1,555 research outputs found

    Bio-inspired network security for 5G-enabled IoT applications

    Get PDF
    Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks

    A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks

    Get PDF
    With the huge advancement of nanotechnology over the past years, the devices are shrinking into micro-scale, even nano-scale. Additionally, the Internet of nano-things (IoNTs) are generally regarded as the ultimate formation of the current sensor networks and the development of nanonetworks would be of great help to its fulfilment, which would be ubiquitous with numerous applications in all domains of life. However, the communication between the devices in such nanonetworks is still an open problem. Body-centric nanonetworks are believed to play an essential role in the practical application of IoNTs. BCNNs are also considered as domain specific like wireless sensor networks and always deployed on purpose to support a particular application. In these networks, electromagnetic and molecular communications are widely considered as two main promising paradigms and both follow their own development process. In this survey, the recent developments of these two paradigms are first illustrated in the aspects of applications, network structures, modulation techniques, coding techniques and security to then investigate the potential of hybrid communication paradigms. Meanwhile, the enabling technologies have been presented to apprehend the state-of-art with the discussion on the possibility of the hybrid technologies. Additionally, the inter-connectivity of electromagnetic and molecular body-centric nanonetworks is discussed. Afterwards, the related security issues of the proposed networks are discussed. Finally, the challenges and open research directions are presented

    Towards a Reference Architecture for Swarm Intelligence-based Internet of Things

    Get PDF
    International audienceThe Internet of Things (IoT) represents the global network which interconnects digital and physical entities. It aims at providing objects with intelligence that allows them to perceive, decide and cooperate with other objects, machines, systems and even humans to enable a whole new class of applications and services. Agent-Based Computing paradigm has been exploited to deal with the IoT system development. Many research works focus on making objects able to think by themselves thus imitating human brain. Swarm Intelligence studies the collective behavior of systems composed of many individuals who interact locally with each other and with their environment using decentralized and self-organized control to achieve complex tasks. Swarm intelligence-based systems provide decentralized, self-organized and robust systems with consideration of coordination frameworks. We explore in this paper the exploitation of swarm intelligence-based features in IoT-based systems. Therefore, we present a reference swarm-based architectural model that enables cooperation among devices in IoT systems

    Survey on Various Aspects of Clustering in Wireless Sensor Networks Employing Classical, Optimization, and Machine Learning Techniques

    Get PDF
    A wide range of academic scholars, engineers, scientific and technology communities are interested in energy utilization of Wireless Sensor Networks (WSNs). Their extensive research is going on in areas like scalability, coverage, energy efficiency, data communication, connection, load balancing, security, reliability and network lifespan. Individual researchers are searching for affordable methods to enhance the solutions to existing problems that show unique techniques, protocols, concepts, and algorithms in the wanted domain. Review studies typically offer complete, simple access or a solution to these problems. Taking into account this motivating factor and the effect of clustering on the decline of energy, this article focuses on clustering techniques using various wireless sensor networks aspects. The important contribution of this paper is to give a succinct overview of clustering
    corecore