Class 6 has the largest classification error. Combine class 6 with the other classes

respectively and compute the classification error.

{6,1}/12.02 {6,2}/16.48 {6,3}/11.72 {6,4}/5.36 {6,5}/6.03
{6,7}/15.36 {6,8}/11.64 {6,9}/16.44 {6,10}/11.2 {6,11}/14.90

Combination {6,4} has the smallest classification error, fix it. Update the class in-

formation.

Class 1 2 3 {4,6} 5 7 8 9 10 11
C.error(%) 2.00 2.39 2.00 5.36 5.43 4.72 3.95 7.45 2.19 6.84

Epoch 2:

Class 9 has the largest classification error. Combine class 9 with the other non-

excluded classes respectively and compute the classification error.

{9,1}/7.31 {9,2}/13.60 {9,3}/7.17 {9,4,6}/11.01 {9,5}/13.52
{9,7}/9.62 {9,8}/2.59 {9,10}/3.36 {9,11}/7.45

Combination {9,8} has the smallest classification error, fix it. Update the class in-

formation.

Class 1 2 3 {4,6} 5 7 {8,9} 10 11
C.error(%) 2.00 2.39 2.00 5.36 5.43 4.72 2.59 2.19 6.84

Epoch 3:

Class 11 has the largest classification error. Combine class 11 with the other

non-excluded classes respectively and compute the classification error.
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{11,1}/9.09 {11,2}/10.06 {11,3}/7.37 {11,4,6}/3.44
{11,5}/13.50 {11,7}/10.10 {11,8,9}/7.71 {11,10}/10.38

Combination {11,4,6} has the smallest classification error, fix it.For the number of

classes has reach Noc−max, exclude class 4,6,11 and update the class information.

Class 1 2 3 5 7 {8,9} 10 Excluded {4,6,11}
C.error(%) 2.00 2.39 2.00 5.43 4.72 2.59 2.19 3.44

Epoch 4:

Class 5 has the largest classification error. Combine class 5 with the other non-

excluded classes respectively and compute the classification error.

{5,1}/9.64 {5,2}/7.77 {5,3}/13.91
{5,7}/8.32 {5,8,9}/10.89 {5,10}/10.95

Combination {5,2} has the smallest classification error. However E{5,2} > E{5},

class 5 does not combine with the others. Exclude class {5} and update the class

information.

Class 1 2 3 7 {8,9} 10 Excluded {4,6,11} 5
C.error(%) 2.00 2.39 2.00 4.72 2.59 2.19 3.44 5.43

Epoch 5:

Class 7 has the largest classification error. Combine class 7 with the other non-

excluded classes respectively and compute the classification error.

{7,1}/10.53 {7,2}/9.65 {7,3}/8.18 {7,8,9}/2.17 {7,10}/7.19

Combination {7,8,9} has the smallest classification error, fix it. Exclude {7,8,9} and

update the class information.

Class 1 2 3 10 Excluded {4,6,11} 5 {7,8,9}
C.error(%) 2.00 2.39 2.00 2.19 3.44 5.43 2.17

Epoch 6:

Class 2 has the largest classification error. Combine class 2 with the other non-

excluded classes respectively and compute the classification error.

{2,1}/4.15 {2,3}/1.08 {2,10}/6.30

Combination {2,3} has the smallest classification error, fix it. Update the class in-

formation.
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Class 1 {2,3} 10 Excluded {4,6,11} 5 {7,8,9}
C.error(%) 2.00 1.08 2.19 3.44 5.43 2.17

Epoch 7:

Class 10 has the largest classification error. Combine class 10 with the other

non-excluded classes respectively and compute the classification error.

{10,1}/1.25 {10,2,3}/3.99

Combination {10,1} has the smallest classification error, fix it. Update the class

information.

Class {1,10} {2,3} Excluded {4,6,11} 5 {7,8,9}
C.error(%) 1.25 1.08 3.44 5.43 2.17

Epoch 8:

Class {1,10} has the largest classification error. Combine class {1,10} with class

{2,3}. The Noc after combination is 4, which is larger than Noc−max. So cancel the

combination and exclude {1,10}. Update the class information.

Class {2,3} Excluded {4,6,11} 5 {7,8,9} {1,10}
C.error(%) 1.08 3.44 5.43 2.17 1.25

The final combination set is {{4,6,11}, {7,8,9}, {1,10}, {2,3}, {5}}. According to

the analysis in section 5.4.7, the
√

K rule is not suitable for the distributor module.

Therefore, the number of combinations in a combination set can be larger than
√

K.

5.5 Experimental Results for the PDs Using GCS,

SGCS and RGCS

We present the experimental results for three data sets here. For each data set, we

create multi-level PD networks using the GCS algorithm and SGCS algorithm. For

each network, GCS (or SGCS) algorithm is used several times to form a multi-layer

PD network (see the Segmentation problem for detail). For RGCS algorithm is de-

signed for single-layer PD networks, we also set up a single-layer PD network using

RGCS algorithm.Of course, RGCS may also extend to be used in multi-layer PDs,

but here we only restrict it to single-layer PDs.
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A. Segmentation

This data set has 7 outputs. Firstly, we set up the network using GCS algorithm.

The training data and validation data are combined together, then divided into three

new sets - training set 2, validation set 2 and test set 2. The new sets are used by

GCS algorithm searching for good combination sets. The procedure is described as

follows:

1. GCS algorithm is applied to the new sets and find the combination set {{1,3,4,5},
{2,7}, {6}}. The combination set is for the 1st level distributor module.

2. After that, we select the patterns which belong to class 1,3,4,5, then use GCS

to these patterns and find the combination set {{3,4,5}, {1}} for the 2nd level

distributor module.

3. We select the patterns which belong to class 3,4,5, then use GCS to these

patterns and find the combination set {{3,5}, {4}} for the 3rd level distributor

module.

If a combination has 3 or more classes, GCS algorithm will be continuously ap-

plied to such a combination to form next-level distributor modules. Thus, after Step

1, we use GCS to form the second-level distributor module, and after Step 2, we

use GCS to form the third-level distributor module. If a combination has 2 classes,

a non-distributor module will be used to classify the two classes. In this way, we

avoid the appearance of large non-distributor modules and make each module’s task

relatively each to handle.

Then we used the above information set up the network. The network structure

is shown on Figure 5.5. From Figure 5.5, we can see that the PD network is com-

posed with three distributor modules and two non-distributor modules. The first

level distributor module has three outputs, {1,3,4,5}, {2,7} and {6} and the output

{1,3,4,5} connects to the second level distributor module. The second level distribu-

tor module has two outputs, {3,4,5}and {1} and the output {3,4,5} connects to the

third level distributor module. The third level distributor module has two outputs,

{3,5}and {4}. Two non-distributor modules are used in the network to recognize

class 2,7 and class 3,5.
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Figure 5.5: The PD network structure based on GCS for the Segmentation problem

It can be seen that this network has an imbalanced module distribution, which

means some branches have more depth than the other branches. GCS and SGCS is

designed to find a combination set of relatively small classification error, not to find

a combination set with balanced class distribution.

Now we set up the network using SGCS algorithm. The network structure is

shown in Figure 5.6. We can see that the PD network using SGCS resembles that

using GCS. The second level distributor module and the third level distributor mod-

ule are the same as that using GCS. The first distributor module using SGCS has

small difference from that using GCS. The first distributor module using SGCS

has the outputs {1,3,4,5}, {6,7} and {2}, while that using GCS has the outputs

{1,3,4,5}, {2,7} and {6}.

Then we construct the single-layer PD network using RGCS algorithm. In the

problem,
√

K =
√

7. The maximum integer which is smaller than is 2. Thus, we

set Noc−max = 2. The network structure is shown on Figure 5.7. The PD net-

work is composed with one distributor module and three non-distributor modules.

The distributor module has four outputs, {1,4}, {2,7}, {3,5} and {6}. Three non-

distributor modules are used to recognize {1,4}, {2,7} and {3,5} respectively.
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Figure 5.6: The PD network structure based on SGCS for the Segmentation problem

Figure 5.7: The PD network structure based on RGCS for the Segmentation problem
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Table 5.2: Results using GCS for the Segmentation problem

Network Training time Hidden Indep. C.error
(s) Units Param. (%)

188.5 37.85 814 0.0260
The 1st (in parallel)
Level 314.6

(in series)
5.1 1.95 77 1.2766

Distributor The 2nd (in parallel)
Module Level 9.95

(in series)
41.1 33.9 716 2.0528

The 3rd (in parallel)
Level 75.7

(in series)
188.5 92.05 2050 3.8821

Overall (in parallel)
Network 432.85

(in series)

Table 5.3: Results using SGCS for the Segmentation problem

Network Training time Hidden Indep. C.error
(s) Units Param. (%)

272.3 61.45 1286 0.01733
The 1st (in parallel)
Level 387.4

(in series)
5.1 1.95 77 1.2766

Distributor The 2nd (in parallel)
Module Level 9.95

(in series)
41.1 33.9 716 2.0528

The 3rd (in parallel)
Level 75.7

(in series)
272.3 160.45 3418 3.8735

Overall (in parallel)
Network 523.9

(in series)
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Table 5.4: Results using RGCS for the Segmentation problem

Network Training time Hidden Indep. C.error
(s) Units Param. (%)

261.5 62.15 1319 1.0225
Distributor Module (in parallel)

{{1,4},{2,7},{3,5},{6}} 589.5
(in series)

261.5 140.65 3003 3.4662
Overall (in parallel)
Network 875.35

(in series)

Table 5.5: Results of different methods for the Segmentation problem

Hidden Indep. C.error C. error
Network Units Param. (%) reduction

vs. OP(%)
Ordinary method 29 887 5.7366 -

Output Parallelism 152.1 3175 5.1820 -
Arbitrary single-layer PD 128.9 2768 4.6101 0.5719

(in Chapter 3)
Arbitrary balanced 2-layer PD 165.8 3506 4.6447 0.5373

(in Chapter 4)
Multi-layer PD using GCS 92.05 2050 3.8821 1.2999
Multi-layer PD using SGCS 160.45 3418 3.8735 1.3085
Single-layer PD using RGCS 140.65 3003 3.4922 1.6898
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Table 5.2 to Table 5.4 shows the experimental results of the multi-layer PD net-

works using GCS algorithm and SGCS algorithm and the experimental results of

the single-layer PD network using the IGCS algorithm. For comparison, we list the

classification errors of these networks, and experimental results in Chapter 3 and

Chapter 4 for this problem on Table 5.5.

From Table 5.5, it can be seen that the PD networks, especially the PDs using

GCS, SGCS and RGCS algorithms, have much better performance compared with

the OP network and ordinary network. It also shows that the networks using the

Greedy based combination algorithms have lower classification error than arbitrarily

selected PD networks. It is an inspiring signal. It means our Greedy based combi-

nation algorithms indeed improved the network’s performance. In the next chapter,

we will compare the performance of the PD networks using different combination

algorithms.

B. Vowel

We set up the network using GCS algorithm. The network structure is shown

on Figure 5.8. The network using SGCS algorithm is the same as that using GCS

algorithm. From Figure 5.8, we can see that the PD network is composed with

six distributor modules and four non-distributor modules. The 1st level distributor

module has two outputs, {4,5,6,7,8,9,11} and {1,2,3,10}. The output {4,5,6,7,8,9,11}
connects to the 2nd level distributor module 1 and the output {1,2,3,10} connects

to the 2nd level distributor module 2. The 2nd level distributor module 1 has two

outputs, {4,5,6,11}and {7,8,9}. The output {4,5,6,11} connects to the 3rd level

distributor module 1 and the output {7,8,9} connects to the 3rd level distributor

module 2. The 2nd level distributor module 2 has two outputs, 1,10and 2,3 and the

outputs connects to two non-distributor modules. The 3rd level distributor module 1

has two outputs, {5,6,11}and {4} and the outputs {5,6,11} connects to the 4th level

distributor module. The 3rd level distributor module 2 has two outputs, {7,8}and

{9}. The 4th level distributor module has two outputs, {6,11}and {5}.

Now we set up the single-layer PD network using RGCS algorithm. In the

problem,
√

K =
√

11. we set Noc−max = 3. The network structure is shown on
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Figure 5.8: The PD network structure based on GCS and SGCS for the Vowel
problem

Figure 5.9: The PD network using RGCS for the Vowel problem
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Table 5.6: Results using GCS and SGCS for the Vowel problem

Network Training time Hidden Indep. C.error
(s) Units Param. (%)
66.9 35.95 453.4 1.0324

The 1st (in parallel)
Level 121.15

(in series)
46.7 29.1 371.2 1.4458

The 2nd (in parallel)
Level 1 87.4

(in series)
18.25 41.4 518.8 1.8519

Distributor The 2nd (in parallel)
Level 2 32.75

(in series)
6.1 20.45 267.4 6.6484

The 3rd (in parallel)
Module Level 1 11.25

(in series)
7.65 29.4 374.8 3.7333

The 3rd (in parallel)
Level 2 15.05

(in series)
15.15 27.7 354.4 7.5758

The 4th (in parallel)
Level 28.55

(in series)
66.9 332.85 4137.2 11.6194

Overall (in parallel)
Network 166.9

(in series)



5.5. Experimental Results for the PDs Using GCS, SGCS and RGCS 107

Table 5.7: Results using RGCS for the Vowel problem

Network Training time Hidden Indep. C.error
(s) Units Param. (%)

94.25 87.7 1107.4 5.8502
Distributor Module (in parallel)

{4,6,11},{7,8,9},{1,10},{2,3},{5} 313.95
(in series)

94.25 155.8 2045.6 12.2672
Overall (in parallel)
Network 471.3

(in series)

Table 5.8: Results of different methods for the Vowel problem

Hidden Indep. C.error C. error
Network Units Param. (%) reduction

vs. OP(%)
Ordinary method 23.6 640.2 37.1660 -

Output Parallelism 184.4 2333.8 25.5466 -
Arbitrary single-layer PD 229.4 2955.8 18.7045 6.8421

(in Chapter 3)
Arbitrary balanced 2-layer PD 162.25 2134 16.9231 8.6235

(in Chapter 4)
Arbitrary imbalanced 2-layer PD 145.2 1918.4 17.6316 7.915

(in Chapter 4)
Multi-layer PD using GCS 332.85 4137.2 11.6194 13.9272
Multi-layer PD using SGCS 332.85 4137.2 11.6194 13.9272
Single-layer PD using RGCS 155.8 2045.6 12.2672 13.2794
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Figure 5.9. The PD network is composed with one distributor module and four non-

distributor modules. The distributor module has five outputs, {4,6,11}, {7,8,9}, {1,

10}, {2,3} and {5}. Because the output {5} has only one class, we need not use

a non-distributor module for combination {5}. Thus, four non-distributor modules

are used to recognize {4,6,11}, {7,8,9}, {1, 10} and {2,3} respectively.

The experimental results for the multi-layer PD network using GCS and SGCS

algorithms for the Vowel data are listed in Table 5.6 and the experimental results

for the single-layer PD network using RGCS algorithm are show on Table 5.7.

For comparison, we list the classification errors of these networks, and exper-

imental results in Chapter 3 and Chapter 4 for this problem on Table 5.8. From

Table 5.8, it can be seen that the PD networks, especially the PDs using GCS, SGCS

and RGCS algorithms, have much better performance compared with the OP net-

work and ordinary network. It also shows that the networks using the Greedy based

combination algorithms have lower classification error than arbitrarily selected PD

networks. It means our Greedy based combination algorithms indeed improved the

network’s performance.

C. Pen-Based Recognition

Now we set up the network using GCS algorithm SGCS algorithm. The network

using SGCS algorithm is the same as that using GCS algorithm. The network struc-

ture is shown on Figure 5.10. From Figure 5.10, we can see that the PD network

is composed with two distributor modules and two non-distributor modules. The

1st level distributor module has seven outputs, {1},{3}, {4}, {5}, {8}, {7,9} and

{2,6,10}. The output {2,6,10} connects to the 2nd level distributor module and the

output 7,9 connects to Module 1. For the other outputs of the 1st level distributor

module only has one class, no modules is needed to classify them. The 2nd level

distributor module has two outputs, {6,10}and {2} and the output {6,10} connects

to Module 2.

In the problem,
√

K =
√

10. The maximum integer which is not smaller than is

3, so we set Noc−max = 3. The network is set up using the RGCS algorithm. The
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Figure 5.10: The PD network structure using GCS and SGCS algorithm for the
Pen-Based Recognition problem

Figure 5.11: The PD network structure using RGCS algorithm for the Pen-Based
Recognition problem
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Table 5.9: Results using GCS and SGCS for the Pen-based recognition problem

Network Training time Hidden Indep. C.error
(s) Units Param. (%)

976.7 178.65 3334.7 0.7951
The 1st (in parallel)
Level 3685.35

Distributor (in series)
Module 186.2 49.1 917.8 0.4430

The 2nd (in parallel)
Level 358.85

(in series)
976.7 413.35 7661.3 1.0058

Overall (in parallel)
Network 4157.55

(in series)

Table 5.10: Results using RGCS for the Pen-Based Recognition problem problem

Network Training time Hidden Indep. C.error
(s) Units Param. (%)

976.7 178.65 3334.7 0.7951
Distributor Module (in parallel)

{1},{3},{4},{5},{8},{7,9},{2,6,10} 3685.35
(in series)

976.7 299.65 5597.7 1.0592
Overall (in parallel)
Network 4024.3

(in series)

network structure is shown on Figure 5.11. The PD network is composed with one

distributor module and two non-distributor modules. The distributor module has

seven outputs, {1}, {3}, {4}, {5}, {8}, {7,9} and {2,6,10}. Two non-distributor

modules are used to recognize {7,9} and {2,6,10} respectively.

The experimental results of the PD network based on the GCS or SGCS algo-

rithm for the Pen-based recognition data are shown in Table 5.9 and the results for

the IGCS algorithm are listed in Table 5.10.

For comparison, we list the classification errors of the above two networks, to-
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Table 5.11: Results of different methods for the Pen-Based Recognition problem

Hidden Indep. C.error C. error
Network Units Param. (%) reduction

vs. OP(%)
Ordinary method 42.4 1314.8 4.9493 -

Output Parallelism 239.05 4472.9 5.0560 -
Arbitrary single-layer PD 276.79 5220.22 5.0961 -0.0401

(in Chapter 4)
Arbitrary balanced 2-layer PD 359.24 6738.32 1.8490 3.207

(in Chapter 4)
Arbitrary imbalanced 2-layer PD 1331.14 6215.52 1.4541 3.6019

(in Chapter 4)
Multi-layer PD using GCS 413.35 7661.3 1.0085 4.0475
Multi-layer PD using SGCS 413.35 7661.3 1.0085 4.0475
Single-layer PD using RGCS 299.65 5597.7 1.0592 3.9968

gether with non-task decomposition method (ordinary method), OP network and a

PD network for a randomly selected combination set in Table 5.11. The table shows

that using GCS, SGCS and RGCS algorithms, the classification errors for this prob-

lem is reduced a lot. It shows that our Greedy based combination algorithm can

indeed improved the network’s performance.

5.6 Discussion

In this chapter, we discussed three greedy based combination selection algorithms.

There is a question whether the
√

K rule can be combined to GCS or SGCS algo-

rithm to further improve the performance of the whole network, i.e. we may restrict

the combination set found by GCS or SGCS having
√

K elements. The answer is

no. Now we explain why. When deducing the
√

K rule, we assume the classifica-

tion error is proportional to the number of outputs (for the distributor module) or

classes (for the non-distributor modules). In actual problems, the relation between

them often deviates from the above assumption. The classification error of the dis-

tributor modules is also related to the combination set itself. The classification

error of a non-distributor module is related to classes in that module, too. For the

non-distributor modules, because we have no information of classes and don’t know
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the classification error, that assumption is acceptable. While for the distributor

module, it is different. When GCS or SGCS is used to find a suitable combination

set, in each epoch, the classification errors of the combinations is known. Thus,

we can estimate the classification error of the temporary combination set according

to Theorem 5.1. In other words, we do not need the above assumption that the

classification error is proportional to the number of outputs. The
√

K rule is not

suitable for the distributor module. Therefore, we do not restrict the combination

set found by GCS or SGCS having
√

K elements.



Chapter 6

FLD and GA Based Class
Combination Methods

6.1 Introduction

In the last chapter, several greedy combination algorithms are proposed to find suit-

able combination sets for the distributor modules. In this chapter, we continue to

discuss class combination in the distributor modules. Two other combination meth-

ods will be introduced here. The first one is Cross-talk Table based combination

selection for a distributor module (in short, CTCS), which finds a suitable combi-

nation set using the cross-talk table based on Fisher’s Linear Discriminant method.

The second one is called Genetic Algorithm based Combination Selection for a dis-

tributor module (in short, GACS), which searches an optimal or near-optimal com-

bination set through an evolutionary method.

Both CTCS and GACS have used the
√

K rule-of-thumb. In Section 5.4.6, we

have deduced this rule from theoretical analysis. In this chapter, we show some ex-

perimental results to further validate the rule. These combination methods (includ-

ing the methods introduced in the last chapter) have advantages and disadvantages.

After we introduce all the combination methods, we will compare these combination

methods in detail.

113
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6.2 Cross-talk Based Combination Selection (CTCS)

Algorithm

The basic idea of this method is to find and combine classes which are hard to dis-

criminate in the feature space.

Normally, the feature space in classification problems has a high dimension and

the problems are often very complicated. The distribution of data in the feature

space is also usually biased. Thus, it is hard to say which classes are easy to divide

and which classes are hard to discriminate directly. Therefore, we use Fisher’s linear

discriminant (FLD) method to decide the discrimination capacity between classes

(Duda, et al., 2000; Friedman, 1989; Mika, et al. 1999). Now we introduce FLD first.

FLD is a widely used feature extraction technique in linear pattern recognition.

For two-class problems, it projects a d -dimensional feature space into a one di-

mensional feature space, where d is the number of features, by the transformation

function yi = wtxi.

Let a set of N training patterns be X, where xi ∈ Rd, i = 1, 2, . . . , N . These

patterns belong to two classes X1 and X2 (Xi has Ni patterns). Yi is the projection of

Class Xi. FLD consists of finding a direction vector v ∈ Rd such that the projections

of the means mi, i = 1, 2 onto the direction v have the largest distance relative to the

sum of the projected within-class variance. Mathematically, FLD can be described

as follows.

Let mi be the d -dimensional sample mean given by

mi =
1

Ni

∑
x∈Xi

x . (6.1)

Then the sample mean for the projected points is given by

m̃i =
1

Ni

∑
x∈Xi

vtx = vtmi . (6.2)

It can be seen that m̃i is simply the projection of mi along v.Define the scatter for

the projected samples labeled i by

s̃i =
∑
y∈Yi

(y − m̃i) , (6.3)
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where i = 1, 2. FLD employs that linear function vtx for which the fisher criterion

function

J(v) =
vtSBv

vtSwv
(6.4)

is maximized, where SB =
∑2

i=1 ni(mi−m)(mi+m) is the between-class scatter and

SB =
∑2

i=1 Si is the within-class scatter. The optimal projection can be computed

by solving the eigenvector problem

(SB − λiSw)vi = 0 , (6.5)

where λi is the non-zero eigenvalue and vi is the corresponding eigenvector. The

weight vector v which maximizes J(v) can be solved as:

v = S−1
w (m1 −m2) . (6.6)

Cross-talk is originally an English translation of the Chinese term Xiangsheng,

meaning a traditional bantering-style dialogue between two comedians rich in puns

and allusions. Similarly, the data in the cross-talk table here list the relationship

between two classes. To generate the cross-talk table, firstly, we organize all the

patterns into k(k − 1)/2 groups (here k is the number of classes) and each group

has the patterns from two classes. Then FLD is applied to each group and the

maximum J(v) is recorded in the cross-talk table. We know, the larger J(v), the

easier to discriminate the two classes. After the cross-talk table is formed, we will

choose and combine those classes that have relatively smaller values from each other

in the cross-talk table. J(v) is the Fisher criterion function between two classes

and the relatively smaller J(v) implies the two classes are hard to differentiate. If

we put the two classes into different combinations, the corresponding distributor

module is likely to have relatively large classification error. Thus, we should group

them into the same combination. For example, Table 1 shows the cross-talk table

for the Vowel problem. See the table 1. The number 2.06 in the column of class 1

and the row of class 2 means that the maximum J(v) between class 1 and class 2 is

2.06, similarity for others.

After the cross-talk table is generated, Cross-talk based Combination Selection

(CTCS) algorithm is applied to automatically select the combination set from the
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Table 6.1: The cross-talk table for the Vowel problem

class 1 2 3 4 5 6 7 8 9 10 11
1 0 2.06 5.15 8.85 12.15 6.08 6.98 14.68 4.85 3.47 6.15
2 2.06 0 1.70 5.17 6.81 3.08 5.35 14.85 4.91 3.51 3.77
3 5.15 1.70 0 2.75 8.02 3.65 5.46 22.42 8.98 9.08 4.55
4 8.85 5.17 2.75 0 3.36 1.83 4.33 15.11 8.96 15.11 4.59
5 12.15 6.81 8.02 3.36 0 0.78 1.43 9.47 10.72 16.75 5.55
6 6.08 3.08 3.65 1.83 0.78 0 2.18 12.45 7.38 12.97 1.47
7 6.98 5.35 5.46 4.33 1.43 2.18 0 4.22 4.37 9.99 2.12
8 14.68 14.85 22.42 15.11 9.47 12.45 4.22 0 1.65 4.20 9.83
9 4.85 4.91 8.98 8.96 10.72 7.38 4.37 1.65 0 2.35 2.58
10 3.47 3.51 9.08 15.11 16.75 12.97 9.99 4.20 2.35 0 4.70
11 6.15 3.77 4.55 4.59 5.55 1.47 2.12 9.83 2.58 4.70 0

table. In CTCS, the classes which are available for selection are marked as “non-

excluded”. In each step, the “non-excluded” classes are listed. After that, CTCT

selects the class with the minimum J(v) and combines it with its counterpart in

J(v). For example, class 4 is selected with (4,6)/1.83. Then class 4 and class 6

will be combined. Of course, the combination is subject to some restriction. We

have discussed in the last chapter that the large non-distributor modules often have

relatively large classification error. The existence of the large non-distributor mod-

ules in a PD network will downgrade the whole network’s performance. As we did

in Section 5.4.6, we need to restrict the number of classes in a combination. Thus,

Noc−max, the maximum number of classes in a combination, is still used in our CTCS

algorithm.

The CTCS algorithm is described as follows:

1. Set all the classes as “non-excluded”. Find the minimum non-zero value in

the table, mark it as Tmin
1.

2. Set epoch = 1.

3. For a single class with the sign “non-excluded”, search its column for the

class with the minimum value in all the other “non-excluded” classes (except

1For example, in Table 6.1, Tmin = 0.78 ( between classes 5 and 6).
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0). Record it as (A,B)/value (here A is called primary class and B is called

assistant class)2. If there are no other “non-excluded” classes left, which means

all other classes are assigned, set this class as a combination, mark this class

as “excluded” and quit.

4. Repeat Step 3 for all the other “non-excluded” classes.

5. List the results in Step 3 and 4 3.

6. Compare the values in the list with 10Tmin. If some value is greater than

10Tmin, which means it is relatively easy to discriminate the corresponding

class (or primary class) with other classes, set this class as a combination.

Then set this class as “excluded” and remove it from the list.

7. Find pairs in the above list, combine them together respectively 4. Go to Step

9.

8. Find the primary class with the minimum value in the list. Combine this class

with the assistant class or the combination which has the assistant class.

9. Update the combination information. If a combination has Noc−max elements,

mark all the elements in the combination as “excluded”. If there are no “non-

excluded” single classes left, quit. Otherwise, set epoch epoch = epoch+1 and

go to Step 3.

In the above algorithm, the single class in Step 3 means that class does not be-

long to any combination. Now we give some explanation to Step 6. For example,

in Table 6.1, if class 1, 2, 4, 5, 6, 7, 10, 11 are marked as “excluded”, then the list

is : (3,9)/9.08, (8, 9)/1.65, (9,8)/1.65, (10,9)/2.35. For class 3, (3,9)/9.08 is greater

than . Thus, we set class 3 as combination {3}, mark it as “excluded” and remove

it from the list.

2For example, in Table 1, assume all the classes are signed “non-excluded”. We search the
column of class 1 and find that class 2 with the value 2.06 is the smallest, mark as (1,2)/2.06.

3For example, in Table 6.1, if all the classes are signed “non-excluded”, the results are listed as
follows: (1,2)/2.06, (2,3)/1.70, (3,2)/1.70, (4,6)/1.83, (5,6)/0.78, (6,5)/0.78, (7,5)/1.43, (8,9)/1.65,
(9,8)/1.65, (10,9)/2.35, (11,6)/1.37.

4In the example in footnote 3, (2,3)/1.70 and (3,2)/1.70, (5,6)/0.78 and (6,5)/0.78, (8,9)/1.65
and (9,8)/1.65 are pairs. Thus, combine {2,3}, {6,5} and {8,9} respectively.
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It should be mentioned that after each epoch, the Fisher criterion function J(v)

for each class pair will not change. For that J(v) is generated only using the patterns

of the two classes and the patterns in other classes is neglected in this course. Thus,

combining some classes will not affect the J(v) among the other classes.

It should be mentioned that we do not re-compute J(v) after classes are com-

bined. For example, after classes 2 and 3 are combined into {2,3}, we do not compute

J(v) between class 1 and new class {2,3} and still use the old cross-talk table for

the next step. The reason is explained as follows.

Using CTCS algorithm, we want to find a combination set whose corresponding

distributor module has low classification rate. In other words, the wrongly classified

patterns by the distributor module are relatively small. Using CTCS, we select the

patterns of classes A and B from a multi-class problem and compute J(v). These

patterns from classes A and B form a new 2-class problem. The presupposition for

CTCS is that if classes A and B are hard to classify, they should be put together;

adding other patterns to the 2-class problem formed by classes A and B will not

help to classify the patterns in classes A and B. As we have discussed in Section

(5.3), adding unrelated patterns (not belonging classes A and B) normally has neg-

ative effect for classifying the patterns between classes A and B. Assume class B

is combined with another class C. However, the patterns of class C do not offer

useful information to help classify the patterns between classes A and B. If classes

A and B are hard to discriminate (or the number of wrongly-classified patterns be-

tween A and B is large) before B are combined to C, the wrongly-classified patterns

will not reduce after combine B with C. For this reason, we do not recomputed J(v).

An Example for CTCS algorithm:

The descriptions of CTCS algorithm may not be obvious for readers. Here we

illustrate with an example to show how CTCS algorithm progresses step by step. It

should be noted that this example just show how CTCS works and we don’t give

the results of the final PD network. We set Noc−max as 3, for K = 11 in this problem.

Epoch 1:
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List the minimum value J(v) for each single “non-excluded” class with other

“non-excluded” classes:

(1,2)/2.06 (2,3)/1.70 (3,2)/1.70 (4,6)/1.83 (5,6)/0.78 (6,5)/0.78
(7,5)/1.43 (8,9)/1.65 (9,8)/1.65 (10,9)/2.35 (11,6)/1.47

In the list, there are three pairs: (2,3)and (3,2), (5,6) and (6,5), (8,9) and (9,8).

Combine them together respectively. Thus, we have {2,3}, {5,6}, {8,9}.

Epoch 2:

List the minimum value J(v) for each single “non-excluded” class with other

“non-excluded” classes:

(1,2)/2.06 (4,6)/1.83 (7,5)/1.43 (10,9)/2.35 (11,6)/1.47

In the list, (7,5) has the minimum value 1.43. Combine class 7 with combina-

tion {5,6}. Thus, {2,3}, {5,6,7}, {8,9}. Because combination {5,6,7} has Noc−max

elements, mark class 5, 6, 7 as “excluded”.

Epoch 3:

List the minimum value J(v) for each single “non-excluded” class with other

“non-excluded” classes:

(1,2)/2.06 (4,3)/2.75 (10,9)/2.35 (11,9)/2.58

In the list, (1,2) has the minimum value 2.06. Combine class 1 with combina-

tion {2,3}. Thus, {1,2,3}, {5,6,7}, {8,9}. Because combination {1,2,3} has Noc−max

elements, mark class 1,2,3 as “excluded”.

Epoch 4:

List the minimum value J(v) for each single “non-excluded” class with other

“non-excluded” classes:

(4,10)/3.51 (10,9)/2.35 (11,9)/2.58

In the list, (10,9) has the minimum value 2.35. Combine class 1 with combi-

nation {11,9}. Thus, {1,2,3}, {5,6,7}, {8,9,10}. Because combination {8,9,10} has

Noc−max elements, mark class 8,9,10 as “excluded”.
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Epoch 5:

List the minimum value J(v) for each single “non-excluded” class with other

“non-excluded” classes:

(4,11)/4.59 (11,4)/4.59

In the list, (4,11) is a pair. Combine them. Thus, {1,2,3}, {5,6,7}, {8,9,10},
{4,11}. Therefore, no single classes which are marked as “non-excluded” left. The

final combination set is {1,2,3}, {5,6,7}, {8,9,10}, {4,11}.

6.3 Genetic Algorithm Based Combination Selec-

tion (GACS) Method

The basic idea of this method is to find an optimal or near-optimal combination set

through evolution.

Genetic Algorithms (GAs) are based on the evolutionary ideas of natural selec-

tion and genetics. They are adaptive heuristic search algorithm and represent an

intelligent exploitation of a random search used for solving optimization problems

(Michalewicz, 1996; Mitchell, 1996; Guan and Zhu, 2003 and 2004). Although ran-

domized, GAs are by no means random. Actually, they direct the search into the

region of better performance within the search space through historical information.

The fundamental techniques of the GAs are designed to simulate processes in evo-

lutionary biology, specially those following the principles first proposed by Charles

Darwin of ”survival of the fittest”. We know in nature, competition among indi-

viduals for scarce resources results in that the fittest individuals dominate over the

weaker ones.

Now we introduce our Genetic Algorithm based combination selection (GACS)

algorithm for the distributor module. Firstly, we define our chromosome encoding

used for evolution. A binary string of specific length is often used to encode a

chromosome in canonical genetic algorithms, but it is not suitable in our problems.

Thus, we define chromosome according to the following principles. A chromosome
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consists of a sequence of combination numbers, wherein each class is encoded with

its combination number. The length of a chromosome is equal to the number of

classes. Assume chromosome encoding always starts with the smallest class number

and increases as follows. For example, 122333 is a chromosome for a 6-class problem.

“1” in the first place means class 1 belongs to combination 1. Similarly, number

“3” in the fourth place means class 4 belongs to combination 3. The correspond-

ing combination set of this chromosome is {{1}, {2,3}, {4,5,6}}. There is a need

for normalization, however. Let us look at another example, chromosome 233111.

It is obvious that chromosome 233111 and chromosome 122333 represent the same

combination set (though the ordering differs). Therefore, chromosome 233111 can

be normalized as 122333.

For convenience, we convert all the chromosomes into a form like 122333. This

process is called standardizing the chromosomes. The procedure of standardizing a

chromosome is shown as follows:

1. Add a minus sign “-” to all the places. For example, a place with number “3”

now becomes “-3”. For example, chromosome 233111 becomes (-2)(-3)(-3)(-

1)(-1)(-1).

2. Set t = 1. Find the number in the first place and find all the places with the

same number as the first one. Change the numbers in the first place and all

the matching places into “t”. In the above example, chromosome (-2)(-3)(-

3)(-1)(-1)(-1) becomes 1(-3)(-3)(-1)(-1)(-1).

3. Set t = t + 1. Scanning from left to right, find the leftmost place whose

number is negative and find all the following places whose number is the same.

Change the numbers in these places into “t”. In the above example, when t=2,

chromosome 1(-3)(-3)(-1)(-1)(-1) becomes 122(-1)(-1)(-1).

4. Repeat Step 3 until all the places have positive numbers inside.

Secondly, we create an initial population of chromosomes. After generating the

initial population, each chromosome is evaluated and assigned a fitness value. Here

we use a simple neural network 5. For the evaluation and use the classification error

5Here the simple neural network means an ordinary construction backpropagation neural net-
work, no task decomposition methods are applied in this network.
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f of the validation data set to calculate the fitness:

fitness = 2− f

favg

, (6.7)

where favg is the average of classification errors based on the validation data set for

all the chromosomes in the population. f is also called evaluation value. If 2− f
favg

is smaller than 0, set fitness = 0.

The execution of our genetic algorithm can be viewed as a two-stage process. It

starts with the current population. Then selection is applied to the current popu-

lation to generate an intermediate population. After that, mutation and crossover

are applied to the intermediate population to create the next population. We use

“stochastic universal sampling” to form the intermediate population (Baker, 1987).

Assume that the population is laid out in random order as in a pie graph in which

each individual is assigned space on the pie graph in proportion to fitness. Next

an outer roulette wheel is placed around the pie with N equally spaced pointers

(N is the number of the population). A single spin of the roulette wheel will now

simultaneously pick all N members of the intermediate population.

After the construction of the intermediate population, crossover and mutation

are used to generate the next population. Crossover is applied to randomly paired

chromosomes with a probability pc. It must be noted that pc can be also set as other

values. Consider two chromosomes: 112233 and 122123. The random crossover

point is chosen, for example, after the 4th place. Then the numbers in the 5th and

6th places are exchanged and new chromosomes are formed. Here the new chro-

mosomes are 112223 and 122133. After crossover, mutation is applied to random

chromosomes with a probability pm. After a chromosome is selected for mutation,

a place is randomly selected for mutation and the number in that place is randomly

chosen. After the crossover and mutation is complete, standardize the chromosomes.

Then the next population is evaluated and becomes the current population. Then

the above process is repeated. In our experiments, pc and pm should not be over

0.5. If pc and pm are too large, the good chromosomes from previous generation can

be hardly kept and the number of computations to find the best chromosome will

increase. We set pc = 0.2 and pm = 0.3. It should be noted that the values of these

parameters can be changed.
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Like that in CTCS and RGCS algorithm, Noc−max, the maximum number of

classes in a combination is still used in our GACS algorithm to avoiding the ap-

pearance of large non-distributor modules. Using this parameter, we kick out some

chromosomes directly. For a 6-class problem, if we choose Noc−max = 3, then chro-

mosome 121112 will be eliminated, because combination 1,3,4,5 has four classes.

6.4 Experimental Results for the PDs Using CTCS

and GACS Algorithms

We present the experimental results for three data sets here. For each data set,

single-layer PD networks are created using the CTCS algorithm and GACS method.

A. Vowel

In this problem, the number of classes is 11. As that in the last chapter, we

set Noc−max = 3 for this problem. Using CTCS, The PD network is composed with

one distributor module and four non-distributor modules. The distributor module

has four outputs, {1,2,3}, {5,6,7}, {8,9,10} and {4,11}. The experimental results of

the single-layer PD network using CTCS algorithm for the Vowel data are listed in

Table 6.2. We can see that the overall classification error of the network is 15.3846%

for CTCS.

For the GACS algorithm, same as that in CTCS algorithm, we set Noc−max = 3.

The population number is 20. Due to long computation time, only 40 generations

were bred in our experiments. We identified the best chromosome 12234355513,

which appeared in Generation 23. The PD network is composed with one distribu-

tor module and four non-distributor modules, which is the same as that using RGCS.

The distributor module has five outputs, {4,6,11}, {7,8,9}, {1, 10}, {2,3} and {5}.
Four non-distributor modules are used to recognize {4,6,11}, {7,8,9}, {1,10} and

{2,3} respectively. The experimental results are shown in Table 6.3. We can see

that the overall classification error of the network is 12.2672% for GACS.

B. Segmentation
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Table 6.2: Results using CTCS and GACS for the Vowel problem

Method Network Training time Hidden Indep. C.error
(s) Units Param. (%)

73.75 67.65 855.8 8.0567
Distributor (in parallel)

Module 190.5
CTCS (in series)

73.75 246.55 3123.6 15.3846
Overall (in parallel)
Network 277.95

(in series)
94.25 87.7 1107.4 5.8502

Distributor (in parallel)
Module 313.95

GACS (in series)
94.25 155.8 2045.6 12.2672

Overall (in parallel)
Network 471.3

(in series)

Table 6.3: The cross-talk table for the Segmentation problem

Class 1 2 3 4 5 6 7
1 0 232.9726 9.9478 17.6629 8.8757 40.3356 53.9114
2 232.9726 0 72.5262 17.1233 53.0981 42.9524 518.7841
3 9.9478 72.5262 0 6.7673 1.6476 18.5474 40.6585
4 17.6629 17.1233 6.7673 0 3.0618 4.4578 54.7033
5 8.8757 53.0981 1.6476 3.0618 0 16.3379 29.0228
6 40.3356 42.9524 18.5474 4.4578 16.3379 0 60.9468
7 53.9114 518.7841 40.6585 54.7033 29.0228 60.9468 0
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Table 6.4: Results using CTCS and GACS for the Segmenation problem

Method Network Training time Hidden Indep. C.error
(s) Units Param. (%)

596.7 142.1 2937 2.0017
Distributor (in parallel)

Module 1265.05
CTCS (in series)

596.7 172.9 3648 4.3934
Overall (in parallel)
Network 1294.15

(in series)
261.5 62.15 1433 1.0225

Distributor (in parallel)
Module 589.5

GACS (in series)
261.5 190.65 3003 3.4662

Overall (in parallel)
Network 875.35

(in series)

Table 6.3 shows the cross-talk table for the Segmentation problem. In the prob-

lem, the number of classes is 7. Thus, we set Noc−max = 2. We set up the PD

network using CTCS algorithm. The network is composed with one distributor

module and two non-distributor module. The distributor module has five outputs,

{3,5},{4,6},{1},{2} and {7}. The non-distributor modules are used to recognize

{3,5},{4,6}.

Now we build the network using GACS method. We set Noc−max = 2, which is

the same as that using CTCS algorithm. The population number is 20. Due to long

computation time, only 40 generations were bred in our experiments. We identified

the best chromosome 1231342, which appears at Generation 13. The PD network is

composed with one distributor module and three non-distributor modules. The dis-

tributor module has four outputs, {1,4},{2,7},{3,5} and {6}. Three non-distributor

modules are used to recognize {1,4},{2,7} and {3,5} respectively.

Table 6.4 shows the experimental results of the single-layer PD network using the

CTCS and GACS algorithm for this data. We can see that the overall classification
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Table 6.5: The cross-talk table for the Pen-Based Recognition problem

class 1 2 3 4 5 6 7 8 9 10
1 0 30.91 59.15 73.45 22.12 13.70 18.57 39.74 5.99 27.61
2 30.91 0 7.07 10.88 18.75 10.49 22.73 8.23 17.77 6.68
3 59.15 7.07 0 83.34 37.33 86.04 45.81 10.73 31.77 39.58
4 73.45 10.88 83.34 0 35.39 9.46 48.03 11.60 22.43 6.80
5 22.12 18.75 37.33 35.39 0 19.07 13.67 22.31 38.44 9.93
6 13.70 10.49 86.04 9.46 19.07 0 15.99 10.82 5.45 3.80
7 18.57 22.73 45.81 48.03 13.67 15.99 0 34.88 15.25 38.59
8 39.74 8.23 10.73 11.60 22.31 10.82 34.88 0 12.49 15.21
9 5.99 17.77 31.77 22.43 38.44 5.45 15.25 12.49 0 11.46
10 27.61 6.68 39.58 6.80 9.93 3.80 38.59 15.21 11.46 0

error of the network is 4.3934% for CTCS and 3.4662% for GACS.

C. Pen-Based Recognition

Now we use the CTCS to set up the network. The cross-talk table for this prob-

lem is shown on Table 6.5. In the problem, for the number of classes is 10, we set

Noc−max = 3. The PD network is composed with one distributor module and three

non-distributor modules. The distributor module has four outputs, {1,5,7}, {2,3,8},
{6,9,10} and {4}. Three non-distributor modules are used to recognize {1,5,7},
{2,3,8} and {6,9,10} respectively.

Now we construct the network using GACS method. Same as that in CTCS

algorithm, we set Noc−max = 3. The population number is 20. Due to long com-

putation time, only 40 generations were bred in our experiments. We identified

the best chromosome 1222345441, which appears at Generation 19. The PD net-

work is composed with one distributor module and four non-distributor modules.

The distributor module has four outputs, {2,3,4}, {6,8,9}, {1,10} and {5,7}. Four

non-distributor modules are used to recognize {2,3,4}, {6,8,9}, {1,10} and {5,7}
respectively.

Table 6.6 shows the experimental results of the single-layer PD network using the

CTCS and GACS algorithm for this data. We can see that the overall classification

error of the network is 1.1633% for CTCS and 1.2060% for GACS.
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Table 6.6: Results using CTCS and GACS for the Pen-Based Recognition problem

Method Network Training time Hidden Indep. C.error
(s) Units Param. (%)
667 78.1 1469.8 0.6990

Distributor (in parallel)
Module 1998.75

CTCS (in series)
667 273.2 5155.6 1.1633

Overall (in parallel)
Network 2737.9

(in series)
1089.5 99.7 1862.6 0.5630

Distributor (in parallel)
Module 2911.15

GACS (in series)
1089.5 335 6268 1.2060

Overall (in parallel)
Network 3607.75

(in series)

6.5 Validation of the
√

K Rule-of-thumb

In Section 5.46 of the last chapter, we deduced the
√

K Rule-of-thumb from theoret-

ical analysis. The
√

K Rule-of-thumb shows that the maximum number of classes in

a non-distributor module should be close to
√

K, where K is the number of classes

of the data set, the single-layer PD network will have the best performance. This

rule is used in our RGCS, CTCS and GACS methods and serves for the setting

of Noc−max, the maximum number of classes in a non-distributor module. Though

we have deduced this rule from analysis, one may still have reservation about the

validity of this rule when it is applied to real problems. Here we verify the validity

of this rule from experiments.

Here we illustrate with an example how the
√

K Rule works. For this objective,

we conducted a set of experiments. In the experiments, we changed Noc−max, and

applied it to RGCS algorithm and CTCS algorithm. Due to the long computation
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time, we were not able to repeat the experiments using GACS algorithm.

See the Vowel problem. The data set has 11 classes. The results are listed in

Table 6.7.

Table 6.7 shows the network performance changes with the value of Noc−max

parameter. When Noc−max = 1, it means the each output of the distributor mod-

ule only has one class. The distributor module can classify all the test patterns

into their corresponding classes and no non-distributor modules are needed to fur-

ther classify the patterns. The network is the same as that of the fully partitioned

Output Parallelism network. From the table, it also can be seen that for RGCS

algorithm, when Noc−max is 5 or 6, the attained classification set is the same as

that when Noc−max is 4 and for CTCS algorithm, when Noc−max is 6, the deduced

classification set is the same as that when Noc−max is 5. The reason for this is that

our RGCS algorithm and CTCS algorithm are designed to find the combination set

with a relatively low classification error, not to find the combination set whose max

combination has Noc−max elements. Noc−max is just used to restrict the maximum

number of elements in a combination. It is possible that no combinations having

Noc−max elements exist according to our algorithms. In Table 6.10, we just list the

results to Noc−max = 7. When Noc−max > 7, for the CTCS algorithm, the obtained

combination set is the same as Noc−max = 5, and for the RGCS algorithm, the ob-

tained combination set is the same as Noc−max = 7. For the convenience of readers,

we plot the classification errors of the two algorithms in Figure 6.1 and Figure 6.2.

From Figures 6.1 and 6.2, it can be seen that with the increase of Noc−max, the

classification errors of the distributor module in both figures decrease. The reason

for this is that when Noc−max becomes large, the maximum number of classes in

a non-distributor module increases. Thus, the restriction from the non-distributor

becomes loose. When we use RGCS algorithm or CTCS algorithm to search a suit-

able combination set, we need not always worry that the combination reaches its

maximum number of classes. Therefore, it is easy to find a combination set whose

corresponding distributor module has a relatively low classification error. Figure 6.1

and 6.2 also show that for the whole networks in both figures, the classification errors
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Table 6.7: The network performance with the change of Noc−max for the Vowel
problem

Hidden Indep. C.error of C.error of
Noc−max Method Combination set Units Param. distributor whole

module(%) network(%)
CTCS {{1},{2},{3},{4}, 184.4 2333.8 25.5466 25.5466

{5},{6},{7},{8},
1 {9},{10},{11}}

RGCS {{1},{2},{3},{4}, 184.4 2333.8 25.5466 25.5466
{5},{6},{7},{8},
{9},{10},{11}}

CTCS {{1,10},{2,3}, 242.65 3087.8 12.1012 15.3603
{5,6},{7,11},

2 {8,9},{4}}
RGCS {{1,10},{2,3}, 259.4 3277.8 12.0445 14.6154

{4,6},{8,9},
{5},{7},{11}}

CTCS {{1,2,3},{5,6,7}, 246.55 3123.6 8.0567 15.3846
{8,9,10},

3 {4,11}}
RGCS {{4,6,11},{7,8,9}, 155.8 2045.6 5.8502 12.2672

{1,10},{2,3},
{5}}

CTCS {{1,2,3,4}, 222.7 2826.4 6.0121 17.9352
{5,6,7,11},

4 {8,9,10}}
RGCS {{1,2,3,10}, 208.2 2652.4 2.9960 16.1538

{4,5,6,11},
{7,8,9}}

CTCS {{1,2,3}, 241.65 3053.8 3.9474 20.5870
{4,5,6,7,11},

5 {8,9,10}}
RGCS Same as RGCS

Noc−max = 4
CTCS Same as CTCS

6 Noc−max = 5
RGCS Same as RGCS

Noc−max = 4
CTCS Same as CTCS

7 Noc−max = 5
RGCS {{4,5,6,7,8,9,11}, 208.4 2643.8 1.0324 19.6559

{1,2,3,10}}
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Figure 6.1: The relation between classification error and Noc−max using CTCS algo-
rithm for the Vowel problem

Figure 6.2: The relation between classification error and Noc−max using RGCS algo-
rithm for the Vowel problem
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fall first and after that, the classification errors rise. Using RGCS algorithm, the

lowest classification error of the whole network 12.2672% appears at Noc−max = 3.

Using CTCS algorithm, the trough appears at Noc−max = 2 and 3, whose classifica-

tion errors are 15.3603% and 15.3846% respectively. From the two figures, we can see

that in order to let the network has relatively low classification error, Noc−max = 3

is a good choice. Because the Vowel data set has 11 classes,
√

11 ≈ 3.32. Thus,
√

K

Rule works for this problem.

From the above example, we can see that the
√

K Rule is a suitable choice indeed

in setting the Noc−max parameter.

6.6 Comparison of the Combination Selection Al-

gorithms

In the last chapter and this chapter, we presented five combination selection meth-

ods for the distributor module, namely GCS, SGCS, RGCS, CTCS and GACS. The

former three methods are based on greedy methods. In them, GCS and SGCS are

designed for multi-layer PD networks and RGCS is designed for single-layer PD net-

works. The two combination methods which are introduced in this chapter, CTCS

and GACS, are also designed for single-layer PD networks. All the three algo-

rithms for single-layer PD networks, RGCS, CTCS and GACS, need an important

parameter, Noc−max, which represents the maximum number of original classes in a

combination. The
√

K Rule (K is the number of classes in the problem) is used for

the setting of Noc−max parameter.

Now compare the time consumed by these methods. In CTCS algorithm, we

apply FLD to project the features to a one-dimensional space, use the obtained

information to form a cross-talk table and find a suitable combination set based on

the cross-talk table. In the whole process, we do not need to compute the classifi-

cation errors of combinations or combination sets (please see Definition 5.2 for the

classification error of a combination and Definition 5.3 for the classification error

of a combination set). While in greedy based combination selection algorithms, we

need to compute the classification errors of combinations and in GACS method, we
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need to find the classification errors of combination sets. In our actual simulation,

the time spent mainly on the computation of classification errors. Thus, compared

with that of the other algorithms, the computation time of CTCS algorithm can be

neglected.

For the other four algorithms, we need to compute the classification errors in

each epoch. We have mentioned earlier that in GCS, SGCS and RGCS algorithms,

we compute the classification errors of combinations and in GACS method, we com-

pute the classification errors of combination sets. There is some difference between

the classification error of a combination and that of a combination set. The neural

network which is used to evaluate the classification error of a combination only has

two outputs, while the neural network which is used to evaluate the classification

error of a combination set normally has two or more outputs. In average, computing

the classification error of a combination set normally need to spend more time than

computing the classification error of a combination. However, for the convenience

of comparison, we regard the time of computing classification errors as the same.

Definition 6.1—Time unit: The average time of computing a classification

error when we use GCS, SGCS, RGCS or GACS algorithm to find a suitable com-

bination set for a data set.

Normally, GACS method needs to spend much more time units than GCS, SGCS

and RGCS algorithms. SGCS is a simplification of GCS algorithm. It needs not com-

pute as many as classification errors as GCS algorithm, so SGCS algorithm spends

less time units than GCS algorithm. SGCS and GCS algorithms are designed for

multi-layer PD networks. To solve a problem, SGCS and GCS algorithms are used

several times for the distributor modules in different layers. RGCS algorithm is

designed for single-layer PD networks. Thus, for a data set, the time units spent

using RGCS algorithm is normally less than that using GCS or SGCS algorithm.

Now we compare the performance of the PD networks using the five algorithms.

A. Vowel
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Table 6.8: Results of the different combination selection methods for the Vowel
problem

Time Hidden Indep. C.error of C.error of
Method Combination set Units Units Param. distributor whole

module network
(%) (%)

1st lvl: {{4,5,6,7,8,9,11}, 115 332.85 4137.2 – 11.6194
{1,2,3,10}}

2nd lvl 1: {{4,5,6,11},
GCS {7,8,9}}

2nd lvl 2: {{1,10},{2,3}}
3rd lvl:{{5,6,11},{4}}
4th lvl: {{6,11},{5}}

SGCS Same as GCS 115 332.85 4137.2 – 11.6194
RGCS {{4,6,11},{7,8,9}, 54 155.8 2045.6 5.8502 12.2672

{1,10},{2,3},{5}}
CTCS {{1,2,3},{5,6,7}, 0 246.55 3123.6 8.0567 15.3846

{8,9,10},{4,11}}
GACS {{4,6,11},{7,8,9}, 54 155.8 2045.6 5.8502 12.2672

{1,10},{2,3},{5}}
Arbitrary {{1,2,3},{4,5,6,7}, 0 229.4 2955.8 6.6802 18.7045
Selection {8,9,10,11}}

1
Arbitrary {{1,2,3},{4,5,6}, 0 190.1 2446.2 7.3041 15.5466
Selection {7,8,9},{10,11}}

2
Arbitrary 1st lvl:{{1,2,3,4,5,6}, 0 217.9 2801.8 – 15.4251
Selection {7,8,9,10,11}}

3 2nd lvl 1:{{1,2,3},{4,5,6}}
2nd lvl 2:{{7,8,9},{10,11}}

Table 6.9: Improvement of the combination selection methods for the Vowel problem

Avg. of
Method arbitrary of GCS SGCS RGCS CTCS GACS

selection
C. error.(%) 16.5587 11.6194 11.6194 12.2672 15.3846 12.2672
Improvment
compared to – 4.9393 4.9393 4.2915 1.1741 4.2915

arbitrary
selection
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Table 6.8 shows the performance of the PD networks using different combination

selection algorithms, including three arbitrary PD networks, for the Vowel problem.

Table 6.9 shows the improvement of the classification errors of these methods com-

pared with arbitrarily selected PD networks. The three arbitrarily selected PD

networks include two single-layer PD networks and one multi-layer PD network.

Because the multi-layer PD networks have several distributor modules, we do not

list the classification errors of these distributor modules. According to the
√

K rule,

the Noc−maxparameter for the PD networks using RGCS, CTCS and GACS algo-

rithms is set at 3. For the convenience of comparison, we set Noc−max = 3 for the

2nd arbitrary selected PD network.

We can see that the networks using GCS and SGCS algorithm have the low-

est classification error in all the eight PD networks, whose classification error is

11.6194%. The average classification error of the three arbitrarily selected networks

is 16.5587%. Compared with those of arbitrarily selected networks, the classification

accuracy of GCS (or SGCS) increases 5 percent and the classification error decreases

1/3 compared with the arbitrary selected networks. It is a significant improvement.

Now we focus on the five single-layer PD networks. Compared with multi-

layer PD networks, the single-layer PD network has the shorter processing time

for unknown patterns. In the five networks, four networks have the parameter

Noc−max = 3, namely RGCS, CTCS, GACS and Arbitrary selection 2. It can be

seen that network using RGCS is the same as that using GACS. RGCS and GACS

achieved lower classification error than the other two networks, both for the dis-

tributor module and the whole network. The performance of the network using

CTCS is close to that of the arbitrary selected network 2. We can also note that

the classification error of the distributor module in Arbitrary selection 1 is smaller

than CTCS. The reason for this is that Noc−max = 3 in Arbitrary selection 1 while

Noc−max = 3 in CTCS.

Then we compared the time consumed for the five methods. It can be seen that

GACS spend 800 time units, which is much greater than the other four methods.

The time spent by CTCS can be neglected compared with the other methods. Com-
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pared with GACS, RGCS achieve the same results, but only spend 54 time units.

GCS uses 115 time units to find it network, while its simplified version, SGCS uses

89 time units.

In general, SGCS and RGCS have the best performance for this problem. For

multi-layer networks, SGCS achieves the minimum classification error with relatively

short computation time. For single-layer networks, RGCS attains the best classifi-

cation rate and a relatively short consumed time.

B. Segmentation

The experimental results for the Segmentation problem using different combina-

tion selection algorithms are shown on Tables 6.10 and 6.11. Same as those in the

Vowel problem, the three arbitrary selected PD networks include two single-layer

PD networks and one multi-layer PD network. We do not list the classification er-

rors of these distributor modules for multi-layer PD networks. According to the
√

K

rule, the Noc−max parameter is 2 for RGCS, CTCS and GACS. For the convenience

of comparison, Noc−max = 2 for the 2nd arbitrary selected PD network.

It can be seen that the networks using RGCS algorithm and GACS algorithm

are the same and have the lowest classification error in all the eight PD networks,

which is 3.4662%. The average classification error of the three arbitrary selected

networks is 4.6736%. The classification error of RGCS (or GACS) decreases 1.2%

compared with those of arbitrary selected networks. It is a great progress.

Now we focus on the five single-layer PD networks. Compared with multi-layer

PD networks, the single-layer PD network has the shorter processing time for un-

known patterns. In the five networks, four networks, RGCS, CTCS, GACS and

Arbitrary selection 2, have the parameter Noc−max = 2. RGCS and GACS achieve

lower classification error than the other two networks, both for the distributor mod-

ule and the whole network. The overall classification error of the network using

CTCS is lower than the classification errors of the arbitrarily selected networks. It

can be also noted that the classification error of the distributor module in Arbitrary

selection 1 is smaller than CTCS. The reason for this is that Noc−max = 4 in Arbi-
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Table 6.10: Results of the different combination selection methods for the Segmen-
tation problem

Time Hidden Indep. C.error of C.error of
Method Combination set Units Units Param. distributor whole

module network
(%) (%)

1st lvl: {{1,3,4,5}, 39 92.05 2050 – 3.8821
GCS {2,7},{6}}

2nd lvl: {{3,4,5},{1}}
3rd lvl: {{3,5},{4}}
1st lvl: {{1,3,4,5}, 23 160.45 3418 – 3.8735

SGCS {6,7},{2}}
2nd lvl: {{3,4,5},{1}}
3rd lvl: {{3,5},{4}}

RGCS {{1,4}, {2,7},{3,5}, 19 140.65 3003 1.0225 3.4662
{6}}

CTCS {{3,5},{4,6},{1}, 0 172.9 3648 2.0017 4.3934
{2},{7}}

GACS {{1,4},{2,7},{3,5}, 800 140.65 3003 1.0225 3.4662
{6}}

Arbitrary {{3,4,5},{1,2,6,7}} 0 128.9 2768 1.0399 4.6101
Selection

1
Arbitrary {{1},{2,3},{4,5}, 0 128.5 2760 4.0035 4.7660
Selection {6,7}}

2
Arbitrary 1st lvl: {{1,2,3}, 0 165.8 3506 – 4.6447
Selection {4,5,6,7}}

3 2nd lvl 1: {{1}, {2,3}}}
2nd lvl 2: {{4,5},{6,7}}

Table 6.11: Improvement of the combination selection methods for the Segmentation
problem

Avg. of
Method arbitrary of GCS SGCS RGCS CTCS GACS

selection
C. error.(%) 4.6736 3.8821 3.8735 3.4662 4.3934 3.4662
Improvment
compared to – 0.7915 0.8001 1.2074 0.2802 1.2074

arbitrary
selection
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trary selection 1 while Noc−max = 2 in CTCS.

For the multi-layer PD networks, we can see that GCS and SGCS find the similar

network structure. The overall classification errors of the two networks are also very

close (3.8821% and 3.8735%), which is much better than the classification error of

the arbitrarily selected multi-layer network (4.6447%).

Then we compared the time consumed for the five methods. It can be seen that

GACS spend 800 time units, which is much greater than the other four methods.

The time spent by CTCS can be neglected compared with the other methods. Com-

pared with GACS, RGCS achieved the same results, but only spend 19 time units.

GCS uses 39 time units to find it network, while its simplified version, SGCS uses

23 time units.

In general, RGCS has the best performance for this problem. RGCS attains the

best classification rate and a relatively short consumed time.

C. Pen-Based Recognition

Table 6.12 shows the performance of the PD networks using different combina-

tion selection algorithms, including three arbitrary PD networks, for the Pen-based

Recognition data set. Table 6.13 shows the improvement of the classification errors

of these methods compared with arbitrarily selected PD networks. The three arbi-

trary selected PD networks include two single-layer PD networks and one multi-layer

PD network. As those in the last two examples, we don’t list the classification errors

of these distributor modules. According to the
√

K rule, the Noc−max parameter for

the PD networks using RGCS, CTCS and GACS algorithms is set to be 3. For the

convenience of comparison, we set Noc−max = 3 for the 2nd arbitrary selected PD

network.

We can see that the networks using GCS and SGCS algorithm have the lowest

classification error in all the eight PD networks, whose classification error is 1.0058%.

The average classification error of the three arbitrarily selected networks is 2.9304%.

Compared with those of arbitrarily selected networks, the classification accuracy of
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Table 6.12: Results of the different combination selection methods for the Pen-Based
Recognition problem

Time Hidden Indep. C.error of C.error of
Method Combination set Units Units Param. distributor whole

module network
(%) (%)

1st lvl:{{1},{3},{4},{5}, 60 413.35 7661.3 – 1.0058
GCS {8},{7,9},{2,6,10}}

2nd lvl: {{6,10},{2}}
SGCS Same as GCS 46 413.35 7661.3 – 1.0058
RGCS {{1},{3},{4},{5},{8}, 48 299.65 5597.7 0.7951 1.0592

{7,9},{6,2,10}}
CTCS {{2,3,4},{6,8,9},{1,10}, 0 273.2 5155.6 0.6990 1.1633

{5,7}}
GACS {{1,4},{2,7},{3,5}, 800 335 6268 0.5630 1.2060

{6}}
Arbitrary {{1,2,3,4,5},{6,7,8,9,10}} 0 287.45 5378.1 0.6190 5.0453
Selection

1
Arbitrary {{1,2,3},{6,9,10},{4,7}, 0 258.8 4896.4 1.2540 1.8757
Selection {5,8}}

2
Arbitrary 1st lvl: {{1,2,3,4,5}, 0 311.95 5887.1 – 1.8703
Selection {6,7,8,9,10}}

3 2nd lvl 1:{{1,2,3},{4,5}}
2nd lvl 2:{{8,9,10},{6,7}}

Table 6.13: Improvement of the combination selection methods for the Pen-Based
Recognition problem

Avg. of
Method arbitrary of GCS SGCS RGCS CTCS GACS

selection
C. error.(%) 2.9304 1.0058 1.0058 1.0592 1.1633 1.2060
Improvment
compared to – 1.9246 1.9246 1.8712 1.7671 1.7244

arbitrary
selection
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GCS (or SGCS) increases about 1.9 percent and the classification error decreases

2/3 compared with arbitrary selected networks. That is a great improvement.

Now we focus on the five single-layer PD networks. Compared with multi-

layer PD networks, the single-layer PD network has the shorter processing time

for unknown patterns. In the five networks, four networks have the parameter

Noc−max = 3, namely RGCS, CTCS, GACS and Arbitrary selection 2. We can see

that the distributor module of the network using GACS has the lowest classification

error (0.5630%) while the whole network using RGCS has the lowest classification

error (1.0592%). GACS has the best performance in the distributor module, but

not in the whole network. The reason for this is that in the RGCS network, there

are only two non-distributor modules, while in the GACS network, there are four

non-distributor modules. The wrongly classified test patterns by the non-distributor

modules of the GACS network are larger than those of the RGCS network. Thus,

RGCS achieve higher classification accuracy in this example. The overall classifica-

tion error of the CTCS network is a little better than the GACS network. It can be

also noted that the classification error of the distributor module in Arbitrary selec-

tion 1 is smaller than CTCS and RGCS. The reason for this is that Noc−max = 5 in

Arbitrary selection 1 while Noc−max = 3 in CTCS and RGCS.

Then we compared the time consumed for the five methods. It is obvious that

GACS spend 800 time units, which is much greater than the other four methods.

The time spent by CTCS can be neglected compared with the other methods. Com-

pared with GACS, RGCS achieve the same results, but only spend 48 time units.

GCS uses 60 time units to find it network, while its simplified version, SGCS uses

46 time units.

In general, SGCS and RGCS have the best performance for this problem. For

multi-layer networks, SGCS achieves the minimum classification error with relatively

short computation time. For single-layer networks, RGCS attains the best classifi-

cation rate and a relatively short consumed time.
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Table 6.14: Comparison to related work

Data set GCS SGCS RGCS CTCS GACS ILOA HICL PD

Vowel 11.6194 11.6194 12.2672 15.3846 12.2672 22.57 – 24.355

Segmentation 3.8821 3.8735 3.4662 4.3934 3.4662 – 3.6048 –

Pen-Based 1.0058 1.0058 1.0592 1.1633 1.2060 – – –
Recognition

6.7 Discussion and Conclusions

Here we introduced two combination methods, CTCS and GACS and compared the

combination selection methods in the last and this chapter. CTCS is the fastest

method to find a suitable combination set. CTCS utilizes FLD to project the infor-

mation of feature space into two-dimensional spaces and generate a cross-talk table.

Then a combination set is generated based on the cross-talk table. Because some

useful information will be lost when we project the feature space from higher di-

mension to lower dimension, CTCS can hardly find the best combination set. From

the experiments, we can see this fact. GACS method try to find an optimum or

near-optimum combination set through evolution. It spends more time compared

with other methods. From the experimental results, we can see that GACS can

always find the combination set for each problem whose distributor module has the

smallest classification error.

We have compared our results to the feature selection results reported in the

literature such as ILOA (Guan and Thong, 2003), HICL (Guan and Li, 2002b), and

PD (Guan and Li, 2002a). For the Vowel data, our PD results are better than the

results reported as shown in Table 6.14. For the Segmentation data, our PD results

are consistent with the results reported. It should be mentioned that the comparison

of the error rates obtained by different methods in Table 6.14 may not be precise

(or fair), since the results achieved by different algorithms have not been obtained

using the same experimental procedure, network structures and training methods.
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From the experiments, we can see that the most successful combination selection

algorithm is RGCS for single-layer PD network. For the Vowel and Segmentation

problem, it finds the same combination set as GACS and spends much shorter

time than GACS. For the Pen-based Recognition problem, though the distributor

module’s classification error is larger than GACS, the whole networks’ classification

error is smaller than GACS. Even compared with GCS and SGCS, RGCS is also a

good choice. There are three reasons. The first is that the single-layer PD network

has shorter processing time when detect unknown patterns compared with multi-

layer PD networks. The second is that RGCS often spend less time to find the

combination set compared to GCS or SGCS. The third is that the classification

error of the final network using RGCS is close to that using GCS or SGCS.



Chapter 7

Conclusions

The main purpose of this thesis is to design neural network classifiers for multi-class

problems. A new type of modular neural networks called Pattern Distributor net-

work was proposed. The PD method uses a hierarchical structure to classify unseen

patterns. There are two types of PD networks, single-layer PD networks and multi-

layer PD networks. In single-layer PD networks, only one distributor module is

used. Unknown patterns are first recognized by the distributor module before they

are presented to the other modules. We presented a theoretical model to compare

the classification rate of a PD network with that of an OP network - a typical class

decomposition network developed by Guan and Li (2000 and 2002). The theoreti-

cal analysis showed that the PD method can achieve better classification accuracy

than the OP method once the performance of the distributor modules is guaranteed.

The experiments confirmed our analysis. Multi-layer PD networks are extensions

of single-layer PD networks. They can be regarded as using the PD method on

non-distributor modules in single-layer PD networks. There are several distributor

modules in multi-layer PD networks. Multi-layer PD networks can achieve a better

classification rate than the corresponding single-layer PD networks when the per-

formance of those distributor modules is ensured.

How to design highly performing distributor modules is a critical issue in the

design of PD networks. Only when the recognition rate of distributor modules is

guaranteed do the PD networks have higher classification accuracy than ordinary

class decomposition networks. In chapter 5, we presented several theorems and

corollaries for class combination in the distributor modules and for the relations

in the non-distributor modules. Based on these theorems and corollaries, we pro-
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posed three combination algorithms to find good combination sets for the distributor

module. The first one is called GCS, the basic idea of which is based on the greedy

method (which works by making the decision that seems most promising at any

moment). GCS starts from the class with the largest classification error and com-

bines that class with other classes one by one to find a premier combination set.

The second one is SGCS algorithm, which is designed to reduce the computation

effort of GCS algorithm by considering the border relationship among classes. GCS

and SGCS are mainly used in multi-layer PD networks. To customise GCS for

single-layer PD networks, we deduced the
√

K rule-of-thumb (K is the number of

classes in the problem), according to which, the maximum number of classes in a

non-distributor modules should not exceed
√

K. Based on this rule, we proposed the

third algorithm RGCS, the basic idea of which is similar to that of GCS. Restriction

of the maximum number of classes in a combination (or an output of the distributor

module) is added so as to balance the size of the following non-distributor modules.

These three algorithms could find suitable combinations for the distributor module,

for they are all based on the greedy method.

In Chapter 6, we presented two combination selection algorithms, CTCS and

GACS. The
√

K rule is used in both algorithms. The basic idea behind CTCS is

to find classes which are close in the feature space and combine them together. In

CTCS, a Cross-talk table is formed using FLD methods, then the combination is

found from the cross-talk table. GACS is a Genetic Algorithm (GA) based algo-

rithm, which finds a suitable combination set through evolution.

We compared the results of the five combination selection algorithms. CTCS

is the fastest algorithm, yet the final classification accuracies for data sets in our

experiments were not as good as the other algorithms. GACS could find the optimal

combination set for the distributor module, but a drawback for GACS is that more

computation is needed than the other algorithms. From the experiments, RGCS

algorithm has the best performance in all the algorithms. It can attain similar clas-

sification accuracies as GACS, while the computation time is much smaller than

GACS.
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Our research is of significant in that our PD method has good performance for

multi-class problems. We wish our study could enlighten other researchers to carry

on with further research on better classifiers for multi-class problems.

Future work

There are several directions for future research. The first is the combination

methods in the distributor module. Though several combination algorithms have

been designed for distributor modules, these combination algorithms have short-

comings. GACS is time-consuming. Though in our experiments, RGCS found the

combination set as good as GACS, we can not guarantee the greedy based algo-

rithms can always find the optimum combination. Because greedy algorithms are

shortsighted methods which make the decision that seems most promising at present,

it is possible that CTCS may not find the premium or near-premium combination

sets for distributor modules. How to find an effective and low-computation-effort

combination algorithm is still a subject in our future work.

A second study that can be done in the future is further exploration on Reduced

Pattern Training. Reduced Pattern Training is only applied in the non-distributor

modules. It may be extended to the distributor modules. Foody divided the training

patterns for a problem into core patterns and border patterns (1998). Because core

patterns are those patterns far away from borders, it is possible to remove some core

patterns without losing useful information. Some experiments have been done and

the results show that this idea may be valuable. However, a systematic and auto-

matic approach is yet to be found for this. How to reduce the number of training

patterns effectively and automatically is still a problem which needs to be addressed

in our future study.

A third area of study for the future is the extension of the PD method to re-

gression problems. Unlike classification problems in which outputs are discrete,

regression problems have continuous outputs. Thus, distributor modules can not

classify patterns with a simple “yes or no” output for regression problems. Deci-

sion tree classifiers have been extended to regression problems, i.e. classification

and regression tree (CART) system (Steinberg and Colla, 1995). Unlike specifying
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priors and misclassification costs in classification trees, regression trees use the sum

of squares of the dependent variables for splitting. This idea gives us clues to design

PD networks for regression problems. Further work needs to be developed to extend

the PD method for regression problems.
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Appendix

The Early Stopping method using validation set is used as the stopping criteria

in training the new modular network (Guan and Li, 2002b). The set of available

patterns is divided into three sets: a training set is used to train the network, a

validation set is used to evaluate the quality of the network during training and to

measure overfitting, and a test set is used at the end of training to evaluate the

resultant network. The size of the training, validation, and test set is 50%, 25%

and 25% of the problem’s total available patterns. The error measure E used is the

squared error percentage (Squires and Shavlik, 1991), derived from the normalization

of the mean squared error to reduce the dependency on the number of coefficients

in the problem representation and on the range of output values used:

E = 100 · omax − omin

K · P
P∑

p=1

K∑

k=1

(opk − tpk)
2 , (A.1)

where omax and omin are the maximum and minimum values of output coefficients

in the problem representation, P is the number of patterns, K is the number of out-

puts, opk is the actual output value of the kth output unit for the pth training pattern

and tpk is the desired output value of the kth output unit for the pth training pattern.

Etr(t) is the average error per pattern of the network over the training set, mea-

sured after epoch t. The value Eva(t) is the corresponding error on the validation

set after epoch t and is used by the stopping criterion.Ete(t) is the corresponding

error on the test set; it is not known to the training algorithm but characterizes the

quality of the network resulting from training.

The value Eopt(t) is defined to be the lowest validation set error obtained in

epochs up to epoch :

Eopt(t) = min
t′<t

Eva(t
′) . (A.2)
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The generalization loss (Squires and Shavlik, 1991) at epoch t is defined as the

relative increase of the validation error over the minimum so far (in percent):

GL(t) = 100 · ( Eva(t)

Eopt(t)
− 1) . (A.3)

A high generalization loss is one candidate reason to stop training because it directly

indicates overfitting.

To formalize the notion of training progress, a training strip of length m is defined

to be a sequence of m epochs numbered n+1, n+2, . . ., n+m, where n is divisible

by m(Squires and Shavlik, 1991). The training progress measured after a training

strip is:

Pm(t) = 100 · (
∑t

t′=t−m+1 Etr(t
′)

m ·mint′∈[t−m+1,t] Etr(t′)
− 1) . (A.4)

It is used to measure how much larger the average training error is than the mini-

mum training error during the training strip.

During the process of growing and training individual modules, we adopted the

following heuristic overall stopping criteria: Eopt < Eth OR (Reduction of training

set error due to the last new hidden unit is less than 0.01% AND Validation set

error increased due to the last new hidden unit). The first part (Eopt < Eth) means

that the optimal validation set error is below the threshold (Eth) and the result has

been acceptable. The other part means the last insertion of a hidden unit resulted

in hardly any progress. The criteria for adding a new hidden unit are as follows: At

least 25 epochs reached for the current network AND (Generalization loss GL(t) > 5

OR Training progress P5(t) < 0.1). The first part means that the current network

should be trained for at least a certain number of epochs before a new hidden unit

is installed because the error curves may be turbulent at the beginning. The sec-

ond part means that the current network has been overfitted or training has little

progress. It is a bit unsatisfactory that all of these criteria are heuristic.


