1,169 research outputs found

    Classical consequences of continuous choice principles from intuitionistic analysis

    Full text link
    The sequential form of a statement ξ(B(ξ)ζA(ξ,ζ))\forall\xi(B(\xi) \rightarrow \exists\zeta A(\xi,\zeta)) is the statement ξ(nB(ξn)ζnA(ξn,ζn))\forall\xi(\forall n B(\xi_n) \rightarrow \exists\zeta \forall n A(\xi_n,\zeta_n)). There are many classically true statements of the first form whose proofs lack uniformity and therefore the corresponding sequential form is not provable in weak classical systems. The main culprit for this lack of uniformity is of course the law of excluded middle. Continuing along the lines of previous work by Hirst and Mummert, we show that if a statement of the first form satisfying certain syntactic requirements is provable in some weak intuitionistic system, then the proof is necessarily sufficiently uniform that the corresponding sequential form is provable in a corresponding weak classical system. Our results depend on Kleene's realizability with functions and the Lifschitz variant thereof.Comment: 20 page

    Mass problems and intuitionistic higher-order logic

    Full text link
    In this paper we study a model of intuitionistic higher-order logic which we call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, \emph{the Muchnik reals}, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice principle} (xyA(x,y))wxA(x,wx)(\forall x\,\exists y\,A(x,y))\Rightarrow\exists w\,\forall x\,A(x,wx) and a \emph{bounding principle} (xyA(x,y))zxy(yT(x,z)A(x,y))(\forall x\,\exists y\,A(x,y))\Rightarrow\exists z\,\forall x\,\exists y\,(y\le_{\mathrm{T}}(x,z)\land A(x,y)) where x,y,zx,y,z range over Muchnik reals, ww ranges over functions from Muchnik reals to Muchnik reals, and A(x,y)A(x,y) is a formula not containing ww or zz. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page

    Constructive set theory and Brouwerian principles

    Get PDF
    The paper furnishes realizability models of constructive Zermelo-Fraenkel set theory, CZF, which also validate Brouwerian principles such as the axiom of continuous choice (CC), the fan theorem (FT), and monotone bar induction (BIM), and thereby determines the proof-theoretic strength of CZF augmented by these principles. The upshot is that CZF+CC+FT possesses the same strength as CZF, or more precisely, that CZF+CC+FTis conservative over CZF for 02 statements of arithmetic, whereas the addition of a restricted version of bar induction to CZF (called decidable bar induction, BID) leads to greater proof-theoretic strength in that CZF+BID proves the consistency of CZF

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Constructive Mathematics in Theory and Programming Practice

    Get PDF
    The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop’s constructive mathematics(BISH). It gives a sketch of both Myhill’s axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focuses on the relation between constructive mathematics and programming, with emphasis on Martin-Lof’s theory of types as a formal system for BISH

    The Fan Theorem, its strong negation, and the determinacy of games

    Full text link
    IIn the context of a weak formal theory called Basic Intuitionistic Mathematics BIM\mathsf{BIM}, we study Brouwer's Fan Theorem and a strong negation of the Fan Theorem, Kleene's Alternative (to the Fan Theorem). We prove that the Fan Theorem is equivalent to contrapositions of a number of intuitionistically accepted axioms of countable choice and that Kleene's Alternative is equivalent to strong negations of these statements. We also discuss finite and infinite games and introduce a constructively useful notion of determinacy. We prove that the Fan Theorem is equivalent to the Intuitionistic Determinacy Theorem, saying that every subset of Cantor space is, in our constructively meaningful sense, determinate, and show that Kleene's Alternative is equivalent to a strong negation of a special case of this theorem. We then consider a uniform intermediate value theorem and a compactness theorem for classical propositional logic, and prove that the Fan Theorem is equivalent to each of these theorems and that Kleene's Alternative is equivalent to strong negations of them. We end with a note on a possibly important statement, provable from principles accepted by Brouwer, that one might call a Strong Fan Theorem.Comment: arXiv admin note: text overlap with arXiv:1106.273

    Semantic and Mathematical Foundations for Intuitionism

    Get PDF
    Thesis (Ph.D.) - Indiana University, Philosophy, 2013My dissertation concerns the proper foundation for the intuitionistic mathematics whose development began with L.E.J. Brouwer's work in the first half of the 20th Century. It is taken for granted by most philosophers, logicians, and mathematicians interested in foundational questions that intuitionistic mathematics presupposes a special, proof-conditional theory of meaning for mathematical statements. I challenge this commonplace. Classical mathematics is very successful as a coherent body of theories and a tool for practical application. Given this success, a view like Dummett's that attributes a systematic unintelligibility to the statements of classical mathematicians fails to save the relevant phenomena. Furthermore, Dummett's program assumes that his proposed semantics for mathematical language validates all and only the logical truths of intuitionistic logic. In fact, it validates some intuitionistically invalid principles, and given the lack of intuitionistic completeness proofs, there is little reason to think that every intuitionistic logical truth is valid according to his semantics. In light of the failure of Dummett's foundation for intuitionism, I propose and carry out a reexamination of Brouwer's own writings. Brouwer is frequently interpreted as a proto-Dummettian about his own mathematics. This is due to excessive emphasis on some of his more polemical writings and idiosyncratic philosophical views at the expense of his distinctively mathematical work. These polemical writings do not concern mathematical language, and their principal targets are Russell and Hilbert's foundational programs, not the semantic principle of bivalence. The failures of these foundational programs has diminished the importance of Brouwer's philosophical writings, but his work on reconstructing mathematics itself from intuitionistic principles continues to be worth studying. When one studies this work relieved of its philosophical burden, it becomes clear that an intuitionistic mathematician can make sense of her mathematical work and activity without relying on special philosophical or linguistic doctrines. Core intuitionistic results, especially the invalidity of the logical principle tertium non datur, can be demonstrated from basic mathematical principles; these principles, in turn, can be defended in ways akin to the basic axioms of other mathematical theories. I discuss three such principles: Brouwer's Continuity Principle, the Principle of Uniformity, and Constructive Church's Thesis
    corecore